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Colorectal cancer typically affects the gastrointestinal tract within the human body. Colonoscopy is one of the most accurate
methods of detecting cancer. The current system facilitates the identification of cancer by computer-assisted diagnosis (CADx)
systems with a limited number of deep learning methods. It does not imply the depiction of mixed datasets for the functioning
of the system. The proposed system, called ColoRectalCADx, is supported by deep learning (DL) models suitable for cancer
research. The CADx system comprises five stages: convolutional neural networks (CNN), support vector machine (SVM), long
short-term memory (LSTM), visual explanation such as gradient-weighted class activation mapping (Grad-CAM), and
semantic segmentation phases. Here, the key components of the CADx system are equipped with 9 individual and 12
integrated CNNs, implying that the system consists mainly of investigational experiments with a total of 21 CNNs. In the
subsequent phase, the CADx has a combination of CNNs of concatenated transfer learning functions associated with the
machine SVM classification. Additional classification is applied to ensure effective transfer of results from CNN to LSTM. The
system is mainly made up of a combination of CVC Clinic DB, Kvasir2, and Hyper Kvasir input as a mixed dataset. After
CNN and LSTM, in advanced stage, malignancies are detected by using a better polyp recognition technique with Grad-CAM
and semantic segmentation using U-Net. CADx results have been stored on Google Cloud for record retention. In these
experiments, among all the CNNs, the individual CNN DenseNet-201 (87.1% training and 84.7% testing accuracies) and the
integrated CNN ADaDR-22 (84.61% training and 82.17% testing accuracies) were the most efficient for cancer detection with
the CNN+LSTM model. ColoRectalCADx accurately identifies cancer through individual CNN DesnseNet-201 and integrated
CNN ADaDR-22. In Grad-CAM’s visual explanations, CNN DenseNet-201 displays precise visualization of polyps, and CNN
U-Net provides precise malignant polyps.

1. Introduction

On a global scale, different people live within their own cul-
ture. Their diet differs according to their lifestyle. One way
to categorize their eating patterns is to distinguish between
vegetarians and nonvegetarians. Despite adopting healthy
eating habits and a normal lifestyle, some people are sick.

Varieties of diseases are widespread throughout the world,
who need doctors specialized in treating these ailments. In
India, the patient-physician relationship is 1 : 834 who
adopts an allopathic form of treatment. A number of health
care professionals in India are practicing Ayurveda, homeop-
athy, Unani, etc.; 565000 diseases are covered in the treatment
of patients [1]. In the US, there are 295 doctors available for
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100,000 people [2]. Statistics show that Germany has the high-
est density of doctors available to patients, where people have a
better chance of being treated [3].

Every human being needs health; however, according to
their lifestyle and environment, they suffer from a variety of
illnesses. Of these diseases, cancer is the most dangerous
with a historically high mortality rate. Cancer is a particular
type of illness that exhibits abnormal or unhealthy tissue
growth (i.e., internal cells) in the internal organs of the body.
In humans, it is particularly harmful to blood cells in the
organs. The disease develops rapidly over the last few stages,
resulting in high mortality rates. Early diagnosis and recog-
nition are critical to improving the survival chances of those
living with cancer. There are many types of cancers affecting
different organs, such as breast, prostate, basal cell, skin
(melanoma), lung, and colon cancer, as well as leukemia
and lymphoma [4].

Colon cancer and colorectal cancer (CRC) are the two
most dangerous types of cancer in the human gastrointesti-
nal tract. In colorectal cancer, abnormal cells are grown in
the large intestine until they get to the rectum. The large
intestine is the body’s main organ for the digestion of food
particles, which is five feet and two inches long. The large
intestine can be divided into the ascending, transverse,
descending, and sigmoidal colon, and each portion of the
colon has a specific function in the process of digestion.
Although CRC always starts with little polyps, not all polyps
are dangerous. As malignant polyps grow exponentially,
they can be converted to cancer in the colon area. This type
of cancer is primarily due, for instance, to eating habits, psy-
chological imbalances, and insomnia. The stages of CRC are
in situ, local, regional, and distant. First, cancer cells can
invade the walls of the colon that can form malignant polyps
locally, spread to the wall from the rectum area, and further
extend to other parts of the body at an advanced level. The
usual symptoms of the disease are bleeding in the rectum
and blood in the feces. There are many methods of colon
screening to detect CRC or gastrointestinal diseases.

Among all screening tests, colonoscopy is the reference
method for determining the disease [5, 6], which has an
accuracy of 95% because in this procedure, the gastroenter-
ologist carries out screening of the entire colon closely. In
this procedure, a device called a colonoscope, which is slim
and illuminated by a light source equipped with a high-end
frontal camera, is used [7]. This device was inserted into
the colon through the rectum, and videos and pictures of
the whole colon were captured at 5min intervals and stored
on a personal computer (PC). Many of the resulting videos
and images are reviewed by a radiologist to determine the
area of the colon affected by cancer.

Medical colonoscopy motion images and videos were
introduced and used as datasets for new technologies like
machine learning (ML) and deep learning (DL) [8]. For early
and rapid diagnosis, computing technology may be invoked.
In the new technological age, artificial intelligence (AI) plays
an important role in automation and robotics. In AI tech-
nology, ML and DL are subfields that support new innova-
tions. To be recognized by CRC, the technology supports
the combination of biomedical engineering and informatics.

Support for deep learning techniques is required to identify
cancer for early diagnosis. In DL, we have meticulously con-
ducted investigation experiments with convolutional neural
networks (CNNs), which play a major role in this research.
CNNs operate within the framework of a computer-
assisted diagnosis (CADx), which was developed in various
phases to eventually diagnose malignancy. The CADx sys-
tem, named ColoRectalCADx, is used for CRC diagnosis.
Throughout this document, the system is covered under
the title “ColoRectalCADx.”

The principal objectives of the study are as follows:

(i) Design a CRC recognition system through a five-
stage process

(ii) The early detection stage is the classification of
images through colonoscopy using seven different
CNNs. The system presents 12 integrated models
of CNN and obtains the most accurate model for
cancer classification using three datasets

(iii) End-to-end CNN and fusion models represent
transfer learning and SVM classification

(iv) The next phase is the transfer learning of long
short-term memory (LSTM). This classification
determines the most appropriate cancer recognition
model

(v) There is identification of malignant polyps by Grad-
CAM visual explanation

(vi) There is accurate identification of cancer polyps for
malignancy recognition: a visualization technique,
such as semantic segmentation using the U-Net
CNN model, is used at a later stage

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overall literature review. Section 3
describes the materials and the methods. Section 4 discusses
the results, and finally, Section 5 concludes the study.

2. Literature Survey

Duc et al. [9] discussed how polyps in the colorectal regions
are recognized effectively and efficiently using new deep
learning approaches. The authors proposed an architecture
based on deep learning called Colon-Former, which uses
an encoder-decoder architecture for recognizing polyps in
colonoscopy images as a semantic segmentation concept.
The encoder is a lightweight architecture that is used to
model global semantic relationships on several scales. The
decoder is a hierarchical network that enriches the depiction
of image features. For the proposed system, the authors used
five reference datasets. This model exploits the benefits of
both transformers and CNNs for multiscale functionality
representations. However, it operates with only a single
architecture and results from five datasets. In addition, the
results of the comparisons are considered cutting-edge
methods, and we found that it achieved the best results.
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Sharma et al. [10] discussed skillful and early detection
of precancerous polyps in the area of CRC using ML. The
authors proposed a system—an ensemble classifier for the
reorganization of malignant polyps in the colorectal area.
The proposed system is mainly used for comparison with
CNN architecture models, such as ResNet101, GoogleNet,
and Xception. This classifier is used as, the first level of
detection for informational frame detection, in the next
stage, classification to detect polyps in the colon area. In
these experiments, the input data were from live Aiche colo-
noscopy and the Kvasir datasets. Upon comparison of all the
results, the proposed ensemble classifier showed an accuracy
of 98.3% for the detection of informative images and 97.66%
for the recognition of malignant polyps. Nevertheless, the
system only compares the three CNN models, whereas there
are a number of pretrained models. A real-time dataset and a
single publicly accessible dataset were considered for this
experiment.

