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Background. Ewing sarcoma (ES) is the second most common pediatric bone tumor with a high rate of metastasis, high
recurrence, and low survival rate. Therefore, the identification of new biomarkers which can improve the prognosis of ES
patients is urgently needed. Methods. Here, GSE17679 dataset was downloaded from GEO databases. WGCNA method was
used to identify one module associating with OVS (overall vital survival) and event. cytoHubba was used to screen out 50 hub
genes from the module genes. Then, GSE17679 dataset was randomly divided into train cohort and test cohort. Next,
univariate Cox analysis, LASSO regression analysis, and multivariate Cox analysis were conducted on 50 hub genes combined
with train cohort data to select pivotal genes. Finally, an optimal 7-gene-based risk assessment model was established, which
was verified by test cohort, entire GSE17679, and two independent datasets (GSE63157 and TCGA-SARC). Results. The results
of the functional enrichment analysis revealed that the OVS and event-associated module were mainly enriched in the protein
transcription, cell proliferation, and cell-cycle control. And the train cohort was divided into high-risk and low-risk subgroups
based on the median risk score; the results showed that the survival of the low-risk subgroup was significantly longer than
high-risk. ROC analysis revealed that AUC values of 1, 3, and 5-year survival were 0.85, 0.94, and 0.88, and Kaplan-Meier
analysis also revealed that P value < 0.0001, indicating that this model was accurate, which was also verified in the test, entire
cohort, and two independent datasets (GSE63157 and TCGA-SARC). Then, we performed a comprehensive analysis
(differential expression analysis, correlation analysis and survival analysis) of seven pivotal genes, and found that four genes
(NCAPG, KIF4A, NUF2 and CDC20) plays a more crucial role in the prognosis of ES. Conclusion. Taken together, this study
established an optimal 7-gene-based risk assessment model and identified 4 potential therapeutic targets, to improve the
prognosis of ES patients.

1. Introduction

Ewing sarcoma (ES) is the second most common pediatric
bone tumor with a high rate of metastasis, high recur-
rence, and low survival rate. Although a standard multi-
modal treatment regimen which includes surgical
resection, local radiotherapy, and intensive multiagent che-
motherapy has been established [1], 30-40% of patients
still develop recurrence or metastasis after comprehensive
therapy [2]. And a British cohort of patient study reported
that the 5-year survival rate of patients with ES was only

55% [3]. Due to a lack of reliable statistical tools and tar-
get genes, diagnosing and treating ES patients are very
challenging [4]. Therefore, further research into the patho-
genesis of ES is required to improve the efficiency of diag-
nosis and treatment of ES.

Previous study has reported that ES is characterized by
FET-ETS gene fusions [5, 6], and additional genetic alterations
apart from FET-ETS fusions are exceedingly rare [7–10].
Meanwhile, Ewing sarcoma breakpoint region 1 (EWSR1) -
E26 transformation-specific (ETS) fusion gene is the major
factor (85% of cases are EWSR1-FLI1, and 10% of cases are
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EWSR1-ERG), and EWS-ETS may promote tumor metastasis
and invasion by altering RNA transcriptional regulation
and epigenetic modification [11, 12]. Therefore, many stud-
ies focus on EWS-ETS-positive Ewing sarcoma and revealed
the unique role of this fusion gene in the development of
ES. However, treatment targeting the EWS-ETS fusion gene
still has been a challenge, and there is also increasing evi-
dence demonstrating that EWS-ETS not be the sole factor
in the occurrence and development of ES [13–16]. In addi-
tion, the prognostic value of the EWS-ETS fusion gene is
unclear with patients of ES. A retrospective study found
that EWSR1-FLI1 transcript subtypes are significantly asso-
ciated with outcomes of patients [17]. But, the results of
two prospective studies did not support this observation
[18, 19]. Consequently, the identification of new therapeutic
or predictive biomarkers which can improve the prognosis
of ES patients is urgently needed.

