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We proposed a deterministic compartmental model for the transmission dynamics of COVID-19 disease. We performed
qualitative and quantitative analysis of the deterministic model concerning the local and global stability of the disease-free and
endemic equilibrium points. We found that the disease-free equilibrium is locally asymptotically stable when the basic
reproduction number is less than unity, while the endemic equilibrium point becomes locally asymptotically stable if the basic
reproduction number is above unity. Furthermore, we derived the global stability of both the disease-free and endemic
equilibriums of the system by constructing some Lyapunov functions. If R0 ≤ 1, it is found that the disease-free equilibrium is
globally asymptotically stable, while the endemic equilibrium point is globally asymptotically stable when R0 > 1. The
numerical results of the general dynamics are in agreement with the theoretical solutions. We established the optimal control
strategy by using Pontryagin’s maximum principle. We performed numerical simulations of the optimal control system to
investigate the impact of implementing different combinations of optimal controls in controlling and eradicating COVID-19
disease. From this, a significant difference in the number of cases with and without controls was observed. We observed that
the implementation of the combination of the control treatment rate, u2, and the control treatment rate, u3, has shown
effective and efficient results in eradicating COVID-19 disease in the community relative to the other strategies.

1. Introduction

Since the emergence of the disease in December 2019, the
coronavirus disease 2019 has been one of the greatest global
threats, causing diverse political, economic, and social crises.
It is now officially known as COVID-19 by the World Health
Organization (WHO). The disease was announced as a pan-
demic on March 11, 2020, by WHO [1]. The burden of the
disease in developing nations like Africa is very serious.
The main causes of transmission of COVID-19 are sneezing,
coughing, contacting infected people, touching items used
daily, and so on [2].

Many countries are involved in taking various measures
to prevent the pandemic, such as quarantining of suspected
individuals, isolation of the infected individuals, lockdown
of the community, contact tracing, mask wearing, and phys-

ical distancing in collaboration with the WHO. Even though
the trial of the production of the medication was not suc-
cessful, the production of the vaccination seems effective.
Vaccinating the susceptible population has officially started
globally, including for developing nations.

Mathematical modelling of infectious diseases plays a vital
role in understanding the underlyingmechanisms by which an
infectious disease spreads, in forecasting the long-term effect
of an epidemic, and in suggesting intervention methods for
controlling an existing disease [2–6]. Currently, several
authors have studied a mathematical model of COVID-19
dynamics. The majority of the studies on COVID-19 assumed
the proposed model as an autonomous or nonautonomous
system. Modelling studies such as by [7–9] assumed a deter-
ministic autonomous dynamical system and others considered
fractional-order deterministic system [10–13].
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There are also more studies that have been carried out
on the COVID-19 dynamics system using optimal control
strategies [13–19]. In [13], the authors proposed a mathe-
matical model involving lock-down, quarantine, and self-
isolating control functions to minimize the burden of the
disease on society and the associated costs. The authors in
[14] developed a deterministic mathematical model with
time variable controls. The results of their study revealed
that an optimal implementation of personal protective mea-
sures reduced the transmission of COVID-19. Quarantine
and treatment of the infected individuals are considered
optimal controls in the model stated by Abbasi et al. [15].
In addition, the authors employed an impulsive epidemic
model to show the abrupt growth in the population. The
model proposed by Kada et al. [16] considered two control
strategies in their dynamical system. That is, the treatment
of COVID-19-infected individuals and using masks for the
sensitive body parts, respectively. They found that imple-
mentation of the combined control strategies exhibited an
effective strategy in reducing COVID-19 epidemic disease
in society compared to implementing the individual strategy.

A few others proposed a nonautonomous optimal control
system [20–22]. In addition to the prevention and treatment
measures being implemented so far, many countries have
launched a nationwide vaccination campaign against
COVID-19, which is a huge step towards reducing the spread
of the disease. Therefore, it is vital to study COVID-19 disease
dynamics using mathematical modelling, considering it as an
autonomous and nonautonomous system with the implemen-
tation of vaccination, treatment, and public health education
as constant and continuous controls.

Therefore, in this paper, we propose a deterministic
compartmental model for the dynamics of COVID-19 in a
single host population and investigate the mathematical and
numerical analysis of the model. More importantly, it estab-
lishes the global stability of the disease-free and endemic equi-
libria and the implication of vaccination, treatment, and public
health education on the disease dynamics. The system is fur-
ther extended into an optimal control problemwith the imple-
mentation of continuous controls: vaccination, treatment, and
public health education. And finally, the best control measure
for controlling the disease is recommended.

The next part of the paper is organized as follows. Sec-
tion 2 presents the new dynamics model for COVID-19 dis-
ease. In Section 3, we study the qualitative analysis including
the basic reproduction number, the existence of the disease-
free and endemic equilibria, their local and global stability,
and the sensitivity of the parameters. The proposed model
is further extended into an optimal control problem and is
investigated using optimal control theory in Section 4. The
numerical methods employed and the numerical simulation
of the system with parameter values are performed in Sec-
tion 5. Finally, the conclusion and recommendation are
briefly presented in Section 6.

