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deep learning technology is mainly focused on large [1–3],
liver [4], pancreas [5], prostate [6], multiorgan [7], and frac-
ture analysis [8–10]. Arti�cial intelligence diagnosis technol-
ogy based on medical imaging is still in the preliminary
exploration stage in the �eld of orthopedics [11–14]. The
study of orthopedic diagnosis problems from the perspective
of arti�cial intelligence, especially for the identi�cation and
autonomous localization of thoracolumbar vertebrae
[15–19], is still in urgent need of more in-depth research.
This study proposes a novel classi�cation method for frac-
tures based on fast-region convolutional neural network
(Faster RCNN) deep learning to improve the complex
manual diagnosis process.

2. Materials and Methods

2.1. Study Subjects. The CT images of all cases this time
include 1130 fracture CT images collected in our hospital
and a�liated hospitals from February 2015 to May 2022,
which were injured in basketball and collected in our hospi-
tal and a�liated hospitals. Images of fractures were
observed. As sample data, exclude unique samples with
special bone structures such as severe shadow shading,
hidden fractures, and osteoporosis.

2.2. Faster RCNN-Based Fracture Classi�cation. This study
establishes a fracture classi�cation method based on the
Faster RCNN deep learning network. For the problem of
various types of fractures, the Faster RCNN is applied to
iteratively learn a large number of prelabeled CT sample
data of fracture types, extract the di�erent features of various
types of fracture sample data as the input of the classi�er,
and achieve the classi�cation of the corresponding fracture
test sample data.

2.2.1. Data Preprocessing. To �t the input to the Faster
RCNN, the CT images are �rst preprocessed. To standardize
the images, including graying out the images, uniform size,
and resolution, ① CT images are mainly in black and white
tones and need to be grayed out. After the grayscale opera-
tion, the number of image channels is reduced, which can
e�ectively improve the e�ciency of image processing. This
study uses the PIL library method that comes with Python
to implement image grayscale. ② When the scale di�erence
between images is signi�cant, the image features will also
vary greatly, which will signi�cantly impact the training
model’s speed and results. This study also uses the self-
contained PIL library in Python to process the size and
resolution of the images so that they match the input size
of the iterative learning network.

2.2.2. Dataset Construction. Based on data preprocessing,
doctors who have been practicing clinical work for more than
ten years at our hospital applied the Imaging Labeling system
to classify and con�rm CT images and label them to build the
training and validation sets for deep learning networks.

According to the AO spine classi�cation 2015, vertebral
fractures are classi�ed as type A (vertebral compression),
type B (anterior-posterior distraction injury), type C (ante-
rior-posterior rotational injury), A2 (fracture line involving

both endplates but not the posterior wall of the vertebral
body), A3 (vertebral fracture involving only a single endplate
and involving both the posterior wall and the spinal canal),
and A4 (vertebral fracture involving both upper and lower
endplates and the posterior wall).

For the selected sample, the classi�cation method
proposed in this study can also deal with the presence of
multiple fractures in the thoracolumbar spine, considering
the practical situation where multiple di�erent types of frac-
tures may exist simultaneously on a single CT image.

Of the three basic types of ABC, a total of 935 thoraco-
lumbar fracture images were selected for training and valida-
tion in this study, including 815 in the training set and 120
in the validation set, including 160 for type C, 319 for
lumbar A, 48 for lumbar B, 350 for thoracic A, and 58 for
thoracic B; 711 for males and 224for females; and 15 to 35
years of age, with an average of 20 years. A total of 198 thor-
acolumbar fracture images were selected as the test sample,
of which 32 were C type, 70 were lumbar A type, 12 were
lumbar B type, 80 were thoracic A type, and 15 were thoracic
B type; 148 were male, and 47 were female; and the ages
ranged from 17 to 36 years, with a mean of 25 years.