In this study, we downloaded the gene expression
profiles and clinical data from GSE17679 dataset and two
independent datasets (GSE63157 and TCGA-SARC) for
validation. We used the WGCNA method to identify one
module associating with OVS and event. Then, univariate
Cox regression analysis, LASSO regression analysis, and
multivariate Cox regression analysis were used to screen
out signature hub genes related to the prognosis of ES
patients. Finally, we established an optimal 7-gene-based
risk assessment model to evaluate the survival of ES patients.
Our study provides a new method to assist the prediction of
prognosis in clinical ES patients.

2. Materials and Methods

2.1. Data Collection and Preprocessing. The gene expression
profiles and clinical data were downloaded the from the
Gene Expression Omnibus (GEO) database (https://www
.ncbi.nlm.nih.gov/geo/) as dataset GSE17679, which was
based on the GPL570 platform ((HGU133 Plus 2) Affyme-
trix Human Genome U133 Plus 2.0 Array). And probes of
the array data were replaced with the corresponding official
gene symbols using the hgu133plus2.db (version 3.2.3) pack-
age. If multiple probes were mapped to the same gene sym-
bol, duplicates were collapsed randomly. Then, 106 samples
of human tissue were recognized by consensus clustering,
and outlier samples were removed. Finally, a total of 88
samples were selected for the next analysis.

2.2. Construction of a Weighted Coexpression Network. We
use the WGCNA (version 1.70-3) package in R to deal with
ES data and construct a weighted coexpression network
[20]. Initially, Pearson’s correlation coefficient was used to
construct a correlation matrix. Next, we find a most proper
soft-thresholding power (β) in the range of 1 to 30 using
pickSoftThreshold function. This β value can get with a bal-
ance between scale-independence and mean connectivity in a
coexpression network, which was used to transform the cor-
relation matrix into a weighted adjacency matrix. Then, the
adjacency matrix was transformed into a topological overlap
matrix (TOM). Based on TOM, we can get 1-TOM, which
was used as the distance measurement to cluster genes into
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Figure 1: Construction of coexpression modules based on GSE17679 dataset by WGCNA. (a) Determining soft-thresholding power in
WGCNA: the scale-free fit index and the mean connectivity for various soft-thresholding powers. (b) The cluster dendrogram and color
display of coexpression network modules. The different colors correspond to the coexpression modules in Ewing sarcoma. (c) Hierarchical
clustering of module hub genes and heatmap plot of the adjacencies in the hub gene network.
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coexpression modules, and highly correlated modules which
Pearson’s correlation ≥ 0:75 were merged in one. Finally, the
P values and correlation coefficients between a coexpression
module and a clinical feature were calculated and visualized
by heatmaps.

2.3. Identification of Clinically Meaningful Modules. Module
eigengene (ME, the first principal component of a given
module) can represent the expression levels of all genes in

a module. Gene significance (GS) was defined as the correla-
tion between genes and clinical features in linear regression.
Module significance (MS) means the average GS for all the
genes in a module. In a word, MS was used to select modules
having highly relation with interested clinical feature, and
the selected module was used for further analysis.

2.4. Construction of the PPI Network and Identify Hub
Genes. Retrieval of Interacting genes/Proteins (STRING)

Module-trait relationships
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Figure 2: Heatmap of the correlation between modules genes and clinical traits. x-axis corresponds to the clinical features and y-axis to the
identified modules. The color scale (blue to red) indicates correlation, top row: the correlation coefficient and bottom row: the P value. Event:
death or alive; OVS: overall vital survival; EFS: event-free survival.
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Figure 3: PPI network of turquoise module and identification of 50 hub genes. (a) Interaction network of all genes of turquoise module;
(b) interaction network of 50 hub genes; the darker the color, the higher the MCC algorithm score.
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Figure 4: Functional enrichment of 50 hub genes. (a) GO enrichment in the 50 hub genes. (b) KEGG pathway enrichment in the 50
hub genes.
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database (https://string-db.org) contains information about
the interactions between proteins, which was used to con-
struct the protein-protein interaction (PPI) network. First,
we upload the module genes of interest to build the PPI
network using STRING online analysis tool. Next, the PPI
network was imported into the software of Cytoscape
(version 3.8.2). Finally, top 50 hub genes with high Maximal
Clique Centrality (MCC) values were selected using cyto-
Hubba in Cytoscape for subsequent analysis.