Meng et al. [11] discussed the importance of image seg-
mentation for identifying CRC polyps within the colorectal
area using colonoscopy image datasets. Previously, image
segmentation was developed using regional dense-pixel clas-
sification and polygon methods based on boundaries. The
authors introduced a new feature for polyp recognition using
a graphical neural network (GNN), which is based on a deep
neural network. Using this technique, the polyp region is rec-
ognized through an attention-enhancement module (AEM).
The AEM supports extraction of the discriminating area
and boundary characteristics of the polyps. The GNN func-
tions as the weighted link between the interdomain nodes,
and each plot is dependent on the data, which retains the
global and local relationships between the nodes. In particu-
lar, it addresses the characteristics of the region and bound-
aries. The GNN outperforms other methods and effectively
recognizes malignant polyps in biomedical colonoscopy
images. However, the system is very complicated in terms
of recognizing the exact polyp area. The comparison system
of the numerous leading-edge methods and this specific
GNN system is the most suitable model. Only complex
objects were used to identify the polyps.

Kyeong-Beom and Lee [12] suggested a new technique
for identifying CRC polyps using different medical colonos-
copy datasets. The previously used CNN U-Net architecture
has some limitations in the segmentation of medical images.
Compared to the previous segmentation, the authors pro-
posed a new encoder-decoder-based architecture called
SwinE-Net. It is a new hybrid approach to deep learning
for polyp segmentation through a CNN and a Swin trans-
former. SwinE-Net is an association between the CNN Effi-
cientNet and vision transformer- (ViT-) based Swin
transformer. Here, the first convolutional block extracts fea-
ture maps to enhance the discriminability of multilevel fea-
tures of the CNN and ViT. Subsequently, the multifeatured
aggregation block creates intermediate outputs of the refined
polyp characteristics to be extracted for effective training.
Finally, the attentive deconvolutional block rises and works
as a decoder to recognize polyp regions in the image data-
sets. For this SwinE-Net System, experiments were carried
out with the five reference datasets, and the polyps of the

image datasets were recognized. Nevertheless, the system
uses an EfficientNet convolution network. There are other
pretrained CNN models that work effectively without using
these models, which is too complex to comprehend. The
proposed system is compared with previous state-of-the-art
technologies, and the best-adapted system is presented as a
SwinE-Net model.

Mahanty et al. [13] proposed a new architecture, based
on the CNN U-Net called SU-NET, to acknowledge polyps
in colonoscopy images using semantic segmentation. It is in
the form of a CNN network with an encoder-decoder struc-
ture. In this proposed model, most of the top layers transfer
pooling inside, and the bottom layers transfer feature maps
to incorporate multiscale information for better identifica-
tion of the contours of the polyp colon. For this experiment,
the dataset taken was the CVC Clinic DB. The SU-NET
model showed 89.27% accuracy and 0.895 Dice similarity
coefficient. However, in this system, we used only one model
and conducted experiments with only one dataset. Here, we
do not discuss how the performance of complex datasets,
such as the number of images at a high pixel level, works.

Rahim et al. [14] explained that there are numerous
techniques for identifying polyps within the concept of
image segmentation, but only a small number of techniques
provide possible solutions, for obtaining the best adapted
method. The authors proposed a deep CNN model that uses
a different number of kernels with different window sizes in
the hidden layers to extract the specifications. Within this
concept, a lightweight model consists of 16 convolutional
layers, two fully connected layers, and a SoftMax layer as
the output layer is implemented. The activation function
MISH is used in the first 15 convolutional layers and then
the ReLU activation function. Here, data augmentation for
photometric and distortion-level images was used for the
input datasets to improve a number of images. The entire
experiment achieved possible results for identifying polyps.
However, only 196 images from the ETIS-Larib dataset were
tested. Here, we do not discuss the number of datasets and
the experimentation of the various models. With the aug-
mentation of the dataset from 196 to 2156 images, the solu-
tion obtained was 72% nonaugmented image accuracy,
which increased to 94.44% accuracy.

Saito et al. [15] presented anatomical images of auto-
matic colonoscopies categorized using deep convolutional
neural networks. Colon cancer generally affects parts of the
colon, such as the terminal ileum, cecum ascending colon
to traverse colon, descending colon to sigmoid colon, rec-
tum, and anus. In the proposed system, a CAD system was
developed to determine cancerous cells using CNN classifi-
cation of various parts of the colon. The CAD system is
tested with a different number of colonoscopy images, such
as 9995, and obtains the results for the system for every part
of the colon. Colonoscopy images were live images taken
between January and October 2017. The main CNN model
for testing was GoogleNet, which achieved 91.7% accuracy
for 507 images. However, only the CNN model is used.
There are many other CNN models available, and their per-
formance is not discussed here. There are a few datasets that
are not being used.
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Zhou and Gao [16] discussed as to how CNN technolo-
gies enable intelligent recognition of medical motion images.
Earlier, small-scale motion images obtained using traditional
recognition techniques were used. Which techniques are
time-consuming to compute and require extensive computer
statistics? Currently, large-scale intelligent recognition of
medical motion images is assisted by CNN algorithms. Here,
the features of the dense trajectory are initially learned fol-
lowing the features of depth, and the dense path functions
are merged with DL methods. Finally, extreme learning is
functional in a CNN, where the descriptions of the bottom
layer to the top layer are determined for medical image rec-
ognition. However, there are no discussions on obtaining
colorectal medical images from colonoscopy screened
images and procedure for retrieval and classification of the
results according to their image features.

Attallah and Sharkas [17] proposed a system—Gastro-
CADx—to classify several gastrointestinal diseases using
DL approaches, consisting of three phases. These four CNNs
were used as feature extractors to extract spatial functional-
ity. This study builds upon DL approaches in the next stage
of the system. The properties extracted in the first step are
applied to the discrete wave transform (DWT) and discrete
cosine transform, which are used to extract temporal- and
spatial-frequency features. The third step of the system com-
prises several combinations of characteristics that are merged
in a concentrated manner to inspect the effect of the feature
combination on the CADx output results and to select the
most merged feature set. Two datasets, datasets I and II,
respectively, Kvasir and Hyper Kvasir are used to assess the
performance of Gastro-CADx. However, this system has
been applied to a limited number of datasets. The system is
not even under discussion for the semantic segmentation
concept of locating and identifying malignant polyps.

Lin et al. [18] introduce the Dual Swin Transform U-Net
for Medical Image Segmentation. The automatic segmenta-
tion of medical images has come a long way thanks to the
development of deep learning. However, most of the avail-
able methodologies are based on CNNs. Inspired by the suc-
cess of Transformer whose self-management mechanism has
the powerful ability to model contextual information in the
long run, some researchers have put considerable effort into
the development of robust transformer-based U-Net vari-
ants. The authors present a new deep healthcare image seg-
mentation framework called Dual Swin Transformer U-Net
(DS-TransUNet) which could be the first attempt to simulta-
neously integrate the benefits of Swin Transform hierarchi-
cal into the encoder and decoder of the standard U-shaped
architecture. Enhance the quality of semantic segmentation
of various medical images. Unlike numerous previous
Transformer-based solutions, the proposed DS-TransUNet
first adopts sub-Swin Transformer based dual-scale encoder
networks for extracting representations of course and fine
characteristics of different semantic scales. In-depth experi-
ences of four typical medical image segmentation tasks dem-
onstrate the effectiveness of DS-TransUNet and show that
our approach greatly exceeds the state-of-the-art methods.

