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Image reconstruction inmagnetic resonance imaging (MRI) and computed tomography (CT) is a mathematical process that generates
images at many different angles around the patient. Image reconstruction has a fundamental impact on image quality. In recent years,
the literature has focused on deep learning and its applications in medical imaging, particularly image reconstruction. Due to the
performance of deep learning models in a wide variety of vision applications, a considerable amount of work has recently been
carried out using image reconstruction in medical images. MRI and CT appear as the ultimate scientifically appropriate imaging
mode for identifying and diagnosing different diseases in this ascension age of technology. This study demonstrates a number of
deep learning image reconstruction approaches and a comprehensive review of the most widely used different databases. We also
give the challenges and promising future directions for medical image reconstruction.

1. Introduction

The reconstruction of images is an integral part of several
systems of visual perception. This includes partitioning sev-
eral segments or objects [1] with images. Reconstruction of
medical images is one of the most basic and essential ele-
ments of medical imaging, the main goal of which is to
obtain high-quality medical images for clinical use at the
lowest cost and risk to patients. The process of image recon-
struction can be characterized as a way of importing two-
dimensional images into a computer, then improving or
exploring the image by transforming it into a form that is
more constructive and useful to the human observer. In
computer vision and image processing, deep learning has
been commonly used to deal with existing images, enhance

these images, and generate features from them. Deep learn-
ing (DL) approaches have been effectively applied in medical
imaging, including computer-aided detection and diagnosis,
radionics, and medical image analysis [2, 3]. In a wide vari-
ety of applications, deep neural networks are highly effective,
often with a higher degree of human efficiency. For example,
with the energy usage of popular graphic processing units,
making thousands of predictions a day brings with it such
a considerable amount of energy. Equally, in terms of the
speed deep neural network can deliver and the transmission
of NNs with millions of parameters across small band chan-
nels, legitimate predictions are often around one hundred
meters away. This means that it takes significant changes
in all these issues to operate on hardware-related devices,
such as smart phones, robots, or vehicles. Compaction and
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performance have also become a focus of concern in the field
of deep learning. The recent increase in deep learning tech-
niques has made it possible for deep models to solve increas-
ingly difficult and complex problems. Convolution neural
networks (CNNs) have shown that in all areas of existence,
they outperform invariant solutions and sophisticated algo-
rithms for reconstruction. Deep learning has been a huge
success, and in particular, data analysis has now become a
rising trend [4, 5]. The most important patches in the image
are first detected in the proposed system I, and then, a three-
hidden-layer convolutional neural network (CNN) is designed
and trained for feature extraction and patch classification. The
proposed system II uses a two-layer long short-term memory
(LSTM) network for classification and a CNN for feature
extraction. For image grading, the LSTM network is used to
simultaneously consider all patches of an image [6]. Recent
advances in efficient computational resources, including cloud
computing systems and GPUs, have increased the usage and
applicability of deep learning in a variety of disciplines, partic-
ularly medical image reconstruction [7].

The remainder of this work is structured as follows: Sec-
tion 2 gives an overview of deep learning applications in
medical imaging. Section 2.1 reviews techniques of image
reconstruction. Section 2.9 lists a detailed discussion of
widely used databases for medical image reconstruction.
The key problems and future directions for image recon-
struction are discussed in Section 3. In Section 3.2, we pres-
ent our review conclusions.

1.1. Deep Learning-Based Image Reconstruction. ANNs are
the foundation of deep learning techniques [8]. Deep learn-
ing gained popularity in 2012, when a DL-based approach
dominated a computer vision competition. Furthermore,
deep learning approaches have increased their performance
since 2010, and by 2015, they have surpassed human accu-
racy in large-scale image identification problems [6]. Deep
learning directly learns from image data, whereas conven-
tional approaches require human involvement for feature
extraction [2]. The studies [8–10] provide a more general
review of deep learning. They propose a deep feed-forward
neural network approach to classify binary microarray data-
sets [11]. The proposed method is tested against CNS,
Colon, Prostate, Leukemia, Ovarian, Lung-Harvard2, Lung
Michigan, and Breast cancers using eight standard microar-
ray cancer datasets. According to the study [12], the area of
medical imaging reconstruction has gone through three
stages of growth, as shown in Table 1.

1.2. Medical Image Reconstruction Using Deep Learning on
MRI. Deep learning applications in medical image recon-
struction have a modest amount of published material.
Machine learning, according to scientists, might also be used
for medical image reconstruction, as it has been effectively
used for image-processing tasks such as classification, seg-
mentation, super-resolution, and edge detection. The pri-
mary goal of our research is to conduct a review of the
current literature on medical image reconstruction. In
[13–15], related research can be found on medical imaging.
MRI has revolutionized radiology and medicine since its
beginning in the early 1970s [16]. In addition to a high-
quality data collection process, image reconstruction is a
key step in guaranteeing good MRI image quality. While
the first magnetic resonance images were acquired by using
an iterative reconstruction algorithm [16] from data resem-
bling radial projections of the imaged specimen, non-
Cartesian acquisition and iterative reconstruction techniques
were not implemented for several years in clinical MRI, and
their use is still very limited today. There are two explana-
tions behind this: First, in the case of homogeneity or gradi-
ent waveform imperfections, the fundamental presumption
that the measured data is radial representations of the
imaged object fails. Second, the practical application is
restricted by the long reconstruction times associated with
iterative reconstruction algorithms. MRI reconstruction
became practical and the image quality acceptable only after
the introduction of spin-warp (Cartesian) imagery [17],
which made it possible to use the fast Fourier transform
(FFT) for image reconstruction. MRI reconstruction was
made effective by the k-space formalism [18, 19] and the
FFT. This susceptibility to multieffects makes MRI scans
very resilient but also vulnerable to artefacts. The simple
Fourier signal model must be developed to offer the whole
physical description underlying image generation in order
to produce an artefact-free image or a quantitative map of
a tissue or device attribute [20]. The system view of MRI
has been presented in Figure 1. This can be achieved by for-
mulating the reconstruction of the image as an inverse prob-
lem and applying a suitable algorithm to solve it. MRIs have
come a long way over the last 45 years. With the growing
computational capacity and the growth of novel reconstruc-
tion techniques, we are now able to solve more complex
problems in appropriate reconstruction times. The availabil-
ity of technical facilities as well as the availability and use of
medical technology of the European Union (EU) [21] is pre-
sented in Figure 2. The medical technology concerns a vari-
ety of equipment used for diagnostic imaging, for example,