2. Model Formulation

The human population is divided into four subclasses. These
subclasses of human populations are as follows: susceptible

population ðSÞ, infected population ðIÞ, infected individuals
under intensive care unit (ICU) (Iu), and recovered popula-
tion ðRÞ. The total population N at a time t is given by Nð
tÞ = SðtÞ + IðtÞ + IuðtÞ + RðtÞ. The susceptible population S
is increased by the constant recruitment rate Λ. On the other
hand, it is reduced by the rate of transmission β, vaccination
rate ν, and natural death rate μ. The infected population I is
generated proportional to the susceptible and infected indi-
viduals at a rate of β. However, the infected compartment
I is decreased by the rate of progress α from I to Iu, rate of
recovery γ1, and natural death rate μ. The infected popula-
tion Iu is increased by the transmission rate α but declined
by the recovery rate γ2 and natural death rate μ. Moreover,
the recovery compartment R gains population from vaccina-
tion of susceptible population S at the rate ν, recovery of
infected individual I at the rate γ1, and recovery of infected
individual Iu at the rate γ2. The class R declined through a
natural death rate μ.

The following assumptions are considered in the formu-
lation of the model: the population is homogeneously mixed,
the exposed compartment is not considered, the infected
population I is the source of infection, but infected individ-
uals under intensive care unit (IUC) Iu are assumed to be
hospitalized and restricted, and people contracted with these
groups are assumed to take all forms of protection and are
thus not assumed to be the source of infection.

Following the population scheme in Figure 1, the differ-
ential equations that describe the transmission of COVID-19
become

dS
dt

=Λ − βI + ν + μð ÞS,
dI
dt

= βSI − α + γ1 + μð ÞI,
dIu
dt

= αI − γ2 + δ + μð ÞIu,
dR
dt

= γ1I + γ2Iu + νS − μR,

ð1Þ

with initial conditions

S 0ð Þ = S0 > 0, I 0ð Þ = I0 ≥ 0, Iu 0ð Þ = I0u ≥ 0, R 0ð Þ = R0 ≥ 0:
ð2Þ

The variable R is not involved in the first three equations
of the system Equation (1) and does not influence the
dynamics of the first three equations. Hence, we only con-
sider the following reduced system in the analysis that fol-
lows:

dS
dt

=Λ − βI + ν + μð ÞS,
dI
dt

= βSI − α + γ1 + μð ÞI,
dIu
dt

= αI − γ2 + δ + μð ÞIu:

ð3Þ
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Descriptions of the state variables and parameters are
illustrated in Abbreviations, and the schematic diagram for
the system is illustrated in Figure 1.

3. Mathematical Analysis of the Model

In this section, we must demonstrate that the system Equa-
tion (1) is biologically feasible and realistic whenever all of
the system Equation (1) state variables are nonnegative for
all time t.

Theorem 1. The solution S, I, Iu, and R of system Equation
(1) with initial conditions S0 > 0, I0 ≥ 0, Iu0 ≥ 0, and R0 ≥ 0
remain positive for all t > 0. Furthermore,

lim
t⟶∞

sup N ≤
Λ

μ
: ð4Þ

Proof. Using a similar approach to [23], we obtain

dS
dt

����
S=0

=Λ,

dI
dt

����
I=0

= 0,

dIu
dt

����
Iu=0

= αI,

dR
dt

����
R=0

= γ1I + γ2Iu + νS:

ð5Þ

One can observe that the above rates are all nonnegative
on the bounding plane R+

4 . Then, it is easy to show that the
region is positively invariant and attracting [24]. The region
of attracting for system Equation (1) can be given as

Π = S, I, Iu, Rð Þ ∈ R+
4 : N ≤

Λ

μ

� �
: ð6Þ

Thus, the closed set Π is positively invariant and attract-
ing region with respect to system Equation (1). The basic
reproduction number, denoted by R0, is the very important
quantity for qualitative analysis of the dynamics model. It
is stated as the average number of secondary cases produced

by a single infected individual introduced into a completely
susceptible population [7, 24].

Using the next-generation matrix approach, as stated in
[25], it is easy to determine the basic reproduction number
of system Equation (3). One can easily find the disease-free
equilibrium of system Equation (3) as E0 = ðΛ/μ + ν, 0, 0Þ.

Let the state variables of system Equation (3) denoted by
x′ = ðS, I, IuÞt . Thus, system Equation (2) can be rewritten as
dxi/dt =FiðxÞ −V iðxÞ, where FiðxÞ is the rate of new
infection and V iðxÞ is the rate of transfer infection com-
partment into and out of compartment i, and are, respec-
tively, given by

Fi xð Þ =
βSI

0

 !
, V i xð Þ =

α + γ1 + μð ÞI
γ2 + δ + μð ÞIu − αI

 !
:

ð7Þ

The Jacobian matrices of FiðxÞ and V iðxÞ at E0 are,
respectively,

DFi xð Þ = F =
0 βS0

0 0

 !
, DV i xð Þ =V =

α + γ1 + μ 0
−α γ2 + δ + μ

 !
:

ð8Þ

It follows that the spectral radius of the next generation
matrix FV− is R0 and given by

R0 =
αβΛ

μ + νð Þ γ1 + μ + αð Þ γ2 + μ + δð Þ : ð9Þ

3.1. Existence of Equilibria and Stability. By straightforward
computation, system Equation (3) has the disease-free equi-
librium E0 = ðΛ/μ + ν, 0, 0Þ and a unique endemic equilib-
rium, E1 = ðS∗, I∗, I∗uÞ, where

S∗ = α + γ1 + μ

β
,

I∗ = Λβ − μ + νð Þ γ1 + μ + αð Þ
β γ1 + μ + αð Þ ,

I∗u =
α Λβ − μ + νð Þ γ1 + μ + αð Þð Þ

β μ + νð Þ γ1 + μ + αð Þ γ2 + μ + δð Þ :

ð10Þ

In this case, Λβ > ðμ + νÞðγ1 + μ + αÞ to maintain the
feasibility state solutions of system Equation (3).

