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Context. Existing literature demonstrated that thyroid-stimulating hormone (TSH) and free thyroid hormone (fT4) were
associated with the C-reactive protein (CRP), an inflammatory risk factor of cardiovascular diseases (CVD), but the causal
relationship between them remained unclear. Methods. Based on the latest genome-wide association study summary data,
bidirectional two-sample Mendelian randomization (MR) was employed to detect the causal relationship and effect direction
between TSH, fT4, and CRP. Furthermore, in view of obesity being an important risk factor of CVD, obesity trait waist-hip
ratio (WHR) and body mass index (BMI) were treated as the research objects in MR analyses for exploring the causal effects of
TSH and fT4 on them, respectively. Results. Genetically increased CRP was associated with increased TSH (β = −0:02, P =
0:011) and with increased fT4 (β = 0:043, P = 0:001), respectively, but there was no evidence that TSH or fT4 could affect CRP.
In further analyses, genetically increased TSH was associated with decreased WHR (β = −0:02, P = 3:99e − 4). Genetically
increased WHR was associated with decreased fT4 (β = −0:081, P = 0:002). Genetically increased BMI was associated with
increased TSH (β = 0:03, P = 0:028) and with decreased fT4 (β = −0:078, P = 1:05e − 4). Causal associations of WHR and BMI
with thyroid signaling were not supported by weighted median analysis in sensitivity analyses. Conclusion. TSH and fT4 were
increased due to the higher genetically predicted CRP. WHR was decreased due to the higher genetically predicted TSH. These
findings will provide reference for the prevention and treatment of inflammation and metabolic syndrome.

1. Introduction

Subclinical thyroid disease is a common public health issue.
In hypothyroidism due to thyroid dysfunction, serum
thyroid-stimulating hormone (TSH) levels are appropriately
elevated while serum free thyroxine (fT4) levels are within
normal range [1, 2]. Subclinical hypothyroidism affects up
to 10% of the adult population [3]. A lot of previous studies
showed variation in TSH or fT4 may increase the risk of
future cardiovascular diseases (CVD) [4–6]. Recently, many
investigations indicated that even in normal thyroid func-
tion individuals, variation in TSH and fT4 was associated
with an increased risk of CVD and metabolic diseases

[7–9], including obesity [1]. Therefore, it is important and
urgent to pay more attention to TSH and fT4.

C-reactive protein (CRP) is an acute-phase inflamma-
tory protein, which has been traditionally utilized as a clini-
cal marker of inflammation, infection, and tissue damage
[10]. Generally, CRP exhibits elevated expression during
inflammatory disorders, such as CVD, rheumatoid arthritis,
and some acute or chronic infection [11, 12]. Recently,
research outputs showed that minor CRP elevation could
contribute to an increased future risk of major cardiovascu-
lar events [13, 14]. In addition, there was growing evidence
that elevated CRP levels are associated with cancer disease
risk [15, 16]. Hence, CRP measurements have potential
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utility as a clinical tool in assessing disease status and pro-
gression, including CVD, some infections, and cancer.
Therefore, with the important role of CRP, more studies
are needed to understand the complex mechanism of CRP
production.

Existing literature demonstrated that subclinical hypo-
thyroidism may be associated with elevated high-sensitive
CRP, although the clinical implications were uncertain
[17–19]. Some researchers found that there was a significant
positive correlation between TSH and CRP [17, 20]. Mean-
while, a Brazilian longitudinal study of adult health also
investigated the association between TSH and CRP, but this
study showed that TSH was not associated with CRP
because of the existence of confounders [21]. So, it was con-
troversial about the relationship between thyroid signaling
and CRP. Similarly, there were researches investigating the
association of fT4 with CRP [18, 22, 23], and their conclu-
sions were also controversial. Therefore, the association
between thyroid signaling and CRP is hard to uncover.

Furthermore, as an important public health problem,
obesity is also an important risk factor for CVD [11]. Previ-
ous investigations revealed a significant relationship between
CRP and obesity [24–26]. In obese and overweight adults,
CRP levels are significantly increased [27]. So it is meaning-
ful to study obesity traits, such as waist-hip ratio (WHR) and
body mass index (BMI).

Correlation describes whether two variables “go
together.” However, the fact that two variables change
together does not necessarily mean that we know whether
one variable causes the other to change or vice versa [28].
Therefore, it is necessary to study causal association. To this
end, one powerful method is Mendelian randomization
(MR) [29], which uses genetic variants as instrumental vari-
ants (IVs) and has been widely used [30]. MR can minimize
the influence of confounding factors on the causal associa-
tion between two variables, exposure and outcome. Note
both individual data and publicly available genome-wide
association study (GWAS) summary statistics are applicable
in MR analyses. Moreover, bidirectional two-sample MR can
explore the nature and direction of the links between them.