2.5. GO and KEGG Analyses. Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes Pathway Enrich-
ment (KEGG) were two important databases to analyze the
function of genes. To determine the function of top 50 hub
genes, the clusterProfiler R package was used to perform
GO and KEGG analyses with threshold P < 0:05 [21].

2.6. Construction of Prognosis-Related Risk Assessment
Model and Evaluation. First, GSE17679 datasets were ran-
domly divided into train cohort and test cohort, with train
cohort being used for construction of the risk model and test
cohort and entire cohort being used as validation data. To
construct a reliable model, three analysis methods were used
by step: univariate Cox regression analysis-LASSO (least
absolute shrinkage and selection operator) regression
analysis-multivariate Cox regression analysis [22]. Accord-
ing to the risk model, samples in the two sub cohorts (train
and test) and entire cohort were, respectively, assigned a risk
score and divided into high-risk group and low-risk group
based on the median risk score. Then, to estimate the sensi-
tivity and specificity of this model, the correlation between
signature gene expression and survival outcome of patients
was performed, and the receiver operating characteristic
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Figure 5: Identification of pivotal prognosis-related genes and establishment of a risk assessment model. (a) The trajectory of each
independent variable. The horizontal axis shows the logarithm of lambda, and the vertical axis displays the coefficient of lambda. (b) The
confidence interval under each lambda. (c) The forest map of the multivariate Cox analysis on the 7 independent prognostic feature genes.
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(ROC) curves were drawn. Finally, two independent datasets
(GSE63157 and TCGA-SARC) were also used for further
validation of this model.

2.7. Analysis of Each Single Pivotal Prognostic Gene. First, we
used boxplot to observe the expression levels of prognostic
genes in the final outcome of patients and determine
whether they were statistically significant. Then, we do a
correlation analysis between the expression levels of the
prognostic genes and clinical traits, to select more critical
genes in prognosis of ES patients. Finally, the median value
of gene expression for selected genes was calculated to group
patients with above median value as high expressers and
below the median value as low expressers. And, based on
the expression group, we do survival analysis to further ver-
ify the importance of selected genes in prognosis.

2.8. Construction of the Nomogram and Validation. At the
end of present research, clinical information on ES samples,
such as gender, age, metastasis, event and survival time, was
incorporated with the risk score for nomogram construc-
tion. And calibration plot was drawn to verify the accuracy
of nomogram.

3. Results

3.1. Construction of a Weighted Coexpression Network. We
downloaded the expression matrix and clinical information
of GSE17679 from the GEO database and calculated the
scale-independence and the mean connectivity at different
thresholds. A suitable soft threshold 6 was chosen, which
met the standard which scale − independence > 0:85 and
average connectivity < 100 (Figure 1(a)). Under the soft-

thresholding power of 6, cut height of 0.25, and minimal
module size as 30, coexpression network was constructed
and 12 modules were identified (Figure 1(b)). And there is
presently acceptable discriminability between each module
in the similarity heatmap plot (Figure 1(c)).

3.2. Identification of Prognosis-Related and OVS-Related
Coexpression Modules. Gene significance (GS) was used to
measure the correlation between genes and traits, and an
average GS value of all genes included in each coexpression
module was used to calculate module significance (ME).
The most significant module correlated with prognosis and
OVS was selected for further analyzed.

According to the module-trait relationship heatmap
(Figure 2), the turquoise module was significantly correlated
with the event (r2 = 0:46; P = 8e − 06), OVS (r2 = −0:53; P =
1e − 07), and EFS (r2 = −0:41; P = 7e − 05). Consequently,
we focused on turquoise module in our further study.