In the subtype classi�cation study of type A fractures, a
total of 523 images of thoracolumbar fractures were selected
for training and validation, including 5489 images in the
training set and 34 images in the validation set, including
46 images of type A1, 28 images of type A2, and 240 images
of type A2. A3 type and A4 type were 175; 371 males and
151 females, aged 15 to 35 years old, with an average of 20
years old. 113 sheets were selected as test samples, including
15 sheets of type A1, 17 sheets of type A2, 34 sheets of type
A3, and 47 sheets of type A4; 74 sheets for men and 20
sheets for women; aged 17 to 36 years old, with an average
of 25 years old.

2.2.3. Applying Convolutional Neural Networks to Extract
Features. Faster RCNN consists of 2 modules: region
proposal network (RPN) candidate frame extraction mod-
ule + Fast RCNN detection module. In Faster RCNN, the
training image is input to the VGG16 convolutional neural
network to extract the features of the image; the RPN layer
generates the candidate frames, and then, each “candidate
frame” is mapped to the feature map to obtain the feature
map of the region of interest; the pooling layer of the region
of interest divides each candidate region into M × N blocks
(whereby M denotes pool height, and N denotes pool
width). The pooling layer divides each candidate region into
M × N blocks (M denotes the pool height and N denotes the
pool width). The maximum pooling operation is performed
for each block so that the candidate regions of di�erent sizes
are transformed into feature vectors of uniform size during
the feature mapping process and then fed to the next layer.
The pooling layer makes the output feature map consistent
with the dimensionality of the fully connected layer after it.
Finally, Softmax Loss (detecting classi�cation probability)
and Smooth L1 Loss (detecting edge regression) are used
for classi�cation and regression, as shown in Figure 1.

The convolution layer is also known as the feature extrac-
tion layer. The convolutional layer contains 3 layers of
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convolution, pooling, and activation. To accommodate frac-
ture image classi�cation, this study’s Faster RCNN learning
model has 13 convolutional and activation layers and 4 pool-
ing layers, as shown in Figure 2 for the speci�c structure.

The RPN operates as follows: a sliding scan is performed
on the �nal convolutional feature map using a small network,
and sliding window processing ensures that the regression and
classi�cation layers are associated with the entire feature space
of the convolutional layer. This is then mapped to a low-
dimensional vector, and �nally, this low-dimensional vector
is sent to the regression and classi�cation layers to output
classi�cation diagnostics, as shown in Figure 3.

2.3. Evaluation Indicators. In this study, according to the
classi�cation results of the test set, the overall correct rate
and kappa coe�cient are used as the evaluation indexes of
the overall classi�cation e�ect, where the correct overall rate
is the proportion of all correctly classi�ed samples to the
total samples, which is an assessment of the overall accuracy;
the kappa coe�cient re�ects the consistency between the
classi�cation results of the classi�er and the actual results.
The Faster RCNN is a multiclassi�cation network, for each
class. For each category, we split it into multiple binary cat-
egories for calculation, such as for ABC-type fracture typing;
when calculating the evaluation index, the problem of �ve
categories is split into �ve binary categories, and the single
category correct rate, sensitivity, speci�city, positive predic-
tive value, negative predictive value, and Jorden index are
used as the evaluation index for the classi�cation e�ect of a
category, where the single category correct rate is the
proportion of samples to the total samples for whether the
classi�cation is correct for a speci�c type. The sensitivity is
the proportion of all positive cases that are correctly classi-
�ed, which measures the capability of the classi�er to
identify positive cases; the speci�city is the probability of
correctly predicting the “true negative” case, which measures
the ability of the model to identify negative cases; the posi-
tive predictive value is the proportion of the samples classi-
�ed as positive cases that are actually positive cases. The
loss value is a measure of the di�erence between the output

of the trained model and the actual result and is related to
the choice of the loss function and the number of iterations.

2.4. Statistical Methods. SPSS 24.0 software was used to ana-
lyze the data statistically. Correctness, sensitivity, speci�city,
positive predictive value, negative predictive value, Youden
index, and kappa coe�cient were selected for statistical analysis
according to data characteristics. The test level was α = 0:05.