To date, as far as we know, no studies investigated the
causal associations of TSH and fT4 levels with CRP levels.
In this paper, we studied the causal association between thy-
roid signaling and CRP level. To further detect the possible
causes of CVD, we also studied two obesity traits, WHR
and BMI. For this, we utilized summary data from the latest
and largest GWASs [31–33] and inferred causality in bidi-
rectional two-sample MR analyses.

2. Materials and Methods

2.1. Data Sources. The first is the source of summary data
related to thyroid signaling. Summary data for TSH within
reference range were obtained from a GWAS meta-analysis
that is the largest GWAS on thyroid function to date, includ-
ing 120000 subjects, with more than 22 million single nucle-
otide polymorphisms (SNPs) [31]. These data are accessed
through the GWAS Catalog (https://www.ebi.ac.uk/gwas).
Summary data for fT4 within reference range were obtained
from a GWAS meta-analysis in up to 72167 individuals with
8 million SNPs [32], which can be downloaded on dbGaP
website under the accession number phs000930 (https://
www.ncbi.nlm.nih.gov/gap).

Second is the source of summary data on inflammatory
factor CRP. Summary data for CRP were obtained from a
GWAS meta-analysis which is the largest data set on inflam-
matory factors lately, including 49839 subjects (CRP: mean
= 4:114 (SD = 4:836)) [33]. These summary data can be
available through the GWAS Catalog (https://www.ebi.ac
.uk/gwas). Summary data for WHR were obtained from a
GWAS meta-analysis in 694649 individuals of European
ancestry with 2.7 million SNPs combining UK Biobank
and GIANT [34]. Summary data for BMI were obtained
from a GWAS meta-analysis which included about 700000
participants of European ancestry with 2.3 million SNPs
from GIANT [35].

2.2. Two-Sample MR. We conducted bidirectional two-
sample MR analyses using data published by GWAS
(Figure 1). Because the data is public, there is no need of eth-
ical review.

2.3. Selection of SNPs. Based on the GWAS results [31–33]
on TSH, fT4, and CRP, we used independent SNPs which
are strongly associated at a genome-wide significant level
(P < 5 × 10−8) with TSH, fT4, and CRP, respectively. The
selected SNPs were used as IVs in using MR method.

2.4. Statistical Analysis. In order to avoid the estimator bias
caused by weak IVs as much as possible, we calculated the
F statistic (F = β2

exposure/SE2
exposure) as a measure of strength

for each SNP. According to the existing literature, criterion
of F ≥ 10 was adopted for screening strong IVs (F statistic
was in 30.01–1231.188 for TSH, 30.25–455.33 for fT4, and
27.94–528.51 for CRP) [36]. The primary analysis used to
examine the causality between exposure and outcome was
inverse-variance weighted (IVW) method [37]. IVW

C-Reactive Protein
Obesity traits

(WHR and BMI)
(Reverse)

Thyroid signaling
(TSH and fT4 levels)

Causal
effects?

Bidirectional two-sample MR study
Causal
effects?

(Reverse)

Figure 1: Schematic diagram. Bidirectional two-sample MR approach based on the summary level data from large scale meta-analyses of the
GWASs was used to investigate the causal relationships between thyroid signaling and CRP. Further bidirectional two-sample MR approach
was used to investigate the causal relationships between thyroid signaling and obesity traits. All data sets used in this study are publicly
available at the GWAS Catalog, dbGaP, and the GIANT websites. TSH: thyroid-stimulating hormone; fT4: free thyroxine; GWAS:
genome-wide association study; CRP: C-reactive protein; MR: Mendelian randomization; WHR: waist-hip ratio; BMI: body mass index.
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method aggregated two or more IVs to minimize the vari-
ance of the weighted average, and the weight given to each
IV was the inverse of the variance of the effect estimate
[38]. Note that the estimated effect obtained by IVW may
be biased, which may be due to the violation of one assump-
tion of IV. Specifically, IVs and outcome are not only related
through exposure but also directly related, which is termed
as pleiotropy. We addressed the problem of pleiotropy in
sensitivity analyses.

In sensitivity analyses, we assessed the robustness of
IVW in two complementary sensitivity analyses with differ-
ent assumptions about horizontal pleiotropy: weighted
median (MR-Median) [38] and MR-Egger regression [39].
MR-Median yielded consistent causal effect estimates com-
pared with IVW method. Egger intercept in MR-Egger rep-
resented the average horizontal pleiotropic effect across the
IVs. We used I2 statistic and Cochran’s Q test to quantify
heterogeneity across all SNPs. If the results indicated the
presence of horizontal pleiotropy or significant heterogene-
ity suggesting pleiotropy [40], we calculated individual Q
statistic for each SNP, and SNPs were identified as potential
pleiotropic variants if their individual Q statistics exceeded
the 95th percentile of the chi-square distribution with one
degree of freedom [41–43]. After excluding these potential
pleiotropic IVs, the IVW, MR-Median, and MR-Egger
methods were performed on the remaining IVs.