3.1.1. Local Stability of Disease-Free Equilibrium

Theorem 2. If R0 < 1, then the disease-free equilibrium E0 of
system Equation (3) is locally asymptotically stable and is
unstable otherwise.

S

𝜈

I Iu

𝛾1 𝛾2

R

𝛽 𝛼

𝜇 𝜇

𝛬

𝛿𝜇

𝜇

Figure 1: Schematic diagram for COVID-19 model.
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Proof. Linearizing system Equation (3) about E0ðΛ/μ + ν,
0, 0Þ, we get the characteristic equation at E0.

− μ + νð Þ + λð Þ α + γ1 + μð Þ − βΛ

μ + ν
+ λ

� �
γ2 + δ + μ + λð Þ

� �
= 0:

ð11Þ

It follows that λ1 = −ðμ + νÞ, λ2 = ðα + γ1 + μÞðR0 − 1Þ,
and λ3 = −ðγ2 + δ + μÞ. This returns out that the disease-
free equilibrium, E0, is locally asymptotically stable.

3.1.2. Global Stability of Disease-Free Equilibrium

Theorem 3. The disease-free equilibrium, E0, of system Equa-
tion (3) is globally asymptotically stable whenever R0 ≤ 1 and
unstable otherwise.

Proof. We define the following Lyapunov function to inves-
tigate global stability of E0 of system Equation (3).

V I, Iuð Þ = A1I + A2Iu: ð12Þ

The time derivatives of Lyapunov is defined by

dV
dt

= A1
dI
dt

+ A2
dIu
dt

, with the assuptionA1 = A2 = 1: ð13Þ

Substituting dI/dt and dIu/dt from system Equation (3)
into Equation (13) gives

dV
dt

= A1 βSI − α + γ1 + μð ÞIð Þ + A2 αI − γ2 + δ + μð ÞIuð Þ,
≤ βS0I − α + γ1 + μð ÞI + αI − γ2 + δ + μð ÞIu,
= βΛ

μ + ν
I − α + γ1 + μð ÞI − γ2 + δ + μð ÞIu,

= α + γ1 + νð Þ R0 − 1ð ÞI − γ2 + δ + μð ÞIu:
ð14Þ

Since all the model parameters and variables are nonnega-
tive, it follows from Equation (14) that _V ≤ 0 for R0 ≤ 1 with
_V = 0 holds if and only if I = 0 or R0 = 1, and Iu = 0. There-
fore, V is Lyapunov function ofΠ. Thus, the state variables I,
Iu ⟶ 0 as t⟶∞. Putting I = Iu = 0 in Equation (3) shows
that S⟶Λ/μ + ν as t⟶∞. It therefore follows from the
LaSalle’s invariance principle [26] that, every solution of
system Equation (3) with initial conditions in Π approaches
E0 as t⟶∞. Therefore, this completes the proof.

3.2. Local Stability of the Endemic Equilibrium

Theorem 4. The endemic equilibrium, E1, of system Equation
(3) is locally asymptotically stable whenever R0 > 1, and
unstable if R0 < 1.

Proof. The following variational matrix is computed at E1 to
determine its local stability. That is,

J E1ð Þ =
− βI∗ + ν + μð Þ −βS∗ 0

βI∗ βS∗ − α + γ1 + μð Þ 0
0 α − γ2 + δ + μð Þ

0
BB@

1
CCA:

ð15Þ

Following Equation (16), we found the first eigenvalue
λ1 = −ðγ2 + δ + μÞ < 0. One can find the other eigenvalues
from the following reduced variational matrix:

M =
− βI∗ + ν + μð Þ − α + γ + μð Þ

ν + μð Þ 0

 !
: ð16Þ

The reduced variational matrix has negative eigenvalues if
traceðMÞ < 0 and det ðMÞ > 0 [27]. Consequently, we then
have

trace Mð Þ < 0,
det Mð Þ > 0,

ð17Þ

and the endemic equilibrium point E1 is locally asymp-
totically stable.

3.2.1. Global Stability of Endemic Equilibrium

Theorem 5. If R0 > 1, the endemic equilibrium E1 is locally
asymptotically stable in the interior of Π.

Proof. Construct the Lyapunov function, V , in SI-plane as

V S, Ið Þ = S − S∗ − S∗ ln S
S∗

+ I − I∗ − I∗ ln I
I∗

: ð18Þ

At the endemic equilibrium, from system Equation (3),
we have

Λ = βI∗S∗ + ν + μð ÞS∗,
βI∗S∗ = α + γ1 + μð ÞI∗:

ð19Þ

Computing the time derivative of VðS, IÞ along the solu-
tions of system Equation (3), we obtain

dV
dt

= 1 − S∗

S

� �
dS
dt

+ 1 − I∗

I

� �
dI
dt

= 1 − S∗

S

� �
Λ − βI + ν + μð ÞSð Þ

+ 1 − I∗

I

� �
βIS − α + γ1 + μð ÞIð Þ:

ð20Þ
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Using Equation (19), we obtain

dV
dt

= 1 − S∗

S

� �
βI∗S∗ + ν + μð ÞS∗ − βI + ν + μð ÞSð Þ

+ 1 − I∗

I

� �
βIS − α + γ1 + μð ÞIð Þ

= − ν + μð Þ S − S∗ð Þ2
S

+ βI∗S∗ + βIS∗ − βIS − βI∗S∗
S∗

S
+ βIS + α + γ1 + μð ÞI∗ − βI∗S − α + γ1 + μð ÞI

= − ν + μð Þ S − S∗ð Þ2
S

+ βI∗S∗ − βI∗S∗
S∗

S
+ βIS∗

− βI∗S − α + γ1 + μð ÞI + βI∗S∗ = − ν + μð Þ S − S∗ð Þ2
S

+ βI∗S∗ 2 − S
S∗

−
S∗

S

� �
= − ν + μð Þ S − S∗ð Þ2

S

− βI∗S∗ x − 2 + 1
x

� �
:

ð21Þ

Let x = S/S∗. Since the arithmetic mean is greater than or
equal to the geometric mean, the function x − 2 + 1/x is non-
negative for all x ≥ 0, and S, I, Iu > 0 ensures that _V ≤ 0:
Moreover, the equality _V = 0 holds if and only if S = S∗,
and I = I∗. Hence, the largest invariant compact set in fðS,
I, IuÞ ∈Π : _V = 0g is the singleton fE1g. By the LaSalle’s
invariant principle [26], the endemic equilibrium E1, if it
exists, is globally asymptotically stable inside Π.

3.3. Sensitivity Analysis of R0. It would be of interest to
understand the relative importance of model parameters
for the transmission and prevalence of communicable and
noncommunicable diseases. This will contribute to identify-
ing the critical model parameters that should be taken into
account when considering an intervention strategy. In this
section, we use a sensitivity analysis of the basic reproduc-
tion number, R0, in relation to the various model parameters
to quantify the impact of each parameter on decreasing or
increasing R0.

Following a similar approach [24, 28], the sensitivity
analysis of the basic reproduction number, R0, with respect
to the parameter Φ, whose sensitivity is to be determined,
is computed by

κ
R0
Φ = Φ

R0
× ∂R0

∂Φ
: ð22Þ

The normalized forward sensitivity index of R0 with
respect to the parameters is given by

κ
R0
Λ = Λ

R0
× ∂R0

∂Λ
= 1, κ

R0
β = β

R0
× ∂R0

∂β
= 1,

 κR0
γ1
= γ1
R0

× ∂R0
∂γ1

= −
γ1

α + γ1 + μ
,

κR0
μ = μ

R0
× ∂R0

∂μ

= −μ
γ1 + μ + αð Þ γ2 + μ + δð Þ + μ + νð Þ γ1 + γ2 + 2μ + α + δð Þ

μ + νð Þ γ1 + μ + αð Þ γ2 + μ + δð Þ ,

κR0
α = α

R0
× ∂R0

∂α
= −

α

α + γ1 + μ
: ð23Þ

Sensitivity indices of the basic reproduction number, R0,
are illustrated in Table 1.

One can observe that the sensitivity indices μ, α, and γ1
are all negative, while the other sensitivity indices Λ and β
remain positive. The reproduction number, R0, is the most
sensitive to the parameters Λ, β, and α. The implication of
this is that an increase (decrease) in the parameters Λ and
β causes a corresponding increase (decrease) in R0. More-
over, an increase (decrease) in the parameter α causes to a
corresponding decrease (increase) in R0. On the other hand,
our sensitivity analysis shows that R0 is less sensitive to γ1
and μ as presented in Table 1.

4. Model with Optimal Control

In this section, we will formulate an optimal control problem
and analyze it using four time variable control measures,
u1ðtÞ, u2ðtÞ, u3ðtÞ, and u4ðtÞ, to reduce the disease burden
and associated costs. The control u1ðtÞ represents vaccina-
tion of the susceptible population to prevent new infection
in society, while the controls u2ðtÞ and u3ðtÞ represent
efforts to provide appropriate treatments to the infected
groups, I and Iu, respectively, to reduce the death rate of
individuals due to the disease and the associated treatment
costs. And the control u4 represents the public health educa-
tional rate. That is, educating the community about the
importance of handwashing, social distancing, using face
masks, staying at home, etc., through different media outlets,
to suppress the spread of COVID-19.

In system Equation (1), the vaccination rate ν and the
treatment rates γ1 and γ2 were considered as constant
parameters. However, in this section, we consider them as
time variable and control variables u1ðtÞ, u2ðtÞ, and u3ðtÞ,
respectively, as stated above. This is a similar approach in
[29, 30]. By imposing the time-dependent control variables
in system Equation (1), we formulate the optimal control
problem and becomes

Table 1: Sensitivity indices of R0 calculated at the parameter values
presented in Table 2.

Parameter Sensitivity index

Λ +1

β +1

μ -0.3638

γ1 -0.0080

α -0.6359
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dS
dt

=Λ − βI + u1 + u4 + μð ÞS,
dI
dt

= βSI − α + u2 + μð ÞI,
dIu
dt

= αI − δ + u3 + μð ÞIu,
dR
dt

= u2I + u3Iu + u1S − μR:

ð24Þ

We introduce the set of all admissible measurable con-
trols defined by

U = u = u1, u2, u3, u4ð Þ: ui is Lebesguemeasurable,f
0 ≤ ui ≤ 1, t ∈ 0, T½ �, i = 1, 2, 3, 4g: ð25Þ

The time T is the terminal time. For disease control
models, it is important to find the control that minimizes
the prevalence and cost of controlling the disease. More spe-
cifically, we define the objective functional:

J uð Þ≔
ðT
0
f x tð Þ, u tð Þð Þ dt

=
ðT
0

AI + BIu +
a1u

2
1

2 + a2u
2
2

2 + a3u
2
3

2 + a4u
2
4

2

� �
dt,

ð26Þ

where xðtÞ = ðS, I, Iu, RÞ solves the system Equation (24) for
the specified control uðtÞ. Moreover, the constants A and B,
respectively, represent the positive weights of the infected
individuals I and Iu, while the constant ai > 0 denotes the
weight of costs. Further, a1u

2
1/2 represents the cost of vacci-

nation for the susceptible humans, a1u
2
2/2 denotes the cost of

treatment for the infectious human individuals I, a3u
2
3/2

represents the cost of infected people under intensive care
unit Iu, and a4u

2
4/2 denotes the cost of preventive measures.