3. Results

3.1. ABC-Type Classi�cation Test Results. The results of the
classi�cation of the ABC type are shown in Table 1. Of the
30 C-type fractures identi�ed, 1 was not identi�ed, 2 were
incorrectly identi�ed as thoracic A type, and 27 were
correctly identi�ed. Among the 71 lumbar type A fractures,
4 were incorrectly identi�ed as thoracic type A, and 67 were
correctly identi�ed. Of the 12 lumbar type B fractures iden-
ti�ed, 2 were incorrectly identi�ed as lumbar type A and 10
were correctly identi�ed. Of the 72 thoracic A fractures iden-
ti�ed, 4 were not identi�ed, 2 were incorrectly identi�ed as
lumbar A, and 66 were correctly identi�ed. Of the 13 tho-
racic spine type B fractures identi�ed, 2 were incorrectly
identi�ed as thoracic type A and 11 were correctly identi�ed.
The correct overall rate for this classi�cation was 89.4%,
with a kappa coe�cient of 0.849 (P 0:001). Table 2 shows
the single class correct rate, sensitivity, speci�city, positive
predictive value, negative predictive value, and Jorden index
for each category calculated from this result. Examples of
successful identi�cations are shown in Figures 4(a) and
4(b), and examples of incorrect identi�cations are shown
in Figures 4(c) and 4(d). Figure 5 shows the relationship
between the loss values and the number of iterations during
ABC-type classi�cation training.

3.2. Type A Subtype Classi�cation Test Results. The results of
the classi�cation of type A subtypes are shown in Table 3. Of
the 12 type A1 fractures, 1 was not identi�ed, 1 was incorrectly
identi�ed as type A4, and 10 were correctly identi�ed. Among
13 A2-type fractures, 4 were incorrectly identi�ed as A4 type,
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Figure 1: Faster RCNN learning classi�cation process diagram. ROI: region of interest; Feature map: feature map.
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and 9 were correctly identi�ed. Of the 38 A3 fractures, 1 was
not identi�ed, 2 were incorrectly identi�ed as A4, and 35 were
correctly identi�ed. Of the 41 A4 fractures, 3 were not identi-
�ed, 1 was incorrectly identi�ed as A3, and 37 were correctly
identi�ed. The correct overall rate for this classi�cation was
87.5%, with a kappa coe�cient of 0.817 (P < 0:001). Table 4

shows the single class correctness, sensitivity, speci�city, posi-
tive predictive value, negative predictive value, and Jorden
index calculated from this result. Figure 6 shows examples of
successful and incorrect identi�cations. Figure 7 shows the
relationship between the loss value and the number of itera-
tions during subtype A classi�cation training.
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Figure 2: Convolutional layer speci�c structure.
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Figure 3: RPN layer speci�c structure.

Table 1: ABC-type classi�cation test results (sheets).

Intelligent classi�cation Manual marking TotalType C Lumbar spine type A Lumbar spine type B Thoracic spine type A Thoracic spine type B
Type C 27 0 0 0 0 27
Lumbar spine type A 0 67 2 2 0 71
Lumbar spine type B 0 0 10 0 0 10
Thoracic spine type A 2 4 0 66 2 72
Thoracic spine type B 0 0 0 0 11 11
No identi�cation 1 0 0 4 0 5
Total 30 71 12 72 12 197

Table 2: ABC typing test evaluation.

Type of fracture Single category correct
rate Sensitivity Speci�city Positive predictive

value
Negative predictive

value
Youden
index

Type C 0.979 0.883 1.000 1.000 0.979 0.875
Lumbar spine type A 0.952 0.967 0.957 0.932 0.964 0.893
Lumbar spine type B 0.988 0.777 1.000 1.000 0.986 0.770
Thoracic spine type
A 0.909 0.902 0.920 0.867 0.951 0.826

Thoracic spine type
B 0.981 0.786 0.998 1.000 0.979 0.788
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4. Discussion

In this study, deep learning technology was applied to the
classi�cation of human thoracolumbar fractures, and a large
number of CT images were screened, preprocessed,
renamed, and sample annotated; after which Faster RCNN
was used to learn and train the sample data of thoracolum-
bar fractures, establish the classi�cation model and method

of thoracolumbar fractures, and apply the CT images of
human thoracolumbar fractures to test experiments.