For the estimated causal effect of the exposure on the out-
come, a P value of less than 0.05 was considered as statistically
significant. Statistical analysis was performed with R package
“MendelianRandomization” version 0.5.1 in R version 4.1.0.

3. Results

Use the MR analysis method in previous sections to explore
the causal relationships between thyroid signaling, CRP, and
obesity traits. The MR-Egger intercepts were insignificant
(P > 0:05) in all analyses. The result diagram is shown in
Figure 2. The diagram showed whether there was a causal
relationship between two subjects and showed the magni-
tudes and directions of the causal relationships. All causal
relationships are significant at P ≤ 0:05.

3.1. Causal Relationships between Thyroid Signaling and
CRP. The results of MR analyses between genetically predicted
TSH and fT4 levels (exposure) and CRP levels (outcome) are
presented in Figure 3. 87 SNPs were in consideration when
we investigated the causal association between TSH and CRP
and 30 SNPs for fT4 and CRP. Based on this analysis, we
found neither serum TSH nor fT4 levels could cause changes
in CRP (TSH: β = 0:003, 95% CI = −0:032–0.039, P = 0:856;
fT4: β = 0:003, 95% CI = −0:084–0.089, P = 0:953) (also, see
details in Supplementary Table S1).

Inflammatory factor

CRP

fT4 WHR

BMITSH

Thyroid signaling Obesity traits

0.043

0.020
0.030

–0.081

–0.020

–0.078

Figure 2: Causal effects between thyroid signaling, CRP, and obesity traits. TSH and fT4 are shown in pink ovals, CRP is shown in gray
ovals, and BMI and WHR are shown in yellow ovals. The arrows’ direction denotes causal direction. The solid line and the dotted line,
respectively, indicate whether the causal relationship is robust or not. The red and green arrows denote positive and negative causal
relationships, respectively, and the number beside each arrow is the causal effects. All causal relationships are significant at P ≤ 0:05.
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Figure 3: Causal effects of variation in TSH and fT4 levels on CRP. Presented βs and CIs (horizontal lines and their corresponding
numerical interval form on the right side) correspond to the effects of a one SD change in TSH or fT4 levels on the outcome CRP levels.
The results of MR analyses using various analysis methods (IVW, MR-Median, MR-Egger) are presented for comparison. The number of
SNPs indicates the number of genetic variants used as instrument variables for MR analysis. MR: Mendelian randomization; SNPs: single
nucleotide polymorphisms; CI: confidence interval; IVW: inverse-variance weighted; MR-Median: weighted median method; MR-Egger:
Egger regression.
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However, exchanging the exposure and outcome of
interest in MR yielded different results (Figure 4). 27 SNPs
were considered as IVs when we investigated the causal asso-
ciation between CRP and TSH. There was some evidence
that higher CRP levels might cause higher TSH levels
(β = 0:02, 95% CI = 0:005–0.036, P = 0:011), which was con-
firmed in sensitivity analyses using MR-Median method (see
Supplementary Table S2).

For the association between CRP and fT4, 35 SNPs were
taken as IVs as shown in Figure 4. There was some strong
evidence that higher genetically predicted FT4 might cause

higher CRP levels (β = 0:013, 95% CI = 0:018–0.068, P =
0:001), which was also in line with the results of sensitivity
analyses using the MR-Median and MR-Egger method (see
Supplementary Table S2).

3.2. Causal Relationships between Thyroid Signaling and
Obesity Traits. Due to elevated CRP levels in overweight
and obese adults [27], we also wanted to know whether there
exist causal associations between thyroid signaling and obe-
sity traits. Therefore, we conducted MR analyses of TSH and
fT4 on obesity traits, respectively (Figure 5). MR analyses
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Figure 4: Causal effects of variation in CRP levels on TSH and fT4. Presented βs and CIs (horizontal lines and their corresponding
numerical interval form on the right side) correspond to the effects of a one SD change in CRP levels on the outcome TSH or fT4 levels.
The results of MR analyses using various analysis methods (IVW, MR-Median, MR-Egger) are presented for comparison. The number of
SNPs indicates the number of genetic variants used as instruments for MR analysis.
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Figure 5: Causal effects of variation in TSH and fT4 levels on WHR and BMI. Presented βs and CIs (horizontal lines and their
corresponding numerical interval form on the right side) correspond to the effects of a one SD change in TSH or fT4 levels on the
outcome WHR or BMI levels. The results of MR analyses using various analysis methods (IVW, MR-Median, MR-Egger) are presented
for comparison. The number of SNPs indicates the number of genetic variants used as instruments for MR analysis.

4 Computational and Mathematical Methods in Medicine



showed higher genetically predicted TSH could cause
decreased WHR levels (β = −0:02, 95% CI = −0:030–0.009,
P = 3:99e − 4), and MR-Median also led to similar results
(see Supplementary Table S3 for more information).