The aim of the optimal control problem is determining
the control u∗, such that

J u∗ð Þ =min J uð Þ: u ∈Uf g, ð27Þ

subject to Equation (24). If such a control u∗ exists, it is,
clearly, known as an optimal control. The optimal control,
u∗, associated to the corresponding solution, x∗ = ðS∗, I∗, I∗u ,
R∗Þ, gives the optimal control pair ðx∗, u∗Þ.

To achieve this, we need to check the existence of an
optimal control for the system Equation (24) and the opti-
mality system.

4.1. Existence of the Optimal Control

Theorem 6. Consider JðuÞ subject to system Equation (24)
with ðS0, I0, Iu0, R0Þ ≥ ð0, 0, 0, 0Þ, then there exists an optimal
control u∗ and corresponding x∗ that minimizes JðuÞ.

We need to check the following assumptions based on [31]
to prove the existence of an optimal control.

(i) The set of controls and corresponding state vari-
ables are nonempty

(ii) The control set U is convex and closed

(iii) The right hand side of the system Equation (24) is
bounded by a linear function in the state and
control

Integrand of the system Equation (26) is convex on U

and is bounded below by C1ðju1j2 + ju2j2 + ju3j2 + ju4j2Þ
μ/2

− C2, where C1 > 0, C2 > 0 and μ > 1:

Proof.

(i) The control variable U is nonempty set of measur-
able function on the finite interval time ½0, T� in
the real numbers

(ii) Clearly, the control set U is convex and closed by
definition

(iii) The right hand side of system Equation (24) is, by
definition, continuous on the finite time interval
½0, T�, and can be written as a linear function of
the control U with coefficients depending on time
and state. In addition, all the state and control vari-
ables are bounded on ½0, T�

To verify this condition, let λ ∈ ½0, 1�, v = ðv1, v2, v3, v4Þ
∈U , and w = ðw1,w2,w3,w4Þ ∈U :

f x, 1 − λð Þv + λwð Þ − 1 − λð Þf x, vð Þ + λf x,wð Þð Þ
= a1

2 1 − λð Þ2v21 + 2λ 1 − λð Þv1w1 + λ2w2
1

À Á
+ a2

2 1 − λð Þ2v22 + 2λ 1 − λð Þv2w2 + λ2w2
2

À Á
+ a3

2 1 − λð Þ2v23 + 2λ 1 − λð Þv3w3 + λ2w2
3

À Á
+ a4

2 1 − λð Þ2v24 + 2λ 1 − λð Þv4w4 + λ2w2
4

À Á
− 1 − λð Þ a1

2 v21 +
a2
2 v22 +

a3
2 v23 +

a4
2 v24

� �

− λ
a1
2 w2

1 +
a2
2 w2

2 +
a3
2 w2

3 +
a4
2 w2

4

� �

= λ2 − λ
À Á a1

2 v1 −w1ð Þ2 + a2
2 v2 −w2ð Þ2 + a3

2 v3 −w3ð Þ2
�

+ a4
2 v4 −w4ð Þ2

�
= a λ2 − λ
À Á

2 v −wð Þ2 ≤ 0:

ð28Þ

It follows that

f x, 1 − λð Þv + λwð Þ ≤ 1 − λð Þf x, vð Þ + λf x,wð Þð Þ: ð29Þ

f x, uð Þ = AI + BIu +
a1u

2
1

2 + a2u
2
2

2 + a3u
2
3

2 + a4u
2
4

2
≥ C1 u1j j2 + u2j j2 + u3j j2 + u4j j2À Áμ/2 − C2,

ð30Þ
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where C1 = Minða1, a2, a3, a4Þ, μ = 2 and C2 > 0: Thus, the
condition is justified.

4.2. Characterization of the Optimal Controls. The character-
ization of the optimal control is based on the Pontryagin’s
maximum principle [32]. This principle converts the opti-
mal control problem into the problem of minimizing point-
wise a Hamiltonian with respect to u. Then, the Hamiltonian
(H) is given, for all t ∈ ½0, T�, by

H x tð Þ, u tð Þ, λ tð Þð Þ = AI + BIu +
a1u

2
1

2 + a2u
2
2

2 + a3u
2
3

2 + a4u
2
4

2
+ λ1 Λ − βI + u1 + u4 + μð ÞSð Þ
+ λ2 βSI − α + u2 + μð ÞIð Þ
+ λ3 αI − δ + u3 + μð ÞIuð Þ
+ λ4 u2I + u3Iu + u1S − μRð Þ:

ð31Þ

Following the approach [30], if the control u∗ and corre-
sponding state x∗ are the optimal control pair, then neces-
sarily there exists a nonzero adjoint vector function λðtÞ
fulfilling the following equality.

dx tð Þ
dt

= ∂H x tð Þ, u tð Þ, λ tð Þð Þ
∂λi

, control system, ð32Þ

dλ tð Þ
dt

= −
∂H x tð Þ, u tð Þ, λ tð Þð Þ

∂xi
, adjoint condition, ð33Þ

∂H x tð Þ, u tð Þ, λ tð Þð Þ
∂ui

= 0, optimality condition, ð34Þ

λ Tð Þ = 0, transversality condition: ð35Þ

Finally, it follows that

u∗ =

0, if ∂H
∂ui

< 0,

0 ≤ u∗i ≤ 1, if ∂H
∂ui

= 0,

1, if ∂H
∂ui

> 0:

8>>>>>>>><
>>>>>>>>:

ð36Þ

Theorem 7 (see [29–31]). Consider the optimal control u∗ðtÞ
and corresponding trajectory x∗ðtÞ with t ∈ ½0, T� for the sys-
tem Equation (24), then it is necessary that there exist non-
trivial adjoint vector function λðtÞ satisfying

dλ1
dt

= βI + u1 + u4 + μð Þλ1 − βIλ2 − u1λ4,

dλ2
dt

= βSλ1 − βS − α + μ + u2ð Þð Þλ2 − αλ3 − u2λ4 − A,

dλ3
dt

= δ + μ + u3ð Þλ3 − u3λ4 − B,

dλ4
dt

= μλ4,

λi = 0, i = 1, 2, 3, 4:
ð37Þ

Hence,

H x tð Þ, u∗ tð Þ, λ tð Þð Þ =min H x tð Þ, u tð Þ, λ tð Þð Þ: u ∈Uf g:
ð38Þ

Furthermore, the compact form of the optimal control, u∗,
is given by

u∗1 =max 0, min 1, λ1 − λ4ð ÞS∗
a1

� �� �
,

 u∗2 =max 0, min 1, λ2 − λ4ð ÞI∗
a2

� �� �
,

ð39Þ

u∗3 =max 0, min 1, λ3 − λ4ð ÞI∗u
a3

� �� �
, 

u∗4 =max 0, min 1, λ1S
∗

a4

� �� �
:

ð40Þ

Proof. We find the adjoint system Equation (37) by differen-
tiating the Hamiltonian (H) in Equation (31) with respect to
x = ðS, I, Iu, RÞ. More precisely, dλðtÞ/dt = −∂HðxðtÞ, uðtÞ, λ
ðtÞÞ/∂xi: We assume that the final state xðTÞ is free. Hence,
the transversality condition holds that λi = 0, i = 1, 2, 3, 4.
Moreover, the optimal controls, u∗1 , u∗2 , u∗3 , and u∗4 , are obtained
based on the optimality condition ∂Hðx, u, λÞ/∂ui = 0:

Thus, the controls are become as follows:

u∗1 =

0, if λ1 − λ4ð ÞS∗
a1

< 0,

u∗1 , if 0 ≤ λ1 − λ4ð ÞS∗
a1

≤ 1,

1, if λ1 − λ4ð ÞS∗
a1

> 1,

8>>>>>>>>><
>>>>>>>>>:

u∗2 =

0, if λ2 − λ4ð ÞI∗
a2

< 0,

u∗2 , if 0 ≤ λ2 − λ4ð ÞI∗
a2

≤ 1,

1, if λ2 − λ4ð ÞI∗
a2

> 1,

8>>>>>>>>><
>>>>>>>>>:

ð41Þ
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u∗3 =

0, if λ3 − λ4ð ÞI∗u
a3

< 0,

u∗3 , if 0 ≤ λ3 − λ4ð ÞI∗u
a3

≤ 1,

1, if λ3 − λ4ð ÞI∗u
a3

> 1,

8>>>>>>>><
>>>>>>>>:

u∗4 =

0, if λ1S
∗

a4
< 0,

u∗4 , if 0 ≤ λ1S
∗

a4
≤ 1,

1, if λ1S
∗

a4
> 1:

8>>>>>>>><
>>>>>>>>:

ð42Þ
More precisely, Equation (42) can be written in the form

of Equation (40). The second derivative of the Hamiltonian
(H) with respect to u is positive definite. That is, ∂2Hðx, u,
λÞ/∂u2i > 0. Therefore, the control u∗ is then a minimizer.

5. Numerical Results and Discussions

In this case, we carried out numerical simulation of the
model to support our analytical results using reasonable
parameter values of the system illustrated in Table 2. In
Figure 2, numerical simulation of cases without the imple-
mentation of any optimal control strategy against time can
be seen. In this regard, the number of cases increases initially
and then slowly drops to its endemic equilibrium. From
Figure 2, it is evident that the infectious individuals, I, reach
its maximum value 2127 at the approximate period of time
t = 5:28 days, while the infectious population under inten-
sive care unit, Iu, attains its maximum value 1641 at an
approximate time t = 15 days from 2200 population.

As can be observed in Figures 3(a) and 3(b), numerical
simulation of the infected population has been carried out
with different initial values for β = 0:0000218&ν = 0:1
(hence, R0 = 0:1530 < 1). The other parameters are as indi-
cated in Table 2. These numerical results illustrate the global
stability of the disease-free equilibrium of the system Equa-
tion (3). Moreover, Figures 3(c) and 3(d) present the time
series of system Equation (3) for parameters illustrated in
Table 2 and, hence, R0 = 1:5296 > 1. From this numerical
simulation, one can observe that the solution of system
Equation (3) ultimately converges to its endemic equilib-
rium. This is an evident that our numerical results are in a
good agreement with the analytical results.

5.1. The Effect of Optimal Control Strategies. In this section,
we examine the results of numerical simulations with the
implementation of optimal control strategies for systems
Equation (24).

We employ the forward-backward sweep method to
solve the optimality system. The procedure can be summa-
rized as follows: first, we solve the control system Equation
(32) with an initial guess value using the forward fourth-
order Runge-Kutta method. By employing the backward
fourth-order Runge-Kutta method, we therefore solved the
adjoint system Equation (37) using the current iteration
solution of the state variables. The controls are updated by
using a convex combination of the previous controls and
the values from Equation (42). The process continues till
the results at the consecutive iterations are too enough.

