Hindawi

Computational and Mathematical Methods in Medicine
Volume 2022, Article ID 9261713, 7 pages
https://doi.org/10.1155/2022/9261713

Research Article

Q@) Hindawi

A Variable-Clustering-Based Feature Selection to Improve
Positive and Negative Discrimination of P53 Protein in Colorectal

Cancer Patients

Luqing Wang,' Li Feng®,' Jiasi Wang,” Jie Li,” Hongbin Li,* Fanxin Zeng,’ and Liangli Sun’

!Faculty of Innovation Engineering, Macau University of Science & Technology, Macau, China
Department of Clinical Laboratory, Dazhou Central Hospital, Dazhou, Sichuan, China
’Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
*Department of Respiratory Medicine, Dazhou Central Hospital, Dazhou, Sichuan, China
*Department of Rheumatology and Immunology, Dazhou Central Hospital, Dazhou, Sichuan, China

Correspondence should be addressed to Li Feng; lfeng@must.edu.mo

Received 14 August 2022; Revised 19 October 2022; Accepted 20 October 2022; Published 17 November 2022

Academic Editor: Sathishkumar V E

Copyright © 2022 Luqing Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

P53 protein tumor suppressor gene plays a guiding role in the treatment and prognosis of colorectal cancer (CRC). This paper
aimed at proposing a feature selection method based on variable clustering to improve positive and negative discrimination of
P53 protein in CRC patients. In this approach, we cluster the preprocessed dataset with variables, and then find the features
with the largest information value (IV) for each cluster to form a feature subset. We call this method as IV_Cluster. In the
actual medical data test, compared with the information value feature selection method, the accuracy of the 10-fold cross-
validation logistic regression model increased by 4.4%, 2.0%, and 5.8%, and Kappa values increased by 21.8%, 8.6%, and 22.4%,

respectively, under 5, 10, and 15 feature sets.

1. Introduction

Feature selection method is a data preprocessing approach
that selects feature subspaces from the original feature space
that contribute to the target [1-3]. Feature selection methods
have been studied and applied in clinical and even imaging
studies. Feature selection method is an effective means to deal
with small sample high-dimensional data. According to
whether the processed dataset has labels, it can be divided into
supervised feature selection and unsupervised feature selec-
tion. The former is to select a series of feature sets that are
effective for labels; the latter is used to select features that
can maintain the feature structure and achieve reduction.
According to the strategy of feature selection, it can be divided
into filtering, wrapping, and embedding, Filtering is a selection
method based on feature scoring, which is simple and efficient,
and is often used for processing high-dimensional data. Wrap-
ping is a method that evaluates selected subsets based on a
black-box model to select the best subset. It takes into account

the interaction between features, which takes a long time and
computation. Embedding is a method to measure the impor-
tance of features in the construction of the model. However,
there are many current feature selection methods. How to
select and design a suitable feature selection algorithm is a
confusing and even difficult thing for clinical medical research.

Variable clustering is a kind of unsupervised learning par-
adigm of variable structure to achieve the goal of dimensional-
ity reduction. Variable clustering has also been widely studied
and applied in feature selection. For example, variable cluster-
ing based on K-means [4], a fast hybrid feature selection based
on correlation-guided clustering and particle swarm optimiza-
tion for high-dimensional data [5], clustering-guided particle
swarm feature selection algorithm for high-dimensional
imbalanced data with missing values [6].

We collected a medical dataset of P53 protein in colorec-
tal cancer (CRC), which included imaging features, other
clinical features, and serum tumor marker features, as well
as P53 protein negative and positive features. Our goal was
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to investigate the relationship between these feature sets and
the negative and positive expressions of P53 protein. The
P53 protein encoded by wild-type TP53 gene is maintained
at a low level in normal cells and regulates gene transcription
to respond to adverse factors such as oncogene signal activa-
tion and DNA damage. When TP53 gene is mutated, the
P53 protein encoded by TP53 gene has a long half-life and
strong stability, which can accumulate continuously in the
nucleus and lose its monitoring effect on cells. On the con-
trary, it acts as an oncogene in cell malignancy, promoting
invasion, metastasis, proliferation, and cell survival.

After TP53 mutation occurs in CRC patients, 50% to 75%
of the cases are positive [7]. P53 mutations are associated with
lymphatic infiltration in proximal colon cancer, and are signif-
icantly associated with lymphatic and vascular infiltration in
distal CRC. Compared with P53 wild-type, patients with P53
mutant CRC have higher degree of chemotherapy resistance
and poorer prognosis [8, 9]. In recent years, it has been found
that P53 protein expression is significantly correlated with
TP53 gene status [10]. Therefore, immunohistochemical
method is commonly used to detect P53 protein expression
to reflect TP53 gene mutation status in clinical practice. Imag-
ing omics is an emerging quantitative analysis method based
on high throughput characteristics of medical images. More
and more evidences show that as a noninvasive method, it
has advantages in early diagnosis, prognosis prediction, and
efficacy evaluation of tumors [11-15]. Chen et al. found that
texture features extracted by PET/CT can provide supplemen-
tary information for the determination of TP53 gene changes
in CRC [16]. Although there is little evidence to support a
direct correlation between texture heterogeneity and any spe-
cific underlying physiological process or biological heteroge-
neity, a large number of current studies suggest that there is