Table 1: Medical image reconstruction techniques.

Methodologies applied Performance Drawbacks

Analytical methods They are efficient. Requires proper sampling.

Iterative methods
The imaging device’s statistical and
physical features are considered.

Inhomogeneous magnetic fields, for example, cause
differences between the model and physical variables.

Learning-based and
data-driven methods

Learned signal models can be used to
rebuild images from low-quality data.

They are inefficient in terms of computing and
necessitate enormous amounts of training data.
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magnetic resonance imaging (MRI) units. While several
model-based reconstruction techniques have been developed
to solve a specific problem, it is still a challenge to address a
complete explanation of the reconstruction measurement
process in future works. Table 2 shows an overview of some
of the papers reviewed. Furthermore, we reviewed other
modalities including CT, ultrasound, and PET.

1.3. Medical Image Reconstruction Using Deep Learning on
CT. In CT, image reconstruction is accomplished by the use
of projection data.When the projection data is sufficiently com-
prehensive, filtered back projection (FBP) techniques generate
high-quality images. However, some applications, such as
reducing scan time, lowering X-ray radiation, whichmay expose

patients to additional health concerns, and scanning of some
lengthy objects with restricted angular range, may result in inad-
equate projection data, making FBP algorithms ineffective. Iter-
atives such as total variation- (TV-) based algorithms produce
acceptable quality reconstructions from partial projection data;
however, certain artefacts arise at themargins of a reconstructed
image if the projection data is gathered by a reduced CT-angle.
Deep learning methods are currently being utilized to solve
these issues [22], including PYRO-NN [23], Learn [24], DEAR
[25], GoogLeNet Improved [26], among other deep frameworks
for image reconstruction in CT. In contrast to established
traditional techniques, a series of other research also reveals
exact image reconstruction [27]. These deep learning techniques
have been utilized for 2D and 3D reconstruction, reducing noise

Applied field
B (r, t) Patient Magnetization

Pattern M (r, t)
Received

signal Sr (t)

Demodulate
(Larmor frequency)

Sample
(A/D)

Reconstruction
algorithm

System view of MRI

Baseband signal
S (t)

Displayed image
f (r)

RF coil (s)
(Farady

induction)

Recorded
data

Yi, I = 1, ……, M

Figure 1: MRI system view.
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Figure 2: Summary of data from the European Union (EU) on the use of imaging equipment and number of magnetic resonance imaging
scans (2019).The indicator is provided in the form of total value and position. The measurement is per 1000 inhabitants.

3Computational and Mathematical Methods in Medicine



efficiently, improving spatial resolution, and working more
quickly on processor graphics units (GPUs). A summary of arti-
cles that use deep learning approaches is provided in Table 3 for
image reconstruction in CT.

1.4. Deep Learning for Image Reconstruction in Other
Imaging Modalities. Deep learning approaches have been
employed to reconstruct images in different imaging modal-

ities including ultrasound, PET, optical microscopy [28],
fluorescence microscopy [29], electromagnetic tomography
(EMT) [30], photoacoustic tomography (PAT) [31], diffuse
optical tomography (DOT), monocular colonoscopy [32],
stochastic microstructure reconstruction [33], holographic
image reconstruction [34], reconstruction of neural volumes
[35], tomographic 3D reconstruction of a single-molecule
structure [36], neutron tomography [22], coherent imaging

Table 2: A summary of articles that use deep learning approaches for image reconstruction in MRI.

Reference Brief overview

[37]
A DNN model for image reconstruction from subsampled MRI scans. It can also be used for

image denoising and super-resolution. However, not all image properties are explicitly exploited.

[38]
A deep learning framework for MR image reconstruction called AUTOMAP. It is accurate

when compared to conventional methods. However, it is computationally intensive.

[39]
From significantly undersampled k-space data, a CNN framework for high-quality cardiovascular

MR image reconstruction.

[40]
A model that blends variational model mathematics with deep learning. Standard reconstruction techniques

are outperformed by the model. There is further work to be done on several types of error measures.

[23]
A DNN-based technique for MR image reconstruction. In the weighted loss function, smaller

weights are assigned to noisy training images.

[41]
For rapid and accurate CS-MRI reconstruction, a deep learning model has been developed.

There is still a requirement to comprehend the proposed method’s design.

[42]
A framework for reconstructing MR images from k-space data that has been undersampled.

The structure is also noise-resistant.

[25]
A method for image reconstruction denoising and data integrity enforcement. Due to a decrease

in trainable parameters, it does not need a large amount of training data.