3.3. PPI Network Construction and Hub Gene Identification.
Based on the STRING database, the PPI network of 880
genes in the turquoise module was constructed, and the
top 50 hub genes in the network were selected using the
MCC algorithm of cytoHubba (Figure 3).

3.4. Functional Enrichment of Hub Genes. The Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway and Gene
Ontology (GO) enrichment analysis were used to further
study the function of 50 hub genes. According to the GO
analysis (Figure 4(a)), the 50 hub genes in the biological
process (BP) were mainly enriched in nuclear division,
organelle fission, mitotic nuclear division, sister chromatid
segregation, and mitotic sister chromatid separation. The
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Figure 6: Prognostic analysis of the model in train cohort. (a) Distribution of the risk score, overall vital survival (OVS), and expression
level of 7 pivotal genes in the model. (b) Kaplan-Meier survival analysis. (c) Time-dependent ROC curves of the prognostic model for
the ES train cohort.
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cellular component (CC) of 50 hub genes was mainly
enriched in spindle, condensed chromosome, chromosomal
region, chromosome (centromeric region), and condensed
chromosome (centromeric region). And the molecular func-
tion (MF) of 50 hub genes was mainly enriched in microtu-
bule binding, tubulin binding, protein serine/threonine
kinase activity, microtubule motor activity, and histone
kinase activity. Moreover, the 50 hub genes in the KEGG
pathway enrichment analysis were mainly enriched in cell
cycle, oocyte meiosis, progesterone-mediated oocyte matu-
ration, human T-cell leukemia virus 1 infection, p53 signal-
ing pathway, cellular senescence, FoxO signaling pathway,
viral carcinogenesis, human immunodeficiency virus 1 infec-
tion, and platinum drug resistance (Figure 4(b)).

3.5. Establishment and Validation of a Risk Assessment
Model. We used univariate Cox regression analysis, LASSO
regression analysis, and multivariate Cox regression analysis
to screen out pivotal genes (Figures 5(a) and 5(b)). Then, we
established an optimal risk assessment model based on seven
pivotal genes including NCAPG, KIF15, KIF4A, CDK1,
BUB1, NUF2, and CDC20 (Figure 5(c)). For verifying the
accuracy of this model, the train cohort was divided into
high-risk and low-risk subgroups based on the median risk
score. As compared to the high-risk group, the survival of
the low-risk subgroup was significantly longer
(Figure 6(a)). As shown in Figure 6(b), the Kaplan-Meier
analysis of two subgroups indicated that this model exhib-
ited a statistically significant prognostic difference in ES (P
value < 0.0001). And the AUC value of 1-, 3-, and 5-year
survival was 0.85, 0.94, and 0.88, which indicated a good
predictive accuracy of this model (Figure 6(c)). Next, we
do the same process for test cohort and entire GSE17679.

As shown in Figures 7(a)–7(c), the results of the test cohort
are as follows: significantly different survival status, P value
of Kaplan-Meier analysis <0.0001, and AUCs of ES at 1-,
3-, and 5-year were 0.91, 0.96, and 0.90. And as shown in
Figures 8(a)–8(c), the results of entire CSE17679 set are as
follows: significantly different survival status, P value of
Kaplan-Meier analysis <0.0001, and AUCs of ES at 1-, 3-,
and 5-year were 0.88, 0.96, and 0.89. Both of results
indicated a good predictive accuracy of this model. Finally,
the Kaplan-Meier analysis of GSE63157 is P value = 0.11
and for TCGA-SARC is P value = 0.004; although P value
of GSE63157 was not significant, a similar prognostic trend
was observed, so it revealed a good versatility and practical-
ity of this model (Figures 8(d) and 8(e)).