The following are chosen as parameter values for the
optimal control simulation: Λ = 100, β = 0:000218, μ =

4:7788 × 10−5, α = 0:01, δ = 0:0212: Moreover, the assumed
weight factors are A = 10, B = 5, a1 = 5, a2 = 10, a3 = 10, a4 =
5: Among the I (infected) and Iu (ICU), the number of
infected humans is considered the most important ones
because it is assumed in the model formulation that disease
transmission is due to the contact between the susceptible
and the infected groups. Therefore, the highest attention
ðA = 10Þ is assumed to be to I and relatively less (B = 5) to
Iu. The cost of controlling the disease is relatively smaller
but still important. For example, health education through
creating awareness and vaccination is comparatively cheaper
and assumed to be a1 = a4 = 5, whereas treatment is relatively
more expensive; hence, set a2 = a3 = 10. These values may
differ depending on different regions and nations. On the
assumption that the maximum rate of intervention per day
is 100%, we set u1 max = u2 max = u3 max = u4 max = 1: All the
optimal control simulations are carried out by using the ini-
tial state variables given in Table 2.

Table 2: The initial values for the state variables and parameter
values of system model.

Parameter Value Source
State

variable
Initial
value

Source

Λ 100 Assumed S0 3000 Assumed

β 0.000218 Assumed I0 600 Assumed

ν 0.0001 Assumed Iu0 400 Assumed

μ 4:7788 × 10–5 [33] R0 300 Assumed

α 0.1 Assumed

γ1 0.03571 [34]

γ2 0.04255 [35]

δ 0.0212 Assumed
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Figure 2: Number of cases without any optimal control strategy
versus time.
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Accordingly, we study numerically to show the impact of
different control strategies on the control of the spread of the
disease.

(i) Strategy A. Implementing all controls u1, u2, u3, and
u4

(ii) Strategy B. Implementing controls u1, u3, and u4

(iii) Strategy C. Implementing controls u1, and u3

(iv) Strategy D. Implementing controls u1 and u4

(v) Strategy A. Implementing controls u2 and u3

5.1.1. Strategy A: Implementing All Controls u1, u2, u3, and
u4. In this case, we use all the control strategies to optimize
the objective function in Equation (26). There is a significant
difference in number of cases in simulation of the system
with and without controls. It can be observed from
Figure 2 that the number of cases is plotted without any con-
trols. In this case, the number of infections showed an
increasing alarm and slowly adjusted to their endemic equi-
librium. On the other hand, Figures 4(a) and 4(b) indicate

that the number of cases I and Iu quickly decreased and lead
to zero, respectively, at times t = 6:5 and t = 8 days. Specifi-
cally, the total number of infectious, I and Iu, at the end of
120 days become 743 and 1565, respectively, without con-
trols, and zero with implementing all control strategies. This
result shows the significant effect of the optimal control
measures on the dynamics of the disease.

From the control profile Figure 5(a), the control effort u3
maintained its maximum level till time t = 16:7 days and
gradually dropped to its lower bound in the remaining time.
To minimize the burden of the disease, the optimal control
measures u1 and u2 should be kept at their maximum level
for about the first 18.5 and 19 days, respectively, while the
control effort u4 remains at its maximum rate for the whole
period.

5.1.2. Strategy B: Implementing Controls u1, u3, and u4. This
is the case where the vaccination control u1, the treatment
control u3, and the public health education control u4 are
applied to minimize the infected population while we set
the treatment control u2 to zero. One can observe from
Figure 6(a) that due to the implementation of control
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Figure 3: Model simulation with different initial conditions.
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measures, an increased number is observed for the first one
day in the infectious individuals I and then slowly decreased
to 135 for the remaining periods, while the infected popula-
tion under intensive care unit Iu gradually declined and
reaches to its lower value 16 at time t = 20 days
Figure 6(b). In Figures 6(a) and 6(b), it can be observed that
the number of cases is reduced when optimal controls are
implemented compared to uncontrolled ones. The optimal
controls for vaccination u1, treatment u3, and public health
education u4 are illustrated in Figure 5(b).

5.1.3. Strategy C: Implementing Controls u1 and u3. To opti-
mize our objective function, we used the optimal control
vaccination u1 and the treatment control u3, while the treat-
ment control u2 and the public health education control u4
are set to zero. It can be observed from Figures 7(a) and
7(b) that there is a significant difference in the number of
cases with and without controls. That means, the number
of infectious individuals I with controls shows an initial
increment and gradually drops to 208 at the time t = 20 days,
while the infected population under the intensive care unit
Iu revealed quickly declined at the initial time and tends to
23 at the end of the period, whereas the number of cases I
and Iu without controls shows a rapid increased at the initial
time and slowly decreased until they adjusted to their stable
endemic equilibrium. More importantly, at the end of 120
days, the total number of cases I + Iu is 2308 without con-
trols and 231 with implementing the controls.

To reduce the burden of infections in the community, we
implemented the controls u1 and u3 illustrated in
Figure 5(c). The results in Figure 5(c) show that the vaccina-
tion control u1 stayed in its maximum level for the first 19
days and afterwards dropped to its lower bound for the
remaining periods, while the treatment rate u3 is at its max-
imum rate until the period of 19.5 days and be declined to its
lower bound for about the period of half a day.