For the association between obesity traits and thyroid
signals (Figure 6), MR analyses showed higher genetically
predicted WHR could cause decreased fT4 levels
(β = −0:081, 95% CI = −0:133–-0.029, P = 0:002), and higher
genetically predicted BMI could cause higher TSH levels
(β = 0:030, 95% CI = 0:003–0.057, P = 0:028) and lower fT4
(β = 0:02, 95% CI = −0:118–0.068, P = 1:05e − 4). This
causal relationship was not robust because it is not sup-
ported by MR-Median (see Supplementary Table S4).

4. Discussion

In this study, the bidirectional two-sample MR analyses
between thyroid signaling (TSH and fT4) and CRP levels
were accomplished based on the current largest GWAS sum-
mary statistics. We studied the causal relationships between
TSH and fT4 levels and CRP levels and found TSH and fT4
levels could be affected by CRP, whereas TSH and fT4 levels
could not affect CRP levels. Furthermore, we found some
evidence that there were associations between obesity traits
(BMI and WHR) and fT4 levels. We also found that TSH
could be significantly affected by BMI.

CRP responds quickly to inflammatory processes and
is utilized as one of the best inflammatory markers. Vari-
ous research results showed that there was a significant
positive correlation between TSH and CRP [17, 44, 45].
However, their underlying causality was still unclear. A
prospective study indicated that patients with subclinical

hypothyroidism had increased levels of signs of low-
grade inflammation (CRP levels) [20, 46]. On the other
hand, the conclusions of many studies were not consistent
with this prospective study. For example, some authors
believed that serum CRP was not significantly affected by
the thyroid dysfunction’s degree [47]. An observational
study found that CRP was not correlated with fT4 and
TSH [48]. These studies indicated that further evidence
was needed to determine the causal link between TSH
and fT4 levels and CRP levels. In this study, based on
MR analysis results, we found that there was a causal asso-
ciation between CRP and thyroid signaling (TSH and fT4).
TSH and fT4 levels could be positively affected by CRP
levels, but not vice versa. The underlying cause of CRP
affecting thyroid signaling is still unclear, possibly because
severe inflammation may significantly affect the thyroid
gland, leading to changes in thyroid signaling. Besides,
we thought there were some potential effects of inflamma-
tion on deiodinase activity. Inflammation (elevated in CRP
levels) which was related to infection or injury led to a
reduction in deiodinase activity. This results in decreased
conversion of fT4 to fT3, leading to high fT4 [17]. In
the future, the causal relationship between CRP levels
and TSH and fT4 levels may be confirmed with larger
populations and more precise statistical methods.

Interestingly, in a Brazilian longitudinal study of adult
health, obesity was considered as one of the most important
confounders in the association study between TSH and CRP
[21]. Some researches showed that CRP was correlated with
obesity and the role of obesity in inflammation can not be
ignored [49]. This promoted us to study further the obesity
traits.
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Figure 6: Causal effects of variation in WHR and BMI levels on TSH and fT4. Presented βs and CIs (horizontal lines and their
corresponding numerical interval form on the right side) correspond to the effects of a one SD change in WHR or BMI levels on TSH or
fT4 levels. The results of MR analyses using various analysis methods (IVW, MR-Median, MR-Egger) are presented for comparison. The
number of SNPs indicates the number of genetic variants used as instruments for MR analysis.
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In the subsequent MR analyses, we found that increased
TSH could cause decreased WHR. In reverse MR analyses,
increased WHR and BMI could cause decrease in fT4, and
increased BMI could cause increase in TSH. Previous litera-
ture showed that lower fT4 was consistently associated with
obesity in healthy euthyroid people [50, 51]. One research
indicated that serum fT4 levels were negatively correlated
with BMI and serum TSH levels were positively correlated
with WHR and BMI [52]. It was suggested that the increase
in fT3 levels in obese people may be a compensatory mech-
anism for the fat accumulation increase [53]. In obese peo-
ple, thyroxine 5-deiodinase increased activity, inducing the
increased peripheral conversion of fT4 to fT3 [49, 54]. The
lower fT4 in obese and overweight people might partially
result from this cause. These were consistent with the results
of our MR study. Conclusion of a recent MR analysis was
also consistent with our study; i.e., genetically predicted
BMI was inversely associated with fT4 levels [55].

Another MR analysis pointed out that TSH could be sig-
nificantly elevated by the genetically driven BMI, while fT4
could not be affected by BMI [56]. Notice in our study, we
used the latest and largest GWAS summary data, where
fT4 cohorts included nearly 70000 participants. Moreover,
we performed sensitivity analyses to exclude pleiotropic
and heterogeneous IVs, because these heterogenous SNPs
could partially result in bias in MR analysis. In our analysis,
TSH and fT4 both could be affected by BMI.