Jha et al. [19] examine the detection of polyps in real
time, location, and segmentation in colonoscopy. For this
polyp detection concept, computer-assisted detection and
localization and segmentation help to enhance the colonos-
copy procedure. The colonoscopy image dataset under con-
sideration here is Kvasir-SEG for the CAD experiment. As a
result of the power of deep learning technology, the CAD
system is developed here is ColonSegNet. The proposed
ColonSegNet achieved a competitive matrix coefficient of
0.8206 and the highest mean speed of 182.38 frames per sec-
ond for the segmentation task. However, the system is
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Figure 1: The block diagram of the ColoRectalCADx system.
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complex and operates on one dataset. How other datasets
will be precisely segmented will not be addressed here.

Meena and Roy [20] discuss the detection of bone frac-
tures using deep supervised learning from X-ray imagery.
Failed fractures are common prognostic failures in case of
accident or emergency. The outcome is complications and
delays in treatment and patient care. Nowadays, artificial
intelligence (AI) and, more precisely, deep learning (DL)
receive considerable attention to help radiologists detect
bone fractures. DL can be widely used for diagnostic image
analysis. One can conclude that models based on CNN, such
as InceptionNet and XceptionNet, are very effective in the
case of fracture detection. Diagnostic and prognosis of X-
rays by expert radiologists is a lengthy and laborious process
that could be computerized using fracture detection tech-
niques. However, the system runs on both CNN models
and compares the results with them.

Pal et al. [21] discuss about a fully connected model for
automatic segmentation and chest X-ray annotation that is
based on UW-Net attention. Automated segmentation and
annotation of the medical image play an essential role in sci-
entific research and the medical community. We offered a
UW-Net attention, which introduces an intermediate layer
acting as a bridge between the encoder and the decoding
paths. The intermediate layer is a set of fully connected con-

volutional layers generated from oversampling, from the
final encoder layer connected to the sampled blocks upwards
and downwards sampled by unsolicited connections. The
intermediary layer is then connected to the decoding chan-
nel with a sampling layer. The proposed attention UW-Net
is giving a very good performance, achieving an average
F1-score of 95.7%, 80.9%, 81.0%, and 77.6% for lung (large),
heart (medium), trachea (small), and collarbone (small)
object segmentations, respectively. Attention to UW-Net is
superior not only in relation to U-Net and its variations
but also in relation to other recent automatic and semiauto-
matic segmentation/annotation models. Consistent predictive
accuracy of segmentation masks for all types of segmentation
masks (large, medium, and small lesions) makes this model
ideal for automatic organ annotation. However, here, the
new concept like UW-Net attention is introduced for new seg-
mentation tasks and to compare with advanced methods. It is
hard to comprehend new authors.

Cao et al. [22] discussed implementation of the multi-
cloud framework for the construction of OpenStack—an
IoT-based medical platform known as the tristorage error
recovery system. Tristorage was conceived as an inherent
module in the open stack step and established the native level
of management of the multicloud OpenStack platform
through a cascading frame. However, large datasets of

Table 1: Class labels of the mixed dataset.

Classes Original mixed dataset Images Modified classes Modified mixed dataset Images

0 Barretts 42 0 bbps-0-1 653

1 Barretts-short-segment 53 1 bbps-2-3 1148

2 bbps-0-1 653 2 Cecum 2009

3 bbps-2-3 1148 3 Dyed-lifted-polyps 2003

4 Cecum 2009 4 Dyed-resection-margins 1990

5 Dyed-lifted-polyps 2003 5 Esophagitis-a 1404

6 Dyed-resection-margins 1990 6 Non_polyps 818

7 Esophagitis-a 1404 7 Polyps 2150

8 Esophagitis-b-d 260 8 Pylorus 2000

9 Hemorrhoids 10 9 Retroflex-rectum 391

10 Ileum 9 10 Retroflex-stomach 765

11 Impacted-stool 132 11 Ulcerative-colitis-grade-0-1 1035

12 Non_polyps 818 12 Ulcerative-colitis-grade-2 443

13 Polyps 2150 13 z-line 1933

14 Pylorus 2000

15 Retroflex-rectum 391

16 Retroflex-stomach 765

17 Ulcerative-colitis-grade-0-1 1035

18 Ulcerative-colitis-grade-1 201

19 Ulcerative-colitis-grade-1-2 11

20 Ulcerative-colitis-grade-2 443

21 Ulcerative-colitis-grade-2-3 28

22 Ulcerative-colitis-grade-3 133

23 z-line 1933

19621 16942
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colonoscopy images are stored in effective cloud technolo-
gies, such as AWS clouds, which are not covered here. There-
fore, efficient future storage technologies require further
investigation.

3. Materials and Methods

The key concept in this study is to accelerate the diagnosis of
CRC using a CADx, called ColoRectalCADx [23, 24].
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Figure 3: Sample mixed dataset.
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ColoRectalCADx consists of five illustration phases for iden-
tifying cancer through visual explanations [25]. The phases
of ColoRectalCADx are illustrated in Figure 1. The descrip-
tion of the block diagram is as follows.

3.1. Colonoscopy Procedure. Colonoscopy is a screening
method for diseases of the human gastrointestinal tract, of
which colon is the key organ, screened with the aid of a
device called a colonoscope. The colonoscope is lightweight
and is equipped with a bright frontal camera [26]. The
colonoscope is inserted into the colon, which captures pho-
tographs and video recording of the four parts of the colon.
Colonoscopy was carried out by a gastroenterologist, and the
final images and video recordings were reviewed by a radiol-
ogist. Finally, the resulting images were considered in our
cancer identification research.

3.2. Google Cloud. Postcolonoscopy images were categorized
based on parts of colon as labelled images called datasets.
These images are then stored in the high-end local servers
and also in individual account specific Google Cloud [27]
and on Google Drive. Extensive research was conducted
with the help of Google’s colaboratory (Co-Lab) to analyze
the results.

3.3. Datasets. The colonoscopy medical motion image data-
sets used were publicly available image datasets, download-

able from the internet sources: CVC Clinic DB, Kvasir2,
and Hyper Kvasir. The datasets were labelled with 2-, 8-,
and 23-class labels. In the proposed system, the mixed data-
set is the fusion of the CVC Clinic DB [28], Kvasir2 [29],
and Hyper Kvasir [30, 31] images in the form of a new
mixed dataset containing 24 class labels.

(i) The CVC Clinic DB dataset included two classes:
labelled polyps (818) and non_polyps (822), with a
total of 1640 images [28]

(ii) The Kvasir2 dataset includes eight labelled classes:
dyed-lifted polyps (1000), dyed-resection margins
(1000), esophagitis (1000), normal-cecum (1000),
normal-cecum (1000), normal-z-line (1000),
polyps, and ulcerative colitis (1000), a total of 8000
images [29]

(iii) The Hyper Kvasir dataset includes lower GI tract
and upper GI tract, and these two classes of data-
sets are further classified labelled as 23 classes and
called barrettes (42), barrettes-short-segment (53),
bbps-0-1 (653), bbps-2-3 (1148), cecum (1009),
dyed-lifted-polyps (1003), dyed-resection margins
(990), esophagitis-a (404), esophagitis-b-d (260),
hemorrhoids (10), ileum (9), impacted stool (132),
polyps (1028), pylorus (1000), retroflex-rectum

Table 2: Integrated models and their suggested names.

S. no. Integrated models Suggested name

1 AlexNet+DarkNet-19+ResNet-50v2+DenseNet-201+EfficientNet-B7+VGG-16+VGG-19+InceptionResNetV2 ADaRDEV2I-22

2 AlexNet+DarkNet-19+ResNet-50v2+DenseNet-201+EfficientNet-B7+VGG-16+VGG-19 ADaRDEV2-22

3 ResNet-50v2+DensNet-201+EfficientNet-B7+VGG-16+VGG19 RDEV2-22

4 AlexNet+DarkNet-19+DenseNet-201+ResNet-50V2 ADaDR-22

5 AlexNet+DarkNet+ResNet-50V2 ADaR-22

6 DarkNet-19+ResNet-50V2+DenseNet-201 DaRD-22

7 DensNet-201+EfficientNet-B7+VGG-16 DEV-22

8 AlexNet+DarkNet-19 ADa-22

9 ResNet-50V2+DensNet-201 RD-22

10 ResNet-50V2+VGG19 RV-22

11 AlexNet+DenseNet-201 AD-22

12 DarkNet-19+ResNet-50V2 DaR-22

PPolypsPolyps

Non
Polyps

Pnon polyps

Nx binary classifcationFully connected layers

Vec
Max pooling

Convolution + Pooling layers

Convolution + Nonlinearity

Figure 4: CNN architecture.