5.1.4. Strategy D: Implementing Controls u1 and u4. In this
case, we implemented the vaccination control u1 and the
public health education control u4 in order to minimize

the number of infected people in the absence of treatment
controls u2 and u3. The corresponding simulation results
are presented in Figures 8(a) and 8(b). From this, we notice
that the infected people I increases and reaches its maximum
peak 716 at time of one day, while the infectious individuals
under the intensive care unit Iu attain its maximum peak 832
during the whole periods. However, the maximum peak
values of the cases I and Iu without implemented controls
become 2127 at an approximate time t = 5:4 days and 1641
at an approximate time t = 15 days, respectively. This shows
that there is a significant difference in the number of cases
with and without controls.

Figure 5(d) shows the control profiles of the vaccination
u1 and the public health education u4 in which the optimal
controls u1 and u4 are maintained at their upper bound for
about the first 19.4 and the whole periods, respectively.
Moreover, the control u1 drops rapidly to its lower bound
for the remaining time.

5.1.5. Strategy E: Implementing Controls u2 and u3. We use
the two treatment controls, u2 and u3 with u1 = 0 and u4 =
0, to optimize the objective functional J found in Equation
(26). We observed from Figure 9(a) that the number of
infectious individuals I shows a sharp declined and then
tends to zero near to the time t = 16 days, while the number
of infectious population with the intensive care unit Iu leads
to zero in the approximate time t = 20 days as can be seen in
Figure 9(b).

Figure 5(a) illustrates the controls u2 and u3 against
time. To minimize the number of cases, the optimal control
u2 is kept at its upper bound for about 18 days and then
gradually dropped to its lower bound, whereas the optimal
control u3 is kept at its upper bound for about 19.8 days
and then sharply dropped to its lower bound. The treatment
controls u2 and u3 in this strategy have to be prolonged as
compared to in strategy A before dropping to their lower
bounds (see Figures 5(a) and 5(e)).

In conclusion, we observed from the optimal control
strategies that the combined all controls and the combined
treatment controls (u2 and u3) show the most significant
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Figure 4: Number of cases, I and Iu, with all control strategies.
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Figure 6: Number of cases, I and Iu, with optimal control profiles u1, u3, and u4.
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Figure 7: The number of cases, I and Iu, with control strategies u1 and u3.
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effect in eradicating the burden of COVID-19 in society rela-
tive to the other combinations. The possible implication is that
the disease can be eradicated by implementing the combina-
tion of all controls and or the combination of the treatments
u2 and u3. However, implementation of the intervention mea-
sures u1 and u4 or their combinations can provide an impor-
tant contribution in reducing the peak values in a number of
cases, as can be seen in Figures 8(a) and 8(b).

6. Conclusion

In this study, we formulated and analyzed a mathematical
model with vaccination (v) as a constant control that
describes the dynamics of COVID-19 disease. We analyzed
the model for the existence and global stability of disease-
free and endemic equilibria. For global stability, we used
Lyapunov function methods. In particular, the global stabil-
ity analysis of the endemic equilibrium is done by construct-
ing a logarithmic Lyapunov function in the SI plane, which
is similar to the works of Beretta et al., Korobeinikov et al.,
and Vargas-De Leon [36–38]. The system formulated is fur-
ther extended into an optimal control problem by introduc-
ing continuous controls: vaccination, treatments, and public
health education into the system to minimize the burden of
the disease in the community and the associated costs. We
verified analytically the existence of the optimal controls
and characterized them by employing Pontryagin’s maxi-
mum principle. We also numerically conducted comparative
studies by designing different combinations of control strat-
egies to propose better intervention measures in the reduc-
tion and eradication of the disease.

The following can be highlighted from the analysis in
this study:

(i) It is found from the mathematical analysis that both
the disease-free and endemic equilibria are globally
asymptotically stable by constructing suitable Lyapu-
nov functions

(ii) We found also from the local sensitivity analysis that
the most sensitive parameters are the recruitment
rate Λ, the transmission rate β, and the vaccination
rate ν. It is moreover found out that the reproduc-
tion number R0 is independent of the parameter
recovery rate of the ICU γ2 and the death rate δ of
the ICU. Thus, the spread of the disease does not
depend on the increase or decrease of these
parameters

This work has limitations. The model formulated is
deterministic and based on homogeneous mixing with the
assumption that all susceptible individuals have the same
chance of being infected with the disease if they come into
contact with the infected ones [2, 5, 7, 30, 39]. Another lim-
itation in this study is the assumption that the ICU is not the
source of infection. But, it is vital to consider an epidemic
model with the ICU as the source of infection in addition
to the outpatients. It is also important that the model pro-
posed be validated with real data. It is assumed in all the
above cases that the disease emerges in a large population.
However, if the population is small, susceptible individuals
can possibly contact the infectious at random, and reporting
the number of contacts as a function of the population den-
sity is difficult [40]. In this case, a stochastic model is pre-
ferred. A mathematical model for COVID-19 disease that
fills these gaps will be considered part of our future work.

Abbreviations

S: Susceptible human individuals at time t
I: Infected human individuals at time t
Iu: Infected human individuals under ICU at time t
R: Recovered human individuals at a time t
N : The total size of the human population at time t
Λ: Recruitment rate of the population due to birth/

immigration
β: The rate of transmission from susceptible to infectious I
ν: Vaccination rate of individuals
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Figure 9: Numerical simulation for the number of cases, I and Iu, with the optimal control profiles u2 and u3.
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α: Rate of transmission from I to Iu
γ1: Rate of recovery of the infected population I
γ2: Rate of recovery of the ICU
δ: The rate of death rate of the ICU
μ: Natural death rate.
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