Advantages of this study design were that (1) GWAS
data were freely available obtained from the largest recent
GWAS on TSH, fT4, and CRP, respectively; (2) sensitivity
analyses were performed in order to reduce potential bias
resulting from potential pleiotropic and heterogeneous IVs.
It is the first time to reach a conclusion based on MR analy-
sis that higher genetically predicted CRP may induce an
increase in TSH and fT4. However, this study has certain
limitations. (1) Due to the accession of the public databases,
we used people of diverse ancestry for CRP and people of
European ancestry for thyroid signaling and obesity traits.
MR analysis for population-stratification and other popula-
tions should be considered if related data can be available;
(2) generally speaking, thyroid function is sex-specific; due
to the limitation of TSH and fT4 summary data, we did
not perform the sex-specific MR analyses.

Taken together, the bidirectional MR study demon-
strated that higher TSH and fT4 levels were causally affected
by higher CRP levels, but not vice versa. Further MR analy-
ses provided evidence that higher obesity traits could cause
lower fT4 and higher BMI could cause higher TSH.

Data Availability

All data generated or analyzed during this study are included
in this published article or in the data repositories listed in
References. Summary statistic data for genetic associations
with thyroid signaling have been contributed by the thyroid
GWAS meta-analysis of Hunt and the ThyroidOmics con-
sortium. Summary statistic data for genetic association with
body mass index and waist-hip ratio have been contributed
by the GIANT consortium and MEGASTROKE consortium.

Summary statistic data for genetic association with C-
reactive protein have been contributed by the Population
Architecture Using Genomics and Epidemiology study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

T.L., H.G., and Y.H. conceptualized the study. T. L., Y. W.
and Y. H. were responsible for the methodology. Y.H. was
responsible for the funding acquisition. T.L. was responsible
for the investigation. Y.H. was responsible for the project
administration. T.L. was responsible for the resources. T.L.
was responsible for the software. Y.W. and Y.H. supervised
the study. T.L. and S.Y. validated the study. T.L. was respon-
sible for the writing—original draft. H. G., Z. W., S. Y., and
Y. H. were responsible for the writing, review and editing.
All authors have read and agreed to the published version
of the manuscript. Tingting Li, Haigang Geng, and Yuquan
Wang contributed equally to this work.

Acknowledgments

This study was supported by grants to YH from the National
Natural Science Foundation of China (grants nos. 11971117
and 11571082).

Supplementary Materials

Supplementary Table S1: results of Mendelian randomiza-
tion analyses between genetically predicted thyroid-
stimulating hormone (TSH) and free thyroid hormone
(fT4) levels (exposure) and C-reactive protein (CRP) levels
(outcome). Supplementary Table S2: results of Mendelian
randomization analyses between genetically predicted CRP
levels (exposure) and TSH and fT4 levels (outcome). Supple-
mentary Table S3: results of Mendelian randomization anal-
yses between genetically predicted TSH and fT4 levels
(exposure) and obesity traits (outcome). Supplementary
Table S4: results of Mendelian randomization analyses
between genetically predicted obesity traits (exposure) and
TSH and fT4 levels (outcome). (Supplementary Materials)

References

[1] M. A. Michalaki, A. G. Vagenakis, A. S. Leonardou et al., “Thy-
roid function in humans with morbid obesity,” Thyroid,
vol. 16, no. 1, pp. 73–78, 2006.

[2] B. Biondi, A. R. Cappola, and D. S. Cooper, “Subclinical hypo-
thyroidism,” Journal of the American Medical Association,
vol. 322, no. 2, pp. 153–160, 2019.

[3] J. G. Hollowell, N. W. Staehling, W. D. Flanders et al., “Serum
TSH, T4, and thyroid antibodies in the United States popula-
tion (1988 to 1994): National Health and Nutrition Examina-
tion Survey (NHANES III),” The Journal of Clinical
Endocrinology & Metabolism., vol. 87, no. 2, pp. 489–499,
2002.

6 Computational and Mathematical Methods in Medicine

https://downloads.hindawi.com/journals/cmmm/2022/8954606.f1.docx


[4] N. Rodondi, W. P. J. den Elzen, D. C. Bauer et al., “Subclinical
hypothyroidism and the risk of coronary heart disease and
mortality,” Journal of the American Medical Association,
vol. 304, no. 12, pp. 1365–1374, 2010.

[5] C. Floriani, B. Gencer, T.-H. Collet, and N. Rodondi, “Subclin-
ical thyroid dysfunction and cardiovascular diseases: 2016
update,” European Heart Journal, vol. 39, no. 7, pp. 503–507,
2018.

[6] A. E. Hak, H. A. Pols, T. J. Visser, H. A. Drexhage, A. Hofman,
and J. C. Witteman, “Subclinical hypothyroidism is an inde-
pendent risk factor for atherosclerosis and myocardial infarc-
tion in elderly women: the Rotterdam study,” Annals of
Internal Medicine, vol. 132, no. 4, pp. 270–278, 2000.

[7] L. J. van Tienhoven-Wind and R. P. Dullaart, “Low–normal
thyroid function and the pathogenesis of common cardio-
metabolic disorders,” European Journal of Clinical Investiga-
tion, vol. 45, no. 5, pp. 494–503, 2015.