7Computational and Mathematical Methods in Medicine



(391), retroflex-stomach (765), ulcerative-colitis-
grade-0-1 (35), ulcerative-colitis-grade-1 (201),
ulcerative-colitis-grade-1-2 (11), ulcerative-colitis-
grade-2 (443), ulcerative-colitis-grade-2-3 (28),
ulcerative-colitis-grade-3 (133), and z-line (933), a
total of 10672 images [30, 31]

The mixed dataset class descriptions are illustrated in
Table 1.

The proposed mixed dataset comprised all the 24 clas-
ses with a total of 19,621 images. In these, the dataset has
14 classes, out of which the 10 least executed classes are

suppressed, with a total of 16,942 images. The data classes
removed from the main datasets were barrettes, barrettes-
short-segment, esophagitis-b-d, hemorrhoids, ileum,
impacted stool, ulcerative-colitis-grade-1, ulcerative-coli-
tis-grade-1-2, ulcerative-colitis-grade-2-3, and ulcerative-
colitis-grade-3. Depending on the deletion of certain clas-
ses in the dataset, a balanced dataset was obtained. The
total mixed dataset images description is explained and
illustrated in Figures 2 and 3.

3.4. Image Preprocessing. Within this mixed dataset, each
labeled class had a different number of frames. The total

Table 3: Number of CNN parameters of CNNs.

CNN architecture models Introduced year Total params Trainable params Nontrainable params Layers

AlexNet [35, 36] 2012 2,81,02,775 2,80,81,639 21,136 23

DarkNet-19 [37] 2017 1,60,45,847 1,60,32,983 12,864 19

ResNet-50v2 [38] 2016 2,59,33,975 23,69,175 2,35,64,800 50

DenseNet-201 [39] [40] 2018 1,94,29,463 11,07,479 1,83,21,984 201

EfficientNet-B7 [41] 2019 6,55,73,799 14,76,119 6,40,97,680 813

VGG-16 [42] 2014 1,53,14,391 5,99,703 1,47,14,688 16

VGG-19 [43] 2014 2,06,24,087 5,99,703 2,00,24,384 13

NasNetLarge [44] 2018 87,256,682 2,339,864 84,916,818 414

InceptionResNetV2 [45] 2016 55,398,648 1,061,912 54,336,736 164

Proposed integrated models

ADaRDEV2I-22

2022

246,429,456 71,359,568 175,069,888

ADaRDEV2-22 19,10,28,063 7,02,94,911 12,07,33,152

RDEV2-22 14,68,78,383 2,61,79,231 12,06,99,152

ADaDR-22 8,94,87,664 4,75,66,880 4,19,20,784

ADaR-22 2,59,33,000 23,68,200 2,35,64,800

DaRD-22 6,13,99,840 1,95,00,192 4,18,99,648

DEV-22 100,319,600 3,185,248 97,134,352

ADa-22 4,41,26,048 4,40,92,048 34,000

RV-22 46,559,368 22,994,568 23,564,800

RD-22 4,53,61,624 34,74,840 4,18,86,784

AD-22 4,75,16,384 2,91,73,264 1,83,43,120

DaR-22 4,19,67,694 1,83,90,030 2,35,77,664

cw1
cw2

cwn-1
cwn

CNN
A

Guided backpropagation

Y

Polyps

Rectifed conv
feature maps

FC layer
activations

+InputGuided Grad-CAM

Guided backpropagation

Grad-CAM

ReLu

Figure 5: Steps for Grad-CAM localization of images.
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number of images in the 14 classes came to 16842. Most of
these images have different numbers of pixels. These images
with different pixel numbers have been converted to a uni-
form size of 224 × 224 pixels in order to obtain better exper-
imental results. The resized images were subjected to image
preprocessing, that is, image augmentation, which was used
to increase the number of images. The image augmentation
technique included resizing, increasing the zoom range to
0.2, rotational range to 15, and horizontal flip. After image
augmentation, the images were divided into training and test
sets in the 70 : 30 ratio to get better results. These training
and test images were then applied to the CNNs in the next
stage of training and testing.

3.5. Image Classification Using CNN. Classification issues in
health care and deep learning technology were addressed
using CNN. CNNs are extremely helpful for image classifica-
tion. CNNs are used in the present research with the ColoR-
ectalCADx system, its main role being in identifying CRC.
The mixed dataset contains images required to be categorized
using the CNN, which takes images as the inputs, subsequent
to which, convolution, pooling, activation, dropout, and fully
connected to the neural network operations are performed,
after which, and classification accuracies are obtained for
the images [32, 33]. In the ColoRectalCADx System, investi-
gational experiments were performed with nine individual
CNNs: AlexNet, DarkNet-19, ResNet-50V2, DenseNet-201,
EfficientNet-B7, VGG-16, VGG-19, NasNetLarge, and
InceeptionResNetV2. From these, we have achieved the best
CNN precision, which is the most appropriate model for
detecting CRC. In addition, with 9 individual models in addi-
tion to 12 integrated models, research experiments are car-
ried out to take the best executed model is appropriate to
recognize the CRC. See Table 2 for a list of integrated models
used in the ColoRectalCADx system.

Each integrated model has been designed by combining
different models. In ColoRectalCADx, a total of 21 models

were tested, and the best models for the identification of
suitable models to be used in the individual and integrated
models for CRC were identified. The integrated models in
the above table are presented with short names; therefore,
in this article, we can follow their suggested names. A
CNN was used to classify the input image datasets, as shown
in Figure 4. The CNN input is taken as the input image data-
set and consists of CVC Clinic DB, Kvasir2, and Hyper Kva-
sir images. The images were applied to the convolution layer
to recover the image features. Additionally, the image fea-
tures were sent to the max-pooling layer to filter the image
values. In the next step, the ReLU activation function was
performed, and these values were sent to the fully connected
neural network. Finally, the last layer is the SoftMax layer to
classify the multiclass classification in order to separate the
classes in the input images. The input image may be deter-
mined to be a polyp.
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Figure 6: Semantic segmentation using U-Net.

Table 4: System specifications.

System Precision tower T5810

Company Dell

Processor Intel® Xeon® CPU core i7 E5-2630

Speed 2.20GHZ

RAM 32GB

GPU GPU NVIDIA Xp.

Software Environment Google ColabPro+ with Python 3.7.12

Software Python packages Keras and TensorFlow 2.7.0

Table 5: Train and test split of three datasets.

Datasets Training set Test sets Total images

Mixed datasets 12885 4,057 16,942
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Each individual and integrated model has a clear advan-
tage in the classification of input medical colonoscopy
motion images. DL technology is very beneficial for CRC
identification. It gives major perceptual vision to success-
fully and powerfully identifying diseases. Modern studies
have found that CNNs can be far deeper, more accurate,

and efficient for learning when smaller connections are
established between the layers close to the input and those
adjacent to the output. Table 3 provides the total number
of parameters for the proposed integrated and individual
CNNs and the number of training parameters that work
for the CNNs [34].

Table 7: Comparison of accuracies and AUC for various CNN architectures.