[43]
A deep neural network-based image reconstruction model. The computational difficulty

of compressed sensing-based approaches was addressed in the model.

[44]
A complete framework for high-resolution MR reconstruction. From noisy, low-resolution

clinical MRI data, good-quality pictures are recreated.

Table 3: A summary of articles that use deep learning approaches for image reconstruction in CT.

Reference Brief overview

[46]
A model based on Wasserstein generative adversarial networks for 2D CT slice image reconstruction
from a small number of prediction images. Expert radiologists must confirm the model’s accuracy.

[47]
A U-net-based image reconstruction framework. It is superior to noise and angle artefacts in terms
of visual structure preservation, but it is computationally costly and requires large training datasets.

[48]
A more relaxed variant of projected gradient descent (PGD) is used in this model. The results

demonstrate that the new technique outperforms the previous one.

[49]
An approach for CT image reconstruction based on deep learning. When compared to other
state-of-the-art approaches, the results show enhanced image quality with less image noise.

[50]
A lightweight framework for a few-view CT reconstruction approach. It learns an end-to-end

mapping between a few-view picture optimization and a full-view image optimization.

[51]
For high-quality CT reconstructions, a deep learning architecture was developed. The framework

is capable of distinguishing and removing noise from the input signal.

[52]
Iterative reconstructions of data from genuine CT systems using a TensorFlow framework. The

drawback is that it necessitates the use of graphics processing units (GPUs).

[53]
During reconstruction, a CNN framework is used to remove streaks from CT images. To discriminate

between objects and characteristics, the framework requires further training.

[54]
A deep learning model for reconstructing high-quality images from sinogram data. It reduces noise,

improves spatial resolution, and is quick without sacrificing quality.

[55]
For CT reconstruction, there is a framework called LEARN. It boosts image quality as well as
computational efficiency. The framework still has to be optimized for clinical applications.
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systems, and integration of deep and transfer learning in
imaging. A summary of articles that use deep learning
approaches is provided in Table 4 for image reconstruction
in other imaging modalities. Conventional image recon-
struction method flow chart is shown in Figure 3.

2. Overview of Traditional Image
Reconstruction Techniques

Image reconstruction, in general, is an inverse problem that
assists in the recovery of the original ideal image from a sup-
plied inferior version. Image reconstruction is defined as a
method of inputting two-dimensional pictures into a com-
puter, then enhancing or exploring the image by changing it
into a more constructive and usable shape for the human
viewer. Analytical reconstruction and iterative reconstruction
are the two main types of reconstruction approaches (IR). In
the clinical use of magnetic resonance imaging, image recon-
struction plays a crucial role. The role of image reconstruction
is to convert the acquired k-space data to images that can be

interpreted clinically. It is necessary to develop common tools
and vocabulary to describe the consistency of the recon-
structed image before explaining particular image restoration
techniques and the signal processing steps they employ. The
concept image quality is not intended to mean that one image
is better than another. Here, it is widely used to describe cer-
tain characteristics that differentiate between one image
reconstruction product and another. Techniques used in med-
ical reconstruction, their strengths, and limitations are pre-
sented in Table 1. There are many ways in which it is
possible to explain image reconstruction results. A strong
noise image denoising method based on improved K-SVD
and atom optimization is presented. The proposed method
includes sparse coding based on correlation coefficient match-
ing and iterative stopping criteria of an OMP algorithm based
on a weak selection iterative threshold strategy in dictionary
training [45], in addition to image feature extraction and noise
atom suppression. Image reconstruction is used in a wide
range of industries and activities in the real world. Reconstruc-
tion enables us to obtain insight into qualitative properties of

Table 4: A summary of articles that use deep learning approaches for image reconstruction in other modalities.

Reference Brief overview

[56]
Wave flow is a deep learning-based tool. The technology was evaluated using data acquired from

wire and cyst phantoms. Both GPU and CPU are supported by the tool.

[57]
For ultrasound image reconstruction, a generative adversarial network (GAN) framework

was developed. The suggested framework produced higher-quality ultrasound reconstructions.

[58]
A method for faster B-mode ultrasound imaging. When compared to other current approaches,

PSNR, CNR, and SSIM all increased significantly.

[59]
PET image reconstruction using an encoder-decoder system. The use of synthetic data rather

than genuine patient data is a drawback.

[60]
To overcome the mismatch of noise levels, a framework for iterative PET reconstruction employing

denoising CNN and a local linear fitting function has been developed. It beats traditional
approaches in terms of total variation.

[30]
In electromagnetic tomography, a strategy for resolving imaging difficulties has been developed (EMT).

Its practicality has been confirmed by preliminary results.

[61]
A diffuse optical tomography (DOT) projection data-based image reconstruction model. Validation

of the model clinical situations is required.

[40]
In optical microscopy, the work offered an overview of DNNs. DNNs increase the quality of image

reconstruction in optical microscopy, according to the findings.

Reconstruction method

Analytical Iterative

Central slice
theorem

Filtered back
projection

Algebraic Statistical

ART
SIRT
ILST

CG
MLEM
OSEM
MAP

Figure 3: Conventional image reconstruction method flow chart.
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the item that are impossible to discern from a single plane of
sight, such as volume and the object’s relative location to other
objects in the scene. Reconstruction techniques can be used in
cardiology, art analysis and restoration, film, television, phe-
notype analysis and criminal investigations, game graphics,
and design.