For the classi�cation of type ABC fractures, the overall
correct classi�cation rate of the classi�cation model was
86.4%, with a kappa coe�cient of 0.850. The sensitivity
and speci�city of the classi�cation of type A fractures were
higher, above 90%, for both thoracic and lumbar spine. Also,
there were more unmarked samples for type A compared
with type B and C. This may be caused by the bias of irreg-
ular shading in the type A dataset. Moreover, the unmarked
cases are rarely found in the coronal plane and are mainly
concentrated in the sagittal plane. This is because types A3
and A4 are both burst fractures with a richer fracture
pattern, leading to increased di�culty in classi�cation.

Type C ranked 2nd in the Jorden index. Of the 904
training and 35 validation images, 160 were type C, a
smaller percentage than type A. The main reason for type
C being misidenti�ed is that in the coronal plane type C
is so similar to type A that features characterizing type C
osteochondral misalignment are only available when in
the sagittal plane. Type C and type B can have similar

(a) (b) (c) (d)

Figure 4: Example of ABC-type classi�cation test results. (a) Correct identi�cation of C fracture (sagittal). (b) Correct identi�cation of A
fracture (coronal). (c) Misidenti�cation of lumbar A as thoracic A (sagittal). (d) Misidenti�cation of thoracic B as lumbar B (sagittal) as
lumbar type B (sagittal).
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Figure 5: ABC-type classi�cation loss.

Table 3: Class A subtype classi�cation test results (sheets).

Type of fracture Single category correct rate Sensitivity Speci�city Positive predictive value Negative predictive value Youden index
Type A1 0.985 0.875 1.000 0.999 0.979 0.877
Type A2 0.947 0.940 0.958 0.919 0.964 0.896
Type A3 0.983 0.773 0.988 1.000 0.986 0.772
Type A4 0.916 0.902 0.922 0.8655 0.940 0.825

Table 4: Type A subtyping test evaluation.

Intelligent
classi�cation

Manual marking
TotalType

A1
Type
A2

Type
A3

Type
A4

Type A1 10 0 0 0 10
Type A2 0 12 0 0 12
Type A3 0 0 35 3 38
Type A4 6 7 2 46 61
No 1 0 1 3 5
Total 17 19 38 52 126
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problems in the coronal plane. In the case of similarity, the
misidenti�cation as type A is mainly due to the higher
proportion of type A pictures, which obtains a more com-
prehensive characterization of the characterized type A
fracture caused by the uneven proportion of data set types.
Type C can have a higher correct rate because it is a
displaced fracture morphologically more di�erent from A
and B and can be easily distinguished.

Type B fractures had the lowest Jorden index in the test,
between 0.7 and 0.8, with a speci�city of 100%, mainly because
too few type B samples were used to train the network, even
less than type C. There was an imbalance between the sample
proportions, and the learning network model learned the
features of type A and C fractures better; secondly, type B
tends to be a fracture of the bone joint extending into the spi-
nous portion when the fracture of the spinous is not apparent;
it is easy to misidentify type B as type A.