Individual CNN CNN training accuracy in % CNN testing accuracy in % AUC in %

AlexNet 80.86 72.3 96.62

DarkNet-19 77.55 61.95 95.62

ResNet-50v2 73.41 75.78 96.37

DenseNet-201 79.59 76.31 96.76

EfficientNet-B7 62.48 70.67 95.7

VGG-16 67.51 66.78 95.64

VGG-19 63.38 64.54 94.59

NasNetLarge 79.67 71.14 96.46

InceptionResNetV2 79.71 74.44 96.57

Integrated CNN CNN training accuracy in % CNN testing accuracy in % AUC in %

ADaRDEV2I-22 76.32 72.2 96.16

ADaRDEV2-22 72.11 69.85 95.46

RDEV2-22 73.57 70.75 94.89

ADaDR-22 77.42 72.2 95.09

ADaR-22 67.55 63.6 94.4

DaRD-22 72.59 72.13 95.28

DEV-22 61.71 61.13 94.66

ADa-22 59 54.61 93.04

RD-22 68.26 67.53 94.46

RV-22 34.27 35.69 84.8

AD-22 71.96 64.13 94.44

DaR-22 70.15 66.59 91.96

Figure 7: Individual CNN comparison of accuracy metrics are illustrated.

Table 6: Hyperparameters for the ColoRectalCADx system.

Dataset Epochs Batch sizes Learning rate Optimizer Momentum Dropout

Mixed datasets 30 16 0.0001 Adam 0.9 0.5

10 Computational and Mathematical Methods in Medicine



In the ColoRectalCADx experiment, the system was
enabled with the oldest CNN AlexNet model [46, 47]. Fur-
thermore, experiments were carried out on the basis of the
oldest AlexNet model at the latest EfficientNet-B7. In these
models, investigative experiments were performed with the
less-layered CNNs to the highest-number layered CNNs.

All experimental researches on individual and diverse
integrated CNNs are applicable to the transfer of learning
for further consideration of the mining characteristics. The
CNN contains maps that can confine the results of the fil-

ter application to an input image dataset. During transfer
learning, one of the CNN layers is transferred and
replaced by the other. This generally enables the model
to work with new aspects added to the model to solve a
particular task. The primary objective of transfer learning
is to use a model formed from one dataset and transfer
knowledge to another [48, 49]. To identify objects using
a CNN, the primary convolutional layers of the network
are restricted, and only the last layers that make a predic-
tion are formed.

Table 8: Comparison of accuracies of CNN+SVM architectures.

Individual CNN CNN+SVM training accuracy CNN+SVM testing accuracy

AlexNet 44.33 45

DarkNet-19 77.69 72

ResNet-50v2 78.27 78

DenseNet-201 74.29 73

EfficientNet-B7 48.15 60

VGG-16 70.07 65

VGG-19 63.96 65

NasNetLarge 73.47 68

InceptionResNetV2 78.1 69

Integrated CNN CNN+SVM training accuracy CNN+SVM testing accuracy

ADaRDEV2I-22 67.92 66

ADaRDEV2-22 69.45 57

RDEV2-22 69.51 69

ADaDR-22 82.04 75

ADaR-22 63.31 64

DaRD-22 68.68 66

DEV-22 61.82 67

ADa-22 58.21 51

RD-22 61.81 64

RV-22 30.31 30

AD-22 66.47 65

DaR-22 60.53 59
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3.6. Support Vector Machines. SVM is a core concept in ML
that is a supervised learning algorithm [50]. The algorithm is
very helpful in classifying, regression, and selecting outliers.
It creates a hyperplane which divides the data into various
classes. The main objective is to select a hyperplane with
the maximum possible limit between the middle vectors in
the given dataset [51–53]. SVM recovers the maximum-
margin hyperplane and generates hyperplanes for enhanced
class isolation. This relates to the binary classification and
the multiclass classification [54, 55].

In this study, ColoRectalCADx CNN models are
required to convert it into an SVM using the transfer learn-
ing concept. The SVM uses a parameter called “kernel_reg-
ularizer” that uses the l2 standard and passes the linear
function as an activation function in the final output layer.
For multiclass classification, it is necessary to use “SoftMax”
as activation functionality in SVM. The application of loss is
the “square hinge” for multiclass classification. As a result,
the last layers of the CNN make modifications, the linear
SVM is represented, and the final accuracies of all the
CNN from end-to-end and fusion are obtained [56].

3.7. Long Short-Term Memory. LSTM is a type of neural net-
work used in DL, where a recurring neural network func-
tions from time series inputs. LSTM works with time series
predictive problems, such as machine translation and voice
recognition. Typically, LSTM networks are made up of var-
ious blocks, which are called cells. There are two states that
go to the following cell: the state of the cell and the hidden
state. The memory blocks are responsible for memorizing
the manipulations in the memory through the gates. This
forget gate is responsible for removing information that is
no longer required for the cell status, which was performed
using a filtering technique. This allows the performance of
the LSTM to be optimized. The input gate is responsible
for providing information on the cell state. The output gate
is responsible for the absence of the necessary information
along the condition of the cell that can be excited at a
given time.

In the ColoRectalCADx system, a total of 21 experiments
were carried out using different CNNs. These CNN models
convert them to LSTM by means of transfer learning. In this
CNN, the max pooling layer is replaced by the LSTM model,
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and the final layer is connected to the SoftMax activation.
The final results of all CNN end-to-end and CNN fusion
were achieved using LSTM [57].

3.8. Visualization Methods

3.8.1. Grad-CAM. After the convolutional neural network is
classified, the input images are viewed at the most targeted
level to identify the object under consideration. This type
of object focusing was referenced using Grad-CAM [58,
59]. This concept uses the object class and gradient informa-

tion that travel to the final convolutional layer of a CNN.
This results in a rough map of the significant areas of the
image. Grad-CAM is a rigorous generalization of class acti-
vation mapping that enhances the consideration of image
classification. This differs from the exact level of pixel gradi-
ent visualizations (guided retro-propagation and deconvolu-
tions) during the supervised localization task. When
capturing images, finding areas of subtle images without cre-
ating pairs of images and texts is often a good practice. The
Grad-CAM configuration illustration is shown in Figure 5.
The output of the CNN is represented by Yc class score

Table 9: Comparison of accuracies of CNN+LSTM architectures.

Individual CNN CNN+LSTM training accuracy in % CNN+LSTM testing accuracy in %

AlexNet 86.81 77.56

DarkNet-19 83.46 68.51

ResNet-50v2 79.57 83.21

DenseNet-201 87.1 84.7

EfficientNet-B7 67.53 77.56

VGG-16 72.7 71.76

VGG-19 69.46 70.16

NasNetLarge 83.57 78.1

InceptionResNetV2 84.52 80.36

Integrated CNN CNN+LSTM training accuracy CNN+LSTM testing accuracy

ADaRDEV2I-22 81.43 81.9

ADaRDEV2-22 78.56 78.56

RDEV2-22 79.54 77.01

ADaDR-22 84.61 82.17

ADaR-22 73.23 70.57

DaRD-22 76.84 79.56

DEV-22 64.82 67.98

ADa-22 62.32 60.19

RD-22 73.1 64.6

RV-22 36.76 41.43

AD-22 78.15 67.83

DaR-22 74.26 72.94
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k
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〠
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〠
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ij, ð1Þ

where wc
k = 1/Z∑i∑j∂Yc/∂Ak

ij are the class feature weights,

Ak
ij is the feature map, and 1/Z∑i∑jA

k
ij is the global average

pooling.
Each spatial location (i, j) of the class-specific saliency

map Lc is then computed as the final equation for the dis-
criminatory class saliency map.

Lcij =〠
k

wc
k:A

k:
ij : ð2Þ

In order to perform the polyp focus model in the ColoR-
ectalCADx system, a DL classification model was developed

using the dataset. This is a combination of the CVC Clinic
DB, Kvasir2, and Hyper Kvasir as a mixed dataset. This
mixed medical motion image colonoscopy dataset is as fol-
lows: the images are provided as inputs to individual CNN
models to get the output image function map. Subsequently,
the matrix of the correlative features is sent to the fully con-
nected layer.