2.1. Iterative Reconstruction (IR). In image restoration, there
are essentially two approaches: iterative reconstruction and
analytical reconstruction. The restoration question in the
iterative method is limited to calculating a finite number of
image values from a finite number of measurements. Major
IR algorithms are compared on different parameters in
Table 5. Iterative reversal appears to require more comput-
ing resources, but the procurement process can deal with
more complicated models.

2.2. Algebraic Reconstruction Technique (ART). ART is a
widely recognized iterative approach used for medical image
reconstruction to solve equations in the linear system.

P1 =W31 f1 +W31 f1 +W31 f1+⋯+W31 f1,

P1 =W31 f1 +W31 f1 +W31 f1+⋯+W31 f1,

P1 =W31 f1 +W31 f1 +W31 f1+⋯+W31 f1:

ð1Þ

Equation (1) is related to multilevel thresholding. ART
updates the projection values from the projection in Equa-
tion (2) and applies a correction factor to determine the
pixel value at every j-position as defined in Equation (3).

PI = 〠
N

I=1
WIlf i, ð2Þ

f k=1j = f kj +
pi − ∑N

i=1 f
k
l Wil

∑N
i=1W

2
il

, ð3Þ

where pi is the measured effect projection info, f j specifies a
value on pixels at the j-position, wij is the jth pixel weighted
ratio that the ith ray moves around, and k is the number of
iterations.

2.3. Simultaneous Reconstruction Technique (SIRT). It is
believed that SIRT (Simultaneous Iterative Reconstruction
Technique) would recreate incorrect acquisition data con-
taining any noise for a reconstructed picture of reasonable
quality. SIRT, though, is very slow to reconstruct an image
because it takes a lot of time to achieve a sufficiently high
precision image during iteration. In addition, the SIRT cre-
ates a distorted smoothing effect [62].

2.4. Simultaneous Algebraic Reconstruction Technique
(SART). SART, which makes full use of the combination of
ART and SIRT algorithms, has been proposed as an upgrade
to the ART and SIRT algorithms [62]. ART is a quick con-
vergence operation, whereas SIRT produces an image of
high quality, so SART is supposed to have certain useful
characteristics. As expressed below in Equation (4), smooth-
ing the noise on core SART is defined as follows:

f k=1j = f kj + λ
1

∑iεlθ
·〠 ·

pi −∑N
i=1 f

k
l Wil

∑N
i=1W

2
il

Wij: ð4Þ

2.5. Conjugate Gradient (CG). The algorithm for the gradi-
ent descent is designed to prevent the fluctuations. The first
iteration is the same as the climb of the highest gradient. The
algorithm begins to travel in the context of the highest gra-
dient and, once a maximum is reached, proceeds to move
along the same axis. For effective cohesion, several iterations
are involved which always leads to a zigzag line. In the sub-
sequent iterations, indeed, the algorithm tends to step in a
direction in which the gradient stays the same in the prior
direction. In these prior directions, the idea is to remove
the need of fresh optimization. We let the previous path be
dold and the Hessian matrix be H. The new path dnew is
now expected to be such that the gradient along dold does
not change. The gradient would change to Hdnew when
heading in the direction of dnew. Requiring zero for the
resulting adjustment to dold yields the following situation:

doldHdnew = 0: ð5Þ

2.6. Maximum Likelihood Expectation Maximization
(MLEM). The expectation-maximization (EM) algorithm is
based on the maximum-likelihood (ML) technique for

Table 5: Major IR algorithm classifications based on function mechanism, including product names, vendors, and acronyms.

Algorithms Acronym Vendor Recons type

ASIR Adaptive statistical iterative reconstruction GE Healthcare, Milwaukee, MI Hybrid

SAFIRE Sinogram-affirmed iterative reconstruction Siemens Healthcare, Forchheim, Germany Hybrid

AIDR 3D Adaptive iterative dose reduction 3D Toshiba Medical Systems, Japan Hybrid

IMR Iterative model reconstruction Philips Medical Systems Pure

iDOSE4 Product name Philips Medical Systems, Best, Netherlands Pure

IRIS Iterative reconstruction in image space Siemens Healthcare, Germany Hybrid

AMIR Advanced modeled iterative reconstruction Siemens, Germany Hybrid

MBIR Model-based iterative reconstruction GE Healthcare Hybrid

Safe CT Product name Medic Vision Image based
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reconstruction which has a strong theoretical base, is easy to
implement, and has proven to be more resilient than filtered
back projection (FBP) against noise and systemic anomalies
in the data and device matrix. As a result, it is commonly
employed in image reconstruction in positron emission
tomography (PET) and single photon emission tomography
(SPECT) [63].

X k+1ð Þ
i =

X kð Þ
i

∑jAjiWj
〠
j

Aji

Pj

∑nAjnX
kð Þ
i

 !
, ð6Þ

where Xðk+1Þ
i at the kth iteration is the ith image pixel, pj is the

measurement value of the jth line-integral (ray-sum), and
Aji is the addition of the ith image pixel to the measurement
of the jth. The summation over the n index is the projector,
and the back projector is the summation over the j index.

2.7. Ordered Subset Expectation Maximization (OSEM). The
ordered subset expectation maximization (OSEM) approach
in mathematical optimization is an iterative method that is
used in computed tomography. In medical imaging, positron
emission tomography, single photon emission computed
tomography, and X-ray computed tomography all use the
OSEM technique. The OSEM methodology is linked to the
expectation maximisation (EM) mechanism in stats. The
OSEM mechanism is also linked to FBP strategies. For the
OSEM algorithm, the primary upgrade equation is explained
by [64].

f n,bj =
f n,b−1j

∑iεsb Hij
·〠iεsb

pi
∑kHik f

n,b−1
i + ai

, ð7Þ

where the image under reconstruction is f , the voxel indices
are j and k, the iteration number is n, the subset number is b,
the subset b is Sb, the system matrix is H, the LOR calcula-
tion is p, and the scatter and random corrections are models.