[8] B. O. Åsvold, T. Bjøro, C. Platou, and L. J. Vatten, “Thyroid
function and the risk of coronary heart disease: 12-year
follow-up of the HUNT study in Norway,” Clinical Endocri-
nology., vol. 77, no. 6, pp. 911–917, 2012.

[9] N. Takamura, A. Akilzhanova, N. Hayashida et al., “Thyroid
function is associated with carotid intima-media thickness in
euthyroid subjects,” Atherosclerosis, vol. 204, no. 2, pp. e77–
e81, 2009.

[10] M. A. Albert, E. Danielson, N. Rifai, P. M. Ridker, and PRINCE
Investigators, “Effect of statin therapy on C-reactive protein
levels: the pravastatin inflammation/CRP evaluation (PRINCE):
a randomized trial and cohort study,” Journal of the American
Medical Association, vol. 286, no. 1, pp. 64–70, 2001.

[11] N. R. Sproston and J. J. Ashworth, “Role of C-reactive protein
at sites of inflammation and infection,” Frontiers in Immunol-
ogy., vol. 9, no. 754, 2018.

[12] T. P. Erlinger, E. A. Platz, N. Rifai, and K. J. Helzlsouer, “C-
reactive protein and the risk of incident colorectal cancer,”
Journal of the American Medical Association, vol. 291, no. 5,
pp. 585–590, 2004.

[13] P. M. Ridker, M. Cushman, M. J. Stampfer, R. P. Tracy, and
C. H. Hennekens, “Inflammation, aspirin, and the risk of car-
diovascular disease in apparently healthy men,” New England
Journal of Medicine., vol. 336, no. 14, pp. 973–979, 1997.

[14] P. M. Ridker, C. H. Hennekens, J. E. Buring, and N. Rifai, “C-
reactive protein and other markers of inflammation in the pre-
diction of cardiovascular disease in women,” New England
Journal of Medicine., vol. 342, no. 12, pp. 836–843, 2000.

[15] P. C. Hart, I. M. Rajab, M. Alebraheem, and L. A. Potempa, “C-
reactive protein and cancer—diagnostic and therapeutic insights,”
Frontiers in Immunology., vol. 11, article 595835, 2020.

[16] K. H. Allin and B. G. Nordestgaard, “Elevated C-reactive pro-
tein in the diagnosis, prognosis, and cause of cancer,” Critical
Reviews in Clinical Laboratory Sciences., vol. 48, no. 4,
pp. 155–170, 2011.

[17] R. Sharma, T. K. Sharma, G. Kaushik, S. Sharma, S. Vardey,
and M. Sinha, “Subclinical hypothyroidism and its association
with cardiovascular risk factors,” Clinical Laboratory, vol. 57,
no. 9-10, pp. 719–724, 2011.

[18] M. Christ-Crain, C. Meier, M. Guglielmetti et al., “Elevated C-
reactive protein and homocysteine values: cardiovascular risk
factors in hypothyroidism? A cross-sectional and a double-
blind, placebo- controlled trial,” Atherosclerosis, vol. 166,
no. 2, pp. 379–386, 2003.

[19] N. Boulman, Y. Levy, R. Leiba et al., “Increased C-reactive pro-
tein levels in the polycystic ovary syndrome: a marker of car-
diovascular disease,” The Journal of Clinical Endocrinology &
Metabolism., vol. 89, no. 5, pp. 2160–2165, 2004.

[20] A. Tuzcu, M. Bahceci, D. Gokalp, Y. Tuzun, and K. Gunes,
“Subclinical hypothyroidism may be associated with elevated
high-sensitive C-reactive protein (low grade inflammation)
and fasting hyperinsulinemia,” Endocrine Journal., vol. 52,
no. 1, pp. 89–94, 2005.

[21] É. J. F. P. de Miranda, M. S. Bittencourt, I. S. Santos, P. A.
Lotufo, and I. M. Benseñor, “Thyroid function and high-
sensitivity C-reactive protein in cross-sectional results from
the Brazilian longitudinal study of adult health (Elsa-Brasil):
effect of adiposity and insulin resistance,” European Thyroid
Journal, vol. 5, no. 4, pp. 240–246, 2016.

[22] C. Jublanc, E. Bruckert, P. Giral et al., “Relationship of circulat-
ing C-reactive protein levels to thyroid status and cardiovascu-
lar risk in hyperlipidemic euthyroid subjects: low free
thyroxine is associated with elevated hsCRP,” Atherosclerosis,
vol. 172, no. 1, pp. 7–11, 2004.

[23] S. Singh, “Serum lipids, tHcy, hs-CRP, MDA and PON-1 levels
in SCH and overt hypothyroidism: effect of treatment,” Acta
Biomedica Atenei Parmensis, vol. 85, no. 2, pp. 127–134, 2014.