To achieve the Grad-CAM results, a heat map of the
image was generated from which the Grad-CAM image clas-
sification results were generated. These heat maps were
superimposed on the resulting CNN colonoscopy images.
They were used to classify the images and locate each class
in the input images with the corresponding heat map. These
should be generated by Grad-CAM images using CNN
models. Five CNN algorithms, namely, DenseNet201, Effi-
cientNetB7, VGG16, ResNet50, and VGG19, are used for
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Figure 12: Integrated CNN+LSTM comparison of accuracy metrics is illustrated.

Table 10: Comparison of precision and support of mixed dataset classes.

Classes
High-performance CNN models

DenseNet-201 ADaDR-22
Support

Precision Precision

0 bbps-0-1 0.97 0.92 198

1 bbps-2-3 0.99 0.96 345

2 Cecum 0.9 0.72 603

3 Dyed-lifted-polyps 0.55 0.58 601

4 Dyed-resection-margins 0.77 0.79 597

5 Esophagitis-a 0.43 0 421

6 Non_polyps 0.97 0.84 257

7 Polyps 0.96 0.68 368

8 Pylorus 0.89 0.9 600

9 Retroflex-rectum 0.94 1 117

10 Retroflex-stomach 0.98 0.97 230

11 Ulcerative-colitis-grade-0-1 0.34 0 311

12 Ulcerative-colitis-grade-2 0.37 0.3 133

13 z-line 0.63 0.58 580
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the Grad-CAM images that are displayed with input medical
motion colonoscopy images.

3.8.2. Semantic Segmentation. Each pixel of an object
belongs to a special class to which the same label is allocated
by the concept of semantic segmentation. This task classifies
every pixel in one image with preset classes. Semantic seg-
mentation works primarily on the concept of a mask that
involves edge detection. It is the task of the grouped portions
of the image which belong to the same class.

The ColoRectalCADx system includes U-Net architec-
ture with data scaling and patch recovery. The combination
of Clinc-Seg, KvasirSeg, and Hyper Kvasir as mixed colonos-
copy data helps eliminate and recognize malignant cancer
polyps. This system allows high polyp detection accuracy
and suggests the importance of the U-Net CNN structure
with the necessary hyperparameters.

U-Net has been used as the key network architecture for
segmentation of medical colonoscopy motion images in Col-
oRectalCADx [60, 61]. Figure 6 illustrates the structure of

the U-Net for semantic segmentation. Its structure can be
largely thought of as a network of tail encoders through a
network of decoders. The ultimate outcome of this network
is the only one that allows semantic segmentation:

(i) The encoder was the top edge of the framework.
Typically, it is a pretrained classification network;
it applies convolution blocks trailed by pooling,
which is max pooling, and then downsampling to
encode the input colonoscopy medical motion
images into feature depictions at multiple levels

(ii) The decoder is the second-most extreme of the
structure. The objective is to semantically project
the discriminatory characteristics (lower resolu-
tion) learned by the encoder in the space of pixels,
which results in higher image pixels to obtain a
solid classification. The decoder involves upsam-
pling and concatenation followed by coherent con-
volution processes
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Dyed-lifed-polyps pred as: dyed-lifed-polyps

Ulcerative-colitis-grade-0-1 pred as: bbps-2-3
Ulcerative-colitis-grade-2 pred as:

ulcerative-colitis-grade-2

Ulcerative-colitis-grade-3 pred as:
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Figure 16: Grad-CAM results of the CNN model DenseNet-201.
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Figure 15: The ROC curves of mixed datasets.
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(iii) Upsampling in CNNs is used for classification and
object detection architecture. The perception is that
we would intend to reinstate the reduced feature
map to the actual original size of the medical colo-
noscopy motion images, consequently increasing
the feature dimensions. Upsampling is also dis-
cussed in terms of transposed convolution, upcon-
volution, or deconvolution

Experimental results for ColoRectalCADx are presented
so far. All experiments were carried out with the system
hardware specifications, and the software used for this work
is shown in the Table 4.

The essential element of this ColoRectalCADx system is
the datasets. Mixed datasets for CVC Clinic DB, Kvasir, and
Hyper Kvasir are represented with classes of 14. In each data
class, medical colonoscopy motion images are stored and are
accessible for CNN training. Details on the datasets are pro-
vided in Table 5.

For all the datasets, experimental research with individ-
ual CNN and integrated CNN was also conducted with
transfer learning by SVM, followed by LSTM. The experi-

ments have been adapted to the hyperparameters. Hyper-
parameters specific to the whole ColoRectalCADx system
are listed in Table 6.

4. Results

This study was carried out using a CADx system, called
ColoRectalCADx, in five stages. During these five stages,
the principal role was played in the investigation experi-
ments of the nine individual CNNs and the twelve inte-
grated CNNs. We compared the overall performance of
these 21 CNNs, individually and integrated, and found the
best possible model. In these five stages, the results were
included in the first stage of the dataset with the individual
and integrated CNN experiments. The second stage was a
dataset with individual and integrated SVM+CNN experi-
ments. Third stage consisted of the dataset with individual
and integrated CNN+LSTM experiments. The fourth stage
consisted of a visual explanation using Grad-CAM. Finally,
the fifth stage was a visual explanation using semantic
segmentation.

Dyed-lifed-polyps pred as: dyed-lifed-polyps

Ulcerative-colitis-grade-0-1 pred as:
ulcerative-colitis-grade-2 Ulcerative-colitis-grade-2 pred as: bbps-2-3

Ulcerative-colitis-grade-3 pred as: esophagitis-a

Esophagitis-a pred as: bbps-2-3
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Figure 17: Grad-CAM results of the CNN model EfficientNet-B7.
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4.1. Stage 1: Individual and Integrated CNN Experimentation.
In all investigational findings and comparisons, the mixed
dataset with the individual CNN DenseNet-201 achieved the
best training accuracy of 79.59% and best testing accuracy of
76.31% in agreement with the other CNNs. For all CNNs,
the VGG-19 had the lowest train accuracy of 63.38% and the
test accuracy of 64.54%.

In all investigational findings and comparisons, the
mixed dataset with integrated CNN ADaDR-22 achieved
the best training accuracy with 77.42% testing accuracy is
72.2% in agreement with the other CNNs. For any CNN,
the RV-22 displayed the lowest drive accuracy of 34.27%
and the test accuracy of 35.69%.

The area under the curve (AUC) is an indicator used to
average the performance accuracy of all classes of the data-
sets and real-positive (TP) and false-positive (FP) values of
the dataset classes. These details indicate that less than
50% is the lowest yield in dataset formation. The proposed
mixed dataset provided the highest AUC accuracy for Den-
seNet-201, which was 96.76% for the individual CNN, and
for the integrated CNN ADaDR-22, an AUC accuracy of
95.09% was achieved. The detailed CNN comparison results
are presented in Table 7 and Figures 7 and 8.

4.2. Stage 2: Individual and Integrated CNN+SVM
Experimentation. In all investigational findings and compar-
isons, the mixed dataset with individual CNN+SVM ResNet-
50V2 achieved the best training accuracy of 78.27% and
testing accuracy of 78% in agreement with the other CNNs.
For any CNN, AlexNet displayed the lowest training accu-
racy of 30.31% and test accuracy of 30%. The detailed
CNN+SVM comparison results are presented in Table 8
and Figures 9 and 10.

In all investigational findings and comparisons, the mixed
dataset with integrated CNN+SVM ADaDR-22 achieved the
best training accuracy of 82.05% and testing accuracy of 75%
in agreement with the other CNNs. For all SVM+CNN, the
RV-22 showed the lowest drive accuracy of 63.38% and the
test accuracy of 64.54%.

4.3. Stage 3: Individual and Integrated CNN+LSTM
Experimentation. In all the investigational findings and com-
parisons, the mixed dataset with individual CNN+LSTM
DenseNet-201 achieved the best training accuracy of 87.1%
and best testing accuracy of 84.7%, in agreement with the
other CNNs. In any CNN+LSTM, the VGG-19 had the low-
est drive accuracy of 63.38% and the test accuracy of 64.54%.
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Polyps pred as: z-line
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Figure 18: Grad-CAM results of the CNN model VGG-16.
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The detailed CNN+LSTM comparison results are pre-
sented in Table 9 and Figures 11 and 12.