2.8. Maximum A Posteriori (MAP). The principal problems
associated with ML algorithms are alleviated by MAP tech-
niques. Next, there are clearer MAP reconstructions than their
ML equivalents. Second, with more iterations, iterated MAP
estimates appear to hit a point at which they change very little,
suggesting estimated convergence [65]. MAP restoration effi-
ciently helped smooth noise and strengthen convergence, with
some drawbacks as well. Second, performance can be strongly
dependent on parameter selection. Unfortunately, as may be
done for post reconstruction filters, it is not effective to use a
trial-and-error strategy for parameter collection, since a com-
plete iterative reconstruction should be conducted to test the
response from one range of constraints. Second, the loss of
image characteristics or, in some situations, the development
of spurious characteristics may result from unnecessary
smoothing using Gibbs priors. This is a representation of the
fact that, in return for reduced noise variation, the MAP esti-
mator introduces some bias to the ML problem. Finally,
smoothing properties that are somewhat different from tradi-
tional Fourier domain filters used in nuclear medicine are

implemented by MAP algorithms, so they can be important
for doctors to first interpret.

2.9. Analytical Reconstruction. The foundation of the analyt-
ical approach is mathematical inversion, offering effective,
noniterative algorithms for reconstruction. Through recon-
struction based on data by modelling the projection as a line
integral form, you may reassemble the image.

2.10. Central Slice Theorem (CST). Knowing how different
operations in an image or real space are connected to those
in Fourier space is often beneficial. The central slice theorem
establishes a link between an object’s radon transformation
and its two-dimensional Fourier transformation [66]. The
theorem is as follows: the one-dimensional Fourier transfor-
mation of a projection at an angle of θ is the same as the
radial or central slice at the same angle drawn from the
object’s two-dimensional Fourier domain. In order to illus-
trate this, we can write the two-dimensional Fourier trans-
formation in terms of operators.

F2O rð Þ = F1RO rð Þ: ð8Þ

Another means in which the entity function can be
reconstructed from its parallel representations is given by
the central slice theorem. We take each projection’s Fourier
transformation and “position it” along the relevant radial
slice. By running this step between 0 and π for all values of
θ, the Fourier inversion helps one to recover the piece.

2.11. Filtered Back Projection (FBP). One of the most preva-
lent techniques used in tomographic image restoration is the
filtered back projection (FBP) algorithm. The method of esti-
mating an object image slice of f ðx, yÞ from a collection of
projections pðt, θÞ is image reconstruction. This role can be
accomplished by many algorithms with various benefits. The
basis of the image restoration mathematical kit is the [67]
reconstruction algorithm. The FBP technique is commonly
referred to as the convolution method for reconstructing a
two-dimensional image using a one-dimensional integral
equation. The most common reconstruction algorithm cur-
rently used in the application of CT is this method.

3. Databases

We give a comprehensive description of commonly utilized
databases that are used for image reconstruction and segmen-
tation. It should be noted that some of these works use infor-
mation augmentation to increase the number of samples
labelled, particularly those working with limited datasets.
Increasing the amount of training samples by adding a trans-
formation collection to the images helps to increase the data.
Translation, reflection, rotating, warping, scaling, colour space
flipping, cropping, and projections into key components are
several common transformations. Data augmentation, partic-
ularly when learning from small databases, such as those in
medical image analysis, has been shown to enhance the output
of the models. It may also be helpful in having rapid integra-
tion, reducing the probability of overfitting, and increasing
generalization. Data augmentation has shown to improve

7Computational and Mathematical Methods in Medicine



model efficiency by more than 20% for certain limited data-
sets. Most prominent medical image analysis databases with
modalities and anatomic are shown in Figure 4.

3.1. Interstitial Lung Diseases (ILDs). A digital series of inter-
stitial lung disease (ILD) cases constructed at the University
Hospitals of Geneva (HUG) would be made open to the pub-
lic. The collection includes a high-resolution computed
tomography (HRCT) image sequence of three-dimensional
annotated areas of diseased lung tissue, as well as clinical cri-
teria for individuals who have pathologically verified ILD diag-
noses. Few samples of CT image slices in the ILD dataset for
six lung tissue forms are shown in Figure 5. The library fea-
tures 128 patients with one of 13 histological diagnoses of
ILDs, 108 sequences of photographs of more than 41 litres of
annotated lung tissue patterns, and a complete range of 99
ILD-related clinical criteria. On request and after signing of
the licence agreement [68], the database is accessible for study.