[24] J. R. Greenfield, K. Samaras, A. B. Jenkins et al., “Obesity is an
important determinant of baseline serum C-reactive protein
concentration in monozygotic twins, independent of genetic
influences,” Circulation, vol. 109, no. 24, pp. 3022–3028, 2004.

[25] M. Hiura, T. Kikuchi, K. Nagasaki, and M. Uchiyama, “Eleva-
tion of serum C-reactive protein levels is associated with obe-
sity in boys,” Hypertension Research., vol. 26, no. 7, pp. 541–
546, 2003.

[26] M. Ebrahimi, A. R. Heidari-Bakavoli, S. Shoeibi et al., “Associa-
tion of serum hs-CRP levels with the presence of obesity, diabe-
tes mellitus, and other cardiovascular risk factors,” Journal of
Clinical Laboratory Analysis., vol. 30, no. 5, pp. 672–676, 2016.

[27] M. Visser, L. M. Bouter, G. M. McQuillan, M. H. Wener, and
T. B. Harris, “Elevated C-reactive protein levels in overweight
and obese adults,” Journal of the American Medical Associa-
tion, vol. 282, no. 22, pp. 2131–2135, 1999.

[28] P. W. Holland, “Statistics and causal inference,” Journal of the
American Statistical Association., vol. 81, no. 396, pp. 945–960,
1986.

[29] I. Postmus, J. Deelen, S. Sedaghat et al., “LDL cholesterol still a
problem in old age? AMendelian randomization study,” Interna-
tional Journal of Epidemiology., vol. 44, no. 2, pp. 604–612, 2015.

[30] J. R. Thompson, C. Minelli, K. R. Abrams, M. D. Tobin, and
R. D. Riley, “Meta-analysis of genetic studies using Mendelian
randomization—a multivariate approach,” Statistics in Medi-
cine., vol. 24, no. 14, pp. 2241–2254, 2005.

[31] W. Zhou, B. Brumpton, O. Kabil et al., “GWAS of thyroid
stimulating hormone highlights pleiotropic effects and inverse
association with thyroid cancer,” Nature Communications,
vol. 11, no. 1, pp. 1–13, 2020.

[32] A. Teumer, L. Chaker, S. Groeneweg et al., “Genome-wide
analyses identify a role for SLC17A4 and AADAT in thyroid
hormone regulation,” Nature Communications, vol. 9, no. 1,
pp. 1–14, 2018.

[33] G. L. Wojcik, M. Graff, K. K. Nishimura et al., “Genetic analy-
ses of diverse populations improves discovery for complex
traits,” Nature Communications, vol. 570, no. 7762, pp. 514–
518, 2019.

7Computational and Mathematical Methods in Medicine



[34] S. L. Pulit, C. Stoneman, A. P. Morris et al., “Meta-analysis of
genome-wide association studies for body fat distribution in
694 649 individuals of European ancestry,” Human Molecular
Genetics., vol. 28, no. 1, pp. 166–174, 2019.

[35] L. Yengo, J. Sidorenko, K. E. Kemper et al., “Meta-analysis
of genome-wide association studies for height and body
mass index in ∼700000 individuals of European ancestry,”
Human Molecular Genetics., vol. 27, no. 20, pp. 3641–
3649, 2018.

[36] B. L. Pierce, H. Ahsan, and T. J. Vander Weele, “Power and
instrument strength requirements for Mendelian randomiza-
tion studies using multiple genetic variants,” International
Journal of Epidemiology, vol. 40, no. 3, pp. 740–752, 2011.

[37] S. Burgess, A. Butterworth, and S. G. Thompson, “Mendelian
randomization analysis with multiple genetic variants using
summarized data,” Genetic Epidemiology, vol. 37, no. 7,
pp. 658–665, 2013.

[38] J. Bowden, G. Davey Smith, P. C. Haycock, and S. Burgess,
“Consistent estimation in Mendelian randomization with
some invalid instruments using a weighted median estimator,”
Genetic Epidemiology, vol. 40, no. 4, pp. 304–314, 2016.

[39] J. Bowden, G. Davey Smith, and S. Burgess, “Mendelian ran-
domization with invalid instruments: effect estimation and
bias detection through Egger regression,” International Jour-
nal of Epidemiology., vol. 44, no. 2, pp. 512–525, 2015.

[40] M. F. D. Greco, C. Minelli, N. A. Sheehan, and J. R. Thompson,
“Detecting pleiotropy in Mendelian randomisation studies
with summary data and a continuous outcome,” Statistics in
Medicine, vol. 34, no. 21, pp. 2926–2940, 2015.

[41] S. Burgess, J. Bowden, T. Fall, E. Ingelsson, and S. G. Thomp-
son, “Sensitivity analyses for robust causal inference from
Mendelian randomization analyses with multiple genetic vari-
ants,” Epidemiology, vol. 28, no. 1, pp. 30–42, 2017.

[42] W. G. Cochran, “The comparison of percentages in matched
samples,” Biometrika, vol. 37, no. 3-4, pp. 256–266, 1950.