In all the investigational findings and comparisons, the
mixed dataset with integrated CNN+LSTM ADaDR-22
achieved the best training accuracy with an 84.61% and best
testing accuracy of 82.17%, in agreement with the other
CNNs. For any CNN+LSTM, the RV-22 displayed the low-
est drive accuracy of 36.76% and test accuracy of 41.43%.

In the mixed dataset CNN DenseNet-201 model, the
classes bbps-0-1, bbps-2-3, cecum, non_polyps, polyps,
pylorus, retroflex-rectum, and retroflex-stomach showed
≥90% accuracy with the support of 198, 345, 603, 257, 368,
117, and 230 images, respectively. In the mixed dataset
ADaRD-22 CNN-integrated model, some classes showed
no (zero) performance with the support of a smaller number
of images in the class. Classes bbps-0-1, bbps-2-3, pylorus,
retroflex-rectum, and retroflex-stomach have an accuracy
of ≥90 percent accuracy with the support of 198, 345, 600,
and 230 images, respectively. The performance of the classes
is shown in Table 8 and Figure 9. Among all the individual and
integrated CNNs, for a total of 21 experiments, the individual
CNN DenseNet-201 and integrated CNN ADaDR-22 models

showed the best performance. The high-performance individ-
ual and integrated CNNmodels of the individual class perfor-
mances are shown in detail in Table 10 and Figure 13.

According to the mixed dataset classification results,
the best clarifications were obtained with the individual
DenseNet-201 CNNs, and for the integrated CNN, ADaDR-
22 provided the greatest accuracy. The information is pro-
vided by TP, TN, FP, and FN. The corresponding confusion
matrices were formed based on the classes described for each
dataset. A matrix in the form of a confusion matrix provides
a good indication of how well the evaluation model is per-
forming. Every row is a real/true class and every column is
a predicted/estimated class. Actual values were compared to
those predicted. Thus, for the correct models, many elements
are required diagonally. In this case, the confusion matrix has
been normalized; so, the value of unit is accepted as the high-
est value on the diagonal. Our model shows that all classes
have diagonal values approaching unity. The confusion
matrices corresponding to the highest accuracies are shown
in Figure 14.

In order to estimate algorithm recognition performance,
they were compared to other medical motion colonoscopy
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Retrofex-stomach pred as: retrofex-stomach

Figure 19: Grad-CAM results of the CNN model VGG-19.
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datasets using CNN algorithms. The medical motion image
recognition ratio results and ROC curves of the different
CNN algorithms obtained the best accuracies with
DenseNet-201 for individual CNNs, and for integrated
CNNs, ADaDR-22 provided the highest accuracy. The
receiver operating characteristic (ROC) curves are presented
and illustrated in Figure 15. The recognition rate curves
within this multiple-class system classification can be
obtained at various levels of accuracy. Based on the accura-
cies of the CNN, image classes, and ROC graphics, the accu-
racy class is represented, and the best class of accuracy is
discovered and presented in the graphs. These graphs were
drawn against the TP and FP rates.

In this mixed dataset, DenseNet-201 yielded 85–100%
accuracy and ADaDR-22 yielded approximately 75–100%
accuracy for the 14 classes. In this individual and integrated
CNN, both classes are ranked lower to produce a much
lower yield.

After the convolutional neural network phase, experi-
mental research on ColoRectalCADx is presented for visual
explanations with Grad-CAM and semantic segmentation
using the U-Net model. In this study, the Grad-CAM was
presented immediately after the CNNs.

4.4. Stage 4: Grad-CAM Visualization. To obtain the Grad-
CAM results, an image heat map was generated from which
the Grad-CAM image classification results were generated.
These heat maps are superimposed over the resulting CNN
colonoscopy images. They were used to obtain the classifica-
tion of the images and the localization of each class in the
input images with the corresponding heat map, which would
have to be generated by Grad-CAM images according to the
CNN models. Five CNN algorithms, such as DenseNet201,
EfficientNetB7, VGG16, ResNet50, and VGG19, are used
for Grad-CAM images and are shown with input medical
motion colonoscopy images.

The Grad-CAM results emphasize that they support the
area, which implies that these classes concentrate colorectal
polyps in the input colonoscopy images. The dark areas are
represented in various colors, like red, green, and yellow.
These colors displayed on the Grad-CAM output images of
the specified classes were displayed due to the prediction of
colorectal polyps. This method is useful for discriminating
the visual representation of colonoscopy input images to
expose the critical area in the image region. The identified
zones and features result in significant activation in the
upper layers of the colon polyp detection model.
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Figure 20: Grad-CAM results of the CNN model ResNet-50V2.
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As the guided Grad-CAM rejects bad gradients at every
step, it is possible to obtain precise areas of interest for all
types of colorectal polyps. Thus, this improved technique
helps the doctor to correctly classify the predominant class
of polyps and locate several occurrences and different types
of polyps on the whole image. CNN classification models
were used to detect key polyp detection properties. There-
fore, no further training, annotation or segmentation is
needed to use visualization methods. The resulting Grad-
CAM images using the various CNN models are shown
in Figures 16–20, and a comparison of the Grad-CAM
images with the various CNN algorithms is given in
Table 11. In this DenseNet-201, predicted polyps among
other CNNs are precisely identified in mixed datasets.

Following the main visual explanation with Grad-CAM,
the major discovery of malignant CRC polyps was found
with semantic segmentation using U-Net.

4.5. Stage 5: Semantic Segmentation Using U-Net
Visualization. This ColoRectalCADx system in the final

stage was used to identify and recognize real polyps that
are malignant with the combination of three types of data-
sets, such as CVC Clinic-Seg, KvasirSeg, and Hyper Kvasir,
as a mixed dataset segmentation. The mixed dataset pro-
vided inputs for the ColoRectalCADx system, which was
integrated into the U-Net CNN structure. U-Net runs as a
CNN on an encoder-decoder network. The learning rate
was set to 0.001, batch size of the images was 64, and epochs
were set to 40. The resulting training and testing losses are
listed in Table 12.

For each of the three datasets, the original images with
the corresponding mask of the images and malignant polyps
are recognized accurately with training losses. The predicted
final polyp obtained with the ColoRectalCADx system is
depicted in the Figure 21.

The system accurately and effectively identified malig-
nant polyps in all input datasets containing various polyps.
The anticipated polyp was the true recognition of polyps.
The corresponding loss and epoch graphs are shown in
Figure 22.
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Figure 21: Semantic segmentation for predicted polyps of mixed dataset.

Table 12: Parameters of U-Net for semantic segmentation.

Dataset Epochs Learning rate Batch size Train loss Test loss Total time taken for model

Mixed dataset 40 0.001 64 0.3176 0.4223 2201.05 s

Table 11: Comparison of Grad-CAM images with CNN algorithms.

Dataset Images in dataset Classes in dataset CNN architecture
Grad-CAM

output obtained

Grad-CAM
Polyp

Prediction

Mixed dataset 19,621 24

VGG16 Yes High

VGG19 Yes Moderate

ResNet50 Yes Moderate to high

DenseNet201 Yes Very high

EfficientNetB7 Yes Low
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5. Discussion

The ColoRectalCADx system essentially works with the 9
individual CNN models and 12 integrated CNN models.
With a total of 21 experiments, the individual CNN
DenseNet-201 and the integrated CNN ADaDR-22 provide
accurate optimization for detecting colorectal cancer. Pri-
mary inputs are mixed datasets, whereas these datasets are
integrated with individual datasets. Table 13 illustrates how
individual datasets are executed and the CNN model which
shows optimization performance.