3.2. Brain Tumour Segmentation (BraTS) Challenge. BraTS
have typically focused on evaluating state-of-the-art tech-
niques for the segmentation of brain tumours in multimodal
magnetic resonance imaging (MMRI) data. In a workshop
conducted as part of the MICCAI 2012 conference in Octo-
ber 2012 in Nice, France, the first benchmark was planned;
then, this challenge dataset release was accessible in the
2013, 2015, 2017, 2018, and now 2020 BraTS challenge
deadlines. Four MRI sequences are eligible for each patient
in BraTS 2015: FLAIR, T1-C weighted, T1-weighted, and
T2-weighted. The training sample includes 54 Low-Grade
Gliomas (LGG) and 220 High-Grade Gliomas (HGG) from
the BraTS 2015 challenge dataset [28]. BraTS 2017 focuses

on segmenting inherently heterogeneous brain tumours,
such as gliomas, using multi-institutional preoperative MRI
imaging. BraTS 2017 also reflects on the estimation of
patient overall survival rate [69] to assess the therapeutic sig-
nificance of segmentation tasks. Multi-institutional preoper-
ative MRI scans are used by BraTS 2019 and concentrate on
segmenting intrinsically heterogeneous brain tumours,
including gliomas. Sample MRI from the BraTS dataset are
shown in Figure 6.

3.3. Alzheimer’s Disease Neuroimaging Initiative (ADNI).
With the assistance of a public-private collaboration under
the leadership of Dr. Michael W. Weiner, ANDI launched in
2004. ADNI’s primary objectives are to evaluate more authen-
tic and sensitive methods for multiple biomarkers such as
MRI, Cat, structural magnetic resonance imaging (sMRI),
and clinical examination to assess MCI development and early
stages of AD. Second, the latest groundbreaking, unrestricted
data-access programme was extended to all researchers world-
wide. ADNI’s original aim was to employ 800 people aged 55
to 90 years to enroll in the analysis of approximately 200 cog-
nitively normal elderly individuals to be pursued for 3 years,
400 individuals to be followed for 3 years with MCI, and 200
individuals to be followed for two years with early AD. In
the ADNI dataset MR images shown in Figure 7, the top
row depicts the strength images, and the bottom row shows
the manually segmented labeling.

3.4. MURA. MURA is a broad dataset of radio diagrams,
including 14,863 upper extremity musculoskeletal tests.
Each analysis involves one or more views and is manually
labelled as either usual or abnormal by radiologists. A crucial
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rational radio challenge is to decide if a radiographic analysis
is usual or abnormal: a study perceived as normal rules out
illness and may remove the need for more medical tests or
treatments for patients. The role of identifying musculoskel-
etal abnormality is especially important since more than 1.7
billion individuals worldwide are impaired by musculoskele-
tal conditions [70]. These disorders, with 30 million emer-
gency room visits annually and growing, are the most
prevalent source of serious, long-term pain and injury. An
example from the MURA dataset is Towards Radiologist-
Level Abnormality Identification in Musculoskeletal Radio-
graphs shown in Figure 8. The MURA dataset comprises
9045 regular and 5818 irregular upper extremity musculo-

skeletal radiographic tests, covering the back, humerus,
elbow, forearm, wrist, neck, and finger. One of the main
public radiovisual picture datasets is MURA.

3.5. The Cancer Imaging Archive (TCIA). TCIA is an exten-
sive collection of cancer patient images available for public
download. A large-scale lung cancer detection dataset for
CT and PET/CT from the TCIA dataset is shown in
Figure 9. The data are structured as “collections,” usually
the imaging of patients linked to a particular condition, form
or type of picture (CT, MRI, optical histopathology, etc.), or
subject of study. The main file format used by TCIA for
radiological imaging is DICOM. Ref. [71] also offers

(a) (b) (c)

(d) (e) (f)

Figure 5: Few samples of CT image slices in the ILD dataset for six lung tissue forms [46].

Figure 6: Example MRI from BraTS dataset.
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supporting image-related evidence such as medical results,
care specifics, genomics, and expert analyses. Both users
have links to most of the datasets in TCIA.

However, TCIA offers protection assistance to restrict,
where necessary, access to datasets. For example, if a dataset
needs to be exchanged for preliminary review amongst collab-
orators on TCIA, TCIA would facilitate this. The data pro-
vider may, at the time of request, provide the TCIA team
with a list of partners that will have exclusive access. Getting
the data mounted on TCIA will also enable the release of the
data at a later date if needed.

3.6. Digital Database for Screening Mammography (DDSM).
The DDSM is a series of mammograms from the following

organizations: the Massachusetts General Hospital, the
School of Medicine at Wake Forest University, the Holy
Heart Hospital, and the St. Louis School of Medicine at
Washington University. The DDSM was created with fund-
ing from the Department of Defense Breast Cancer Research
Program and the US Army Research and Material Com-
mand, and the DDSM’s principal designers obtained the
appropriate patient permissions. The instances include calci-
fication and bulk ROIs, as well as the following details that
may be beneficial for CADe and CADx algorithms: descrip-
tors for mass form, mass margin, type of calcification, distri-
bution of calcification, and breast density from the Breast
Imaging Reporting and Data System (BI-RADS); BI-RADS
overall rating from 0 to 5; and abnormality subtlety ranking

(a)

(b)

Figure 7: The ADNI dataset MR images: (a) depicts the strength images, and (b) shows the manually segmented labeling.

Elbow Finger

Normal
Forearm

Abnormal Abnormal

Abnormal
Humerus

Figure 8: An example from the MURA dataset is Towards Radiologist-Level Abnormality Identification in Musculoskeletal Radiographs.
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from 1 to 5. An example of annotated mammogram images
from DDSM database is shown in Figure 10.