[43] B. Baujat, C. Mahé, J. P. Pignon, and C. Hill, “A graphical
method for exploring heterogeneity in meta-analyses: applica-
tion to a meta-analysis of 65 trials,” Statistics in Medicine.,
vol. 21, no. 18, pp. 2641–2652, 2002.

[44] G. Gupta, P. Sharma, P. Kumar, and M. Itagappa, “Study on
subclinical hypothyroidism and its association with various
inflammatory markers,” Journal of Clinical and Diagnostic
Research: JCDR., vol. 9, no. 11, pp. BC04–BC06, 2015.

[45] J. Wu, Y. Tao, H. Gu, and J. Sui, “Association between cardio-
vascular risk factors and serum thyrotropin concentration
among healthy Chinese subjects and subjects with unsuspected
subclinical hypothyroidism,” Clinical Laboratory, vol. 62,
no. 5, pp. 807–814, 2016.

[46] J. Kvetny, P. Heldgaard, E. M. Bladbjerg, and J. Gram, “Sub-
clinical hypothyroidism is associated with a low-grade inflam-
mation, increased triglyceride levels and predicts
cardiovascular disease in males below 50 years,” Clinical Endo-
crinology, vol. 61, no. 2, pp. 232–238, 2004.

[47] W.-Y. Lee, J.-Y. Suh, E.-J. Rhee, J.-S. Park, K.-C. Sung, and S.-
W. Kim, “Plasma CRP, apolipoprotein A-1, apolipoprotein B
and Lp(a) levels according to thyroid function status,” Archives
of Medical Research, vol. 35, no. 6, pp. 540–545, 2004.

[48] V. Lubrano, A. Pingitore, A. Carpi, and G. Iervasi, “Relation-
ship between triiodothyronine and proinflammatory cytokines
in chronic heart failure,” Biomedicine & Pharmacotherapy.,
vol. 64, no. 3, pp. 165–169, 2010.

[49] D. Y. Aksoy, N. Cinar, A. Harmanci et al., “Serum resistin and
high sensitive CRP levels in patients with subclinical hypothy-
roidism before and after L-thyroxine therapy,”Medical Science
Monitor: International Medical Journal of Experimental and
Clinical Research., vol. 19, pp. 210–215, 2013.

[50] G. L. Roef, E. R. Rietzschel, C. M. Van Daele et al., “Triiodothy-
ronine and free thyroxine levels are differentially associated
with metabolic profile and adiposity-related cardiovascular
risk markers in euthyroid middle-aged subjects,” Thyroid,
vol. 24, no. 2, pp. 223–231, 2014.

[51] C. M. Kitahara, E. A. Platz, P. W. Ladenson, A. M. Mondul,
A. Menke, and A. B. de González, “Body fatness and markers
of thyroid function among U.S. men and women,” PLoS One,
vol. 7, no. 4, article e34979, 2012.

[52] F.-M. Du, H.-Y. Kuang, B.-H. Duan, D.-N. Liu, and X.-Y. Yu,
“Effects of thyroid hormone and depression on common com-
ponents of central obesity,” Journal of International Medical
Research., vol. 47, no. 7, pp. 3040–3049, 2019.

[53] G. De Pergola, A. Ciampolillo, S. Paolotti, P. Trerotoli, and
R. Giorgino, “Free triiodothyronine and thyroid stimulating
hormone are directly associated with waist circumference,
independently of insulin resistance, metabolic parameters
and blood pressure in overweight and obese women,” Clinical
Endocrinology., vol. 67, no. 2, pp. 265–269, 2007.

[54] R. Mullur, Y.-Y. Liu, and G. A. Brent, “Thyroid hormone reg-
ulation of metabolism,” Physiological Reviews, vol. 94, no. 2,
pp. 355–382, 2014.

[55] A. Kuś, E. Marouli, M. F. Del Greco et al., “Variation in normal
range thyroid function affects serum cholesterol levels, blood
pressure, and type 2 diabetes risk: a Mendelian randomization
study,” Thyroid, vol. 31, no. 5, pp. 721–731, 2021.

[56] X. Wang, X. Gao, Y. Han et al., “Causal association between
serum thyrotropin and obesity: a bidirectional, Mendelian ran-
domization study,” The Journal of Clinical Endocrinology &
Metabolism, vol. 106, no. 10, pp. e4251–e4259, 2021.

8 Computational and Mathematical Methods in Medicine


	Causal Association of Thyroid Signaling with C-Reactive Protein: A Bidirectional Mendelian Randomization
	1. Introduction
	2. Materials and Methods
	2.1. Data Sources
	2.2. Two-Sample MR
	2.3. Selection of SNPs
	2.4. Statistical Analysis

	3. Results
	3.1. Causal Relationships between Thyroid Signaling and CRP
	3.2. Causal Relationships between Thyroid Signaling and Obesity Traits

	4. Discussion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