This ColoRectalCADx system works with mixed datasets
inputs, which is a combination of CVC Clinic DB, Kvasir2,
and Hyper Kvasir. This system now provides the highest
individual CNN performance achieved by DenseNet-201
with 87.1% and 84.7% training and test accuracy, respec-
tively. The integrated CNN ADaDR-22 reached training
and test accuracy of 84.61% and 82.17%, respectively. The

system ends with the CNN+LSTM combination, yielding
an exact output. Prior to experimentation with mixed data-
sets, the system also operated with individual dataset inputs
and obtained the results for each dataset autonomously.
Using the CVC Clinic DB dataset for the individual CNN,
DenseNet-201 achieved the highest training and test accu-
racy of 95.37% and 99%, respectively. The system also works
with the integrated CNN DarD-22, with the highest training
and test accuracy of 93.86% and 96%, respectively. Using the
Kvasir dataset for the Individual CNN, DenseNet-201
achieved the highest training and test accuracy of 80.53%
and 88%, respectively. The system also operates with the
integrated DarD-22 CNN, with the highest drive and test
accuracy of 77.01% and 82%, respectively. Using the Hyper
Kvasir dataset for the individual CNN, DenseNet-201
obtained the highest training and test accuracy of 78.17%
and 84%, respectively. The system also operates with the
built-in DarD-22 CNN, with the highest training and test

Table 13: Comparison of best results of individual and mixed datasets.

Dataset Model type Model Training accuracy in % Testing accuracy in %

CVC Clinic DB
Individual CNN CNN+DWT+SVM (DenseNet-201) 95.37 99

Integrated CNN CNN+DWT+SVM (DaRD-22) 93.86 96

Kvasir2
Individual CNN CNN+DWT+SVM (DenseNet-201) 80.53 88

Integrated CNN CNN+DWT+SVM (DaRD-22) 77.01 82

Hyper Kvasir
Individual CNN CNN+DWT+SVM (DenseNet-201) 78.17 84

Integrated CNN CNN+DWT+SVM (RDEV2-22) 62.38 66

Mixed dataset (CVC Clinic
DB+Kvasir2+Hyper Kvasir)

Individual CNN CNN+LSTM (DenseNet-201) 87.1 84.7

Integrated CNN CNN+LSTM (ADaDR-22) 84.61 82.17
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Figure 22: Loss graph of semantic segmentation for mixed dataset.
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accuracy of 62.38% and 66%, respectively. For these three
datasets, the system results were combined with those of
CNN, DWT, and SVM. All information on mixed and indi-
vidual datasets and the best results achieved are presented in
Table 13 and Figure 23.

The results from the entire ColoRectalCADx system
were compared with the three-step GastroCADx system
proposed in 2021. Results for all three datasets are presented
in Table 14. In GastroCADx, the system was compared to
four end-to-end CNN models, but in ColoRectalCADx, it
was compared to seven end-to-end CNN models. Gastro-
CADx proved that ResNet-50 was the most appropriate
model, and DenseNet-201 was the best model for the ColoR-
ectalCADx system. In comparison, the two systems were
nearly identical, but the behavior of the tasks was different.
Different system models, such as ensemble classifier, DP-
CNN, and MP-FSSD, are discussed starting in 2021 and
2022 and compared with ColoRectalCADx. The previous
ColoRectalCADx system was 98%, 88%, and 84% accurate
with 3 datasets, respectively. The proposed new system with
a mixed dataset was 84.7% accurate.

As a visual explanation, the Grad-CAM operates rather
than the max pooling layer of the CNN. In this case, CNN

such as DenseNet201, EfficientNetB7, VGG16, ResNet50,
and VGG19 is used for Grad-CAM images and is displayed
with the input medical motion colonoscopy images. Each
CNN provides Grad-CAM output images for the input
mixed colonoscopy image dataset. Consequently, the best
visualization and localization of polyps are obtained from
the CNN DenseNet-201. In each image, it precisely demon-
strates malicious polyps are perfectly recognized.

In semantic segmentation, the system operates on the
CNN U-Net which is an encoder-decoder network. The
input images are applied to the encoder section while the

Table 15: Comparison of the results of previous state-of-the-art
methods of Kvasir-SEG dataset.

Method Dice coefficient

ResU-Net++ [65] 0.8133

ResU-Net-mod 0.7909

ResU-Net 0.5144

U-Net 0.7147

U-Net (ours) 0.8129

Table 14: Comparison of the results of previous state-of-the-art methods from 2021 to 2022.

Dataset Author Method Accuracy in %

CVC Clinic DB

Attallah and Sharkas [17] GastroCADx —

Liew et al. [62] Ensemble classifier (ResNet50+AdaBoost) 97.91

Sharma et al. [10] Ensemble classifier 98.3

Nisha et al. [63] DP-CNN 99.6

Souaidi and El Ansari [64] MP-FSSD 91.56

Ours ColoRectalCADx(previous) 99

Kvasir2

Attallah and Sharkas [17] GastroCADx 97.3

Sharma et al. [10] Ensemble classifier 97

Ours ColoRectalCADx (previous) 88

Hyper Kvasir
Attallah and Sharkas [17] GastroCADx 99.7

Ours ColoRectalCADx (previous) 84

Mixed dataset Ours ColoRectalCADx (proposed) 84.7
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Figure 23: All datasets perform best.
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output images are derived from the decoder part. Within the
whole image dataset where the polyp images are present,
they can be predicted as polyps as image segmentation.
Therefore, the ColoRectalCADx system will accurately rec-
ognize colorectal cancer using the CNN classification
method and spot visual explanation methods with mixed
datasets. The Kvasir-SEG dataset assessment criteria are
shown in Table 15 and Figure 24.

6. Conclusion

CRC is the third largest cancer type in the world. Colonos-
copy screening is an important part of detecting cancer.
The datasets have been retrieved from the colonoscopy
images. The public-access colonoscopy datasets selected for
this research were the CVC Clinic DB, Kvasir, and Hyper
Kvasir, which are 2.8.23 classes. Each class contains a sepa-
rate number of clinical motion colonoscopy images. These
three datasets are combined to create a new dataset called
mixed datasets, which has a total of 24 classes including
19,621 images, and after modification with balanced classes,
it has 14 classes including 16,942 images. The CADx system,
referred to as ColoRectalCADx, was designed to recognize
cancer. This CADx system is composed of five stages,
namely, CNNs, SVM, LSTM, and visual methods, like
Grad-CAM and semantic segmentation. ColoRectalCADx
inputs were captured from the mixed medical motion image
datasets. Once the datasets are stored in Google Cloud, the
image preprocessing steps are completed. Subsequently, the
main and central parts of cancer recognition began with
the CNN process, which was completed with 9 individual
CNNs and 12 integrated CNNs for the classification process.
The nine individual CNNs were the well-known pretrained
models. Moreover, they have been combined into integrated
models. With all 21 CNNs, experiments were conducted to
determine the most precise and suitable model for CRC rec-
ognition. In these experimental investigations, of all CNNs,
the individual CNN DenseNet-201 (87.1% training and
84.7% testing accuracies, respectively) and the integrated
CNN ADADR-22 (84.61% training and 82.17% testing accu-
racies, respectively) were the most efficient for cancer detec-
tion with the CNN+LSTM model. After CNN, SVM, and
LSTM, visualization methods, such as Grad-CAM visualiza-
tion of the focused class of the input mixed dataset images,
are presented for the identification of malignant polyps in
cancer images. DenseNet-201 provided the most accurate
images for cancer detection. In the final stage of the system,

medical colonoscopy datasets are in the process of locating
and identifying malignant polyps. For all images of the three
datasets, semantic segmentation using the U-Net CNN struc-
ture recognizes malignant polyps. For that loss score, the
mixed dataset was 0.4223. Semantic segmentation identified
the polyps of origin with the predicted malignant polyps.

In a future work, the same experiments will be carried
out and enhanced for all clinical colonoscopy motion video
datasets. Video datasets represent the number of frames to
be taken into account. In this case, the images are aug-
mented in relation to the image datasets so that those video
datasets reach a much higher level.
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