3.7. Open Access Series of Imaging Studies (OASIS). In the
Open Access Sequence of Imaging Research (OASIS),
OASIS-3 is the current publication aimed at rendering neuro-
imaging databases widely accessible to the science community.
They hope to encourage potential developments in fundamen-

tal and clinical neuroscience by compiling and freely distribut-
ing this multimodal dataset produced by the Knight ADRC
and its associated studies. For hypothesis-driven data analyses,
neuroanatomical atlas creation, and segmentation algorithm
development, previously published data for OASIS-Cross-
sectional and OASIS-Longitudinal was used. For natural age-
ing and Alzheimer’s disease [72], OASIS-3 is a longitudinal
neuroimaging, behavioral, emotional, and biomarker dataset.

Figure 9: A large-scale lung cancer detection dataset for CT and PET/CT from the TCIA dataset.

Figure 10: Annotated mammogram images from DDSM database.

(a) (b)

Figure 11: Sample images from OASIS dataset.
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Sample images from the OASIS dataset are shown in
Figure 11. OASIS databases (Central.xnat.orgs) provide the
population with free access to a vast collection of neuroimag-
ing and processed imaging evidence across a diverse demo-
graphic, cognitive, and genetic continuum, as well as a
readily available forum for neuroimaging, clinical, and cogni-

tive studies on natural ageing and cognitive impairment. Any
of the data can be obtained from http://www.oasis-brains.org/.

3.8. Autism Brain Imaging Data Exchange (ABIDE). Autism
spectrum disorder (ASD) is defined by qualitative dysfunction
and by repeated, restrictive, and stereotyped behaviors/

(a) (b) (c)

(d) (e)

Figure 12: An example of ABIDE dataset on which a pipeline was applied to an input volume to prepare it for feature extraction.
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interests in social reciprocity. ASD is now known to occur in
more than 1% of infants, which was historically considered
uncommon. Their speed and therapeutic effects have not kept
up with the urgency to find forms of assessing disease at youn-
ger ages, choosing appropriate therapies, and forecasting per-
formance, amid ongoing scientific advancements. This is
mainly because of the ambiguity and variability of ASD.
Large-scale samples are required to face these obstacles, but
single labs are unable to collect enough large datasets to expose
the brain structures underlying ASD. In response, to accelerate
our knowledge of the neurological basis of autism, the Autism
Brain Imaging Research Sharing (ABIDE) project has aggre-
gated functional and structural brain imaging data obtained
from laboratories across the globe. The ABIDE project cur-
rently comprises two large-scale collections: ABIDE I and
ABIDE II, with the overall aim of promoting discovery science
and sample-to-sample comparisons.

The selection was created by combining datasets gath-
ered from more than 24 different foreign brain imaging
institutions and made available to researchers all around
the world. An example of the ABIDE dataset which applied
a pipeline to an input volume to prepare it for feature extrac-
tion is shown in Figure 12.

3.9. OpenNeuro. OpenNeuro is a directory of open neuroim-
aging data [73]. The data is shared under a Creative Commons
CC0 licence, which provides researchers as well as community

scientists with a large variety of brain imaging data. The data-
base relies mainly on results from practical magnetic reso-
nance imaging (fMRI) but also encompasses other
modalities of imaging, including longitudinal and diffusion
MRI, electroencephalography (EEG), and magnetoencepha-
lography (MEG). Open fMRI is a collaboration of Stanford
University’s Centre for Reproducible Neuroscience. An exam-
ple of brainstem MRI from the OpenNeuro dataset is shown
in Figure 13. The National Science Foundation, the National
Institution on Mental Health, the National Institute on Sub-
stance Addiction, and the Laura and John Arnold Foundation
also supported the creation of the OpenNeuro resource.

3.10. Osteoarthritis Initiative (OAI). The Osteoarthritis Ini-
tiative (OAI), supported by the National Institutes of Health,
is a multicenter, ten-year retrospective analysis of men and
women. The OAI’s aims are to include tools to allow a dee-
per understanding of knee osteoarthritis prevention and
care, one of the most prevalent causes of adult impairment.
The supervised machine learning phase of AQ-CART
employed a training dataset of 378 patient single-knee MRI
images as input data. These were chosen to reflect the full
spectrum of structural severity of radiographic OA, like
Kellgren-Lawrence medial compartment grades 0-4, OA lat-
eral compartment, along with good young knees that appear
to have thicker cartilage. An OAI 3D double-echo-in-steady-
state sequence was used to capture the 286 images (DESS-

Health controls Recovery cohort
(Acute)

Recovery cohort
(Follow-up)

Figure 13: Brainstem MRI from OpenNeuro dataset.

Sagittal T2 Coronal T1 Axial PD

Figure 14: A sample of knee MRI from Osteoarthritis Initiative (OAI) dataset.
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we) [74]. A sample of knee MRI from the Osteoarthritis Ini-
tiative (OAI) dataset is shown in Figure 14.

3.11. Ischemic Stroke Lesion Segmentation (ISLES). Over the
past three years (2015, 2016, and 2017), this challenge for
stroke lesion segmentation has been very common and has
culminated in several approaches that help to overcome
major challenges in contemporary stroke imaging research.
Many activities include medical image processing, for which
innovative approaches are constantly proposed. Varying
dataset size and heterogeneity, though, render it virtually
difficult to fairly equate numerous approaches. Challenges
such as ISLES seek to address these limitations and establish
a shared structure for adequate comparison of outcomes by
delivering a high-quality data collection publicly and prede-
fined assessment guidelines. A sample of ischemic lesion seg-
mentation in multispectral MR images is shown in
Figure 15.

The data collection for training comprises 63 patients. In
certain hospital instances, the stroke lesion has two slabs to
protect. There are brain areas that are pre-, or partially, over-
lapping. For the first and second slabs, slabs per patient are
indicated with the letters “A” and “B.” In SMIR, mapping
is also given between case number and training term. A test
range consisting 40 stroke cases [74] would assess proven
techniques.