(a) (b)

(c) (d)

(e) (f) (g) (h)

Figure 6: Example of ABC-type classi�cation test results. (a) Correctly identi�ed type A3 (coronal). (b) Correctly identi�ed type A3 (sagittal). (c)
Correctly identi�ed type A4 (coronal). (d) Correctly identi�ed type A4 (sagittal). (e) Correctly identi�ed A1, A4 type (sagittal). (f) Misidenti�ed
A1 type as A4 type (sagittal). (g) Misidenti�ed A3 type as A4 type (sagittal). (h) Misidenti�ed A4 type as A3 type (sagittal).
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Figure 7: Type A subfractional loss.
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For subtype A fracture classi�cation, the overall correct-
ness of the model was 85.3%, with a kappa coe�cient of
0.815. The sensitivity was relatively high for types A3 and
A4, exceeding 90%. The main problem with A3 and A4
identi�cation was mutual misidenti�cation. Type A3 frac-
tures had only one endplate fracture, while A4 had both
upper and lower endplates fractured. The distinction
between A3 and A4 can only be made by whether 2 end-
plates are involved, and the di�erence between the two is
slight, which is the main reason for their confusion. In addi-
tion, both A3 and A4 are burst fractures with diverse and
variable fracture patterns. In a way, the amount of data in
the training sample of 500 cases was insu�cient, leading to
unmarked A3 and A4 types.

The sensitivity of both A1 and A2 recognition is low,
mainly due to the small training set of A1 and A2. Except
for the unmarked cases, the false identi�cations are all types
A3 and A4 due to the relatively large proportion of A3 and
A4 in this dataset. In this study, the type ratio has been
arti�cially balanced in the selection of images so that the
number of A1 and A2 is similar and the number of A3
and A4 is similar, which will ensure a speci�c recognition
correct rate with insu�cient samples in the dataset.

This study’s results show that the sensitivity of type B,
type C, and two subtypes, A1 and A2, is lower than that of
type A and types A3 and A4, respectively. Due to the small
number of cases of these fracture types, the amount of data
for these types is not enough compared to the amount of
data for other types, and the learning network cannot fully
extract the features of these fracture types, resulting in
poorer recognition of these types. Deep learning has high
requirements for dataset quality, and the acquisition of med-
ical images is heavily dependent on clinical cases, making it
di�cult to establish a universal image dataset. This study
found that the proportion of di�erent types in the dataset
also impacts the experimental results. Based on clinical expe-
rience, patients with A1 and A2 fracture types are them-
selves fewer, and some fracture cases are less distinctive,
resulting in less easy identi�cation by the machine; A3 and
A4 types are more concentrated but have more fracture
manifestations, resulting in the learning network not learn-
ing enough comprehensive features for correct identi�ca-
tion. The imbalance in the proportion of dataset types can
lead to the misidenti�cation of the less represented catego-
ries as the more represented ones. The uneven distribution
of the dataset due to insu�cient clinical imaging data will
impact the experimental results and require an increase in
sample size to reduce bias in further studies.

The next issue is the number of training datasets and
iterations. The ABC typing in this study used 935 training
and validation sets and 10,000 iterations of learning. Before
the �nal training, 10,000, 3,000, and 6,000 iterations were
used successively, whose recognition results had a signi�-
cant loss to achieve the expected results, and the number
of iterations of 10,000 obtained better results. Therefore, it
can be concluded that the size of the training set directly
a�ects the classi�cation and recognition results, which
could be solved using other advanced machine learning
techniques [20].

5. Conclusion

In summary, this study starts from the current problems
faced by diagnosing spinal fractures caused by basketball
injuries and introduces the latest deep learning methods for
fracture diagnosis classi�cation. The advanced thoracolum-
bar fracture classi�cation method can realize the machine’s
autonomous fracture detection and fracture classi�cation,
which helps to shorten the time required for manual diagno-
sis, e�ectively promote high-quality medical resources, and
improve the accuracy and consistency of early diagnosis of
spinal fractures, thereby improving the early diagnosis of
spinal fractures, e�cacy of treatment of fractures.

There are still some limitations in this study: with a small
sample data size, the classi�cation accuracy of the method pro-
posed in this research is not high, and it is easy to miss and mis-
identify. Future research will focus on solving the above small
sample problem and achieving accurate learning for fracture
patterns by changing the network structure and algorithm.
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