3.6. Analysis of Each Single Pivotal Prognostic Gene. Accord-
ing to the boxplot (Figure 9(a)), expression levels of 6 hub
genes are clearly higher in the death subgroup than in the
alive subgroup, except for KIF15. Then, we utilized the heat-
map to reveal the correlations of seven pivotal genes with
clinical traits. The result indicated all genes were signifi-
cantly associated with OVS and event, and four genes
(NCAPG, KIF4A, NUF2, and CDC20) may play a more
important role in ES prognosis (Figure 9(b)). And, as shown
in (Figure 9(c)), the results of the survival analysis also ver-
ified that these four key genes indeed play a more important
role in prognosis. In conclusion, all of the results determined
that the seven pivotal genes were statistically significant
prognostic factors for ES, and four pivotal genes deserve
further study.

3.7. Construction of the Nomogram and Validation. At the
end of this research, a nomogram was constructed
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Figure 7: Validation of the efficacy of the risk model in the ES test cohort. The (a) risk score, survival status, gene expression heatmap,
(b) Kaplan-Meier survival, and (c) time-dependent ROC curves of the prognostic model for the ES test cohort.
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incorporating risk score and clinical factors, which can help
clinicians to predict the prognosis of patients based on their
total points (Figure 10(a)). And the calibration curve of 1-,
3-, and 5-year survival (Figure 10(b)) indicated that this
nomogram was accurate.

4. Discussion

As the second most common pediatric bone tumor, ES is
characterized by pathognomonic FET-ETS gene fusions
and is an invasive tumor with early metastatic spread, high

recurrence, and low 5-year survival [5, 6, 23]. For ES, tar-
geted therapy is still challenging to achieve, and no reliable
statistical tool is available to estimate survivors’ lifespans
[4]. Hence, it is necessary to identify new target genes and
develop a prognosis-related model, which can improve the
prognosis of patients with ES.

In this study, we identified one module that was asso-
ciated with OVS and event by using weighted coexpres-
sion analysis; then, 50 hub genes were selected by
cytoHubba. The functional enrichment analysis revealed that
50 hub genes were enriched in the protein transcription, cell
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Figure 8: Validation of the efficacy of the risk model in the ES entire GSE17679 cohort, GSE63157, and TCGA-SARC. The (a) risk score,
survival status, gene expression heatmap, (b) Kaplan-Meier survival, and (c) time-dependent ROC curves of the prognostic model for the
entire GSE17679 cohort. And the Kaplan-Meier survival for (d) GSE63157-cohort and (e) TCGA-SARC.
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proliferation, and cell-cycle control. The result is consistent
to FET/ETS family of biology function [24], so it is worth
doing further study. Based on the three analysis methods
(univariate Cox regression analysis, LASSO regression analy-

sis, and multivariate Cox regression analysis), pivotal genes
were identified. Combining pivotal genes with clinical traits,
we finally established an optimal 7-gene-based risk assess-
ment model. To verify the reliability of this model, the train
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Figure 9: Analysis of each single pivotal prognostic gene. (a) The expression of each pivotal prognostic gene in death and alive subgroups.
(b) The correlation analysis between the expression levels of each gene and clinical traits. (c) Kaplan-Meier survival analysis of four pivotal
prognostic genes based on the median expression of each one.
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cohort was divided into the high-risk group and low-risk
group according to the median risk score, and the result indi-
cates that the OVS of patients in the high-risk group was sig-
nificantly shorter than that in the low-risk group. And the
ROC curve (AUCs of 1-, 3-, and 5-year survival were 0.85,
0.94, and 0.88) and km-plot (P value < 0.0001) also indicated
a good predictive accuracy for this model. Furthermore, the
results of the other two cohorts (test and entire GSE17679)
and two independent datasets were satisfactory, which also
showed this model on a good predictive accuracy, versatility,
and practicality.