3.12. Automated Cardiac Diagnosis Challenge (ACDC). From
real clinical examinations acquired at the University Hospi-
tal of Dijon, the total ACDC dataset was developed.
Acquired knowledge was thoroughly anonymized and han-
dled in compliance with the rules laid down by the Dijon
Hospital Local Ethics Committee (France). Our dataset
encompasses many well-defined pathologies with ample

cases to (1) train machine learning methods adequately
and (2) test explicitly the variations of the key physiological
parameters obtained from cine-MRI (in particular, diastolic
volume and ejection fraction).

As mentioned below, the dataset consists of 150 assess-
ments (all from separate patients) grouped into 5 equally
distributed subgroups (4 pathological groups + 1 balanced
topic group). In addition, the following additional details
come for each patient: weight, height, as well as the instants
of the diastolic and systolic processes. After personal enroll-
ment, the database is made accessible to the participants by
means of two datasets from the designated online assess-
ment website: (i) a study dataset of 100 patients along with
the relevant manual references focused on the review of
one professional expert; (ii) a test dataset consisting of 50
new patients, without manual notes, but with the above
patient details. Via the NIfTI format, raw input images are
given. An example of MRI from the ACDC challenge dataset
is shown in Figure 16.

4. Performance Evaluation

We include a description of some of the common metrics
used in assessing the segmentation algorithm output in this
portion. In different ways, such as quantitative precision,
speed, and storage specifications, the algorithm should be
tested. Much of the research work to date focuses on the
metrics used to determine the accuracy of the model.

4.1. Precision/F1 Score/Recall. They are standard metrics for
reporting the accuracy of several models of classical image
segmentation. For each class, as well as at the aggregate level,

Figure 15: A sample of ischemic lesion segmentation in multispectral MR images.
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precision and recall may be described as follows:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FP
,

ð9Þ

where TP refers to the true positive fraction, the false posi-
tive fraction is referred to by FP, and the false negative frac-
tion is referred to by FN. We are generally interested in a
blended version of precision and rates of recall. A common
metric of this kind is called the F1 score, which is defined
as the harmonic mean of consistency and recall:

F1 score =
2PrecRec
Prec + Rec

: ð10Þ

4.2. Dice Coefficient. Another popular metric for image seg-
mentation is the Dice coefficient, and it is more widely used
in medical image analysis.

Dice = 2TP
2TP + FP + FN

= F1: ð11Þ

4.3. Jaccard Index or Intersection over Union (IoU). It is one
of the most widely used semantic segmentation metrics. The
area of intersection between the forecast segmentation map
and the ground truth is defined as divided by the area of
union between the forecast segmentation map and the
ground truth:

IoU = J A, Bð Þ = J ∩ B
J ∪ B

, ð12Þ

where, respectively, A and B denote the ground truth and the
projected segmentation maps. It has a scale of 0 to 1. This sec-
tion is concluded with the important discussion about the
above-mentioned metrics. We have seen that in most experi-
ments, IoU is used for detection and the Dice coefficient is
used for segmentation tasks. As a loss function, the Dice coef-
ficient is used because it is distinguishable in segmentation
tasks where IoU is not distinguishable. Both can be used to
measure the efficiency of your model as a metric, but only
the Dice coefficient is used as a loss function. Owing to the
overwhelming number of class events, the class imbalance
dilemma is a common problem concerning machine learning.

5. Challenges and Future Directions

While deep learning-based models continue to dominate
medical imaging, there are still plenty of deep modelling
challenges that restrict the application and adoption in the
clinical practice of these new approaches. These problems
are often posed to researchers working in similar fields as
future ideas. In order to create new deep models in diagnos-
tic imaging, there is only minimal labelled data available.
Medical image transcription is time intensive and allows
physicians to have deep knowledge. Can we build efficient
models of learning that could really facilitate efficient use
of both labelled and unlabeled data?

It is typically difficult to collect very huge health-care
data for a particular task due to morbidity and privacy
issues. In addition, (by definition) the number of rare cases
is limited but can be more significant than common cases.
To effectively extract information from these small samples
and recognize such unequal value among the samples, can
we design learning models and data augmentation tech-
niques? The clinical judgement is not focused exclusively
on images by radiologists. In decision-making, more input
from the patients and the experience of the doctors from
their years of medical school training are also important.
In order to improve system performance, it is therefore nec-
essary to incorporate data gathered from various different
sources into deep modelling. Reasoning is almost as crucial
as, if not even more essential than, referring. Most deep
models currently mask the cognitive development. There is
a possibility that the model makes predictions based on inac-
curate logic. It renders the model unstable. Can deep simu-
lation be integrated with logic or a graph of medical
expertise? This will further decrease the amount of labeled
images that will be needed to train deep learning models
without losing output.

6. Conclusion

A study of the latest literature on deep learning for medical
imaging has been presented in this article. A detailed review
of the image reconstruction methods and concise descrip-
tion of the components has been presented. A summary of
some of the most widely used datasets for MR image recon-
struction is given in the third part of this article. The key
problems facing deep learning in medical image processing
were identified in the later section of the paper; also, the pos-
sible directions for overcoming these challenges were

Figure 16: Example of MRI from ACDC challenge dataset.
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discussed. Presented literature will exploit huge advantages
for medical imaging applications and will boost the ability
of artificial algorithms to assist radiologists.
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