In the 7 pivotal genes, every gene was clearly correlated
with OVS and event, but four genes (NCAPG, KIF4A,
NUF2, and CDC20) may play a more important role in ES
prognosis. Therefore, further study of these four genes is
warranted. Non-SMC condensing complex subunit G
(NCAPG) is a crucial component of the condensing com-
plex, which binds to chromosomes at start of mitotic divi-
sion and dissociates from them when mitotic division ends.
Previous studies have reported that NCAPG is a promising
therapeutic target across different tumor types, and it may

be associated with development and progression of hepato-
cellular carcinoma (HCC) [25, 26], esophageal squamous
cell carcinoma (ESCC) [27], colorectal cancer (CRC) [28],
breast cancer (BC) [29], prostate cancer (PCa) [30], kidney
renal papillary cell carcinoma (KIRP) [31], endometrial
cancer (EC) [32], bladder cancer (BLCA) [33], gastric cancer
(GC) [34], glioblastoma (GBM) [35], and so on. And in the
present study, we also find NCAPG was highly associated
with the prognosis of ES; therefore, NCAPG may be a poten-
tial therapeutic target.

Kinesin family member 4A (KIF4A) was a new compo-
nent of the chromosome segregation machinery and acted
critical roles in mediating spindle organization and cytoki-
nesis [36]. Previous studies have demonstrated the crucial
role of KIF4A in the prognosis of several carcinomas, includ-
ing colorectal cancer, cervical cancer, oral cancer, and lung
cancer [37–39]. Although KIF4A has not been extensively
studied in ES, the results of the current study showed that
it may also be an important prognostic biomarker.

NUF2 component of NDC80 kinetochore complex
(NUF2) is a component of a conserved protein complex

Points
0 10 20 30 40 50 60 70 80 90 100

Gender
F

M

Age
A

M

Metastasis
N

Y

Risk score
−4 −3 −2 −1 0 1 2 3 4 5

Total points
0 10 20 30 40 50 60 70 80 90 100

1−year survival
0.10.20.30.40.50.60.70.80.9

3−year survival
0.10.20.30.40.50.60.70.80.9

5−year survival
0.10.20.30.40.50.60.70.80.9

(a)

0.0

n = 88 d = 52 p = 4, 30 subjects per group
Gray: ideal

X–resampling optimism added, B = 1000
Based on observed−predicted

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

O
bs

er
ve

d 
O

VS
 (%

)

Nomogram-prediced OVS (%)

1−year
3−year
5−year

(b)

Figure 10: Nomogram for predicting the 1-, 3-, and 5-year survival probability of patients with ES. (a) Prognostic nomogram for ES
patients. (b) Calibration curves for the nomogram at 1-, 3-, and 5-year.
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associated with the centromere, and one study had demon-
strated that NUF2 upregulation is a common feature of
many cancers (TCGA-SARC dataset was also incorporated
in this study) [40]. So, the prognostic potential and func-
tional impact of NUF2 in ES warrants further studies.

Cell division cycle 20 (CDC20) regulates cell division
and plays an important role in tumorigenesis and tumor
progression. The upregulation of CDC20 is associated with
poor prognosis of prostate cancer [41], breast cancer [42],
and colorectal cancer [43]. In addition, CDC20 can contrib-
ute to cardiac hypertrophy by promoting LC3 degradation
and inhibiting autophagy [44]. According to the results of
study, CDC20 may also be a potential prognostic biomarker
of ES.

Finally, a visual nomogram was created for quantita-
tively assessing the overall survival of ES patients using the
risk score and clinical prognostic variables. And the results
of the calibration curve suggest that the nomogram was
dependable. Because of the rapid advances in genome
sequencing, the cost of sequencing now is affordable for
most patients. So, this nomogram can become a reliable
and practical statistical tool, which can help clinician to eval-
uate the survival and prognosis of patients with ES.

5. Conclusions

This study established a 7-gene-based risk assessment model
and demonstrated its good performance on predicting the
prognosis of ES. And this study also found four pivotal genes
may be the potential prognostic biomarker of ES. Although,
based on three datasets, we detect significantly association
between the predicted prognosis and the simulated risk score
for ES patients, and this association has not yet been clini-
cally confirmed. Therefore, the verification of this 7-gene
risk assessment model and the research on the regulatory
mechanism of single genes in model need to be further car-
ried out. Taken together, this study provides a new method
for evaluating the survival and prognosis of patients with
ES and provides several potential therapeutic targets for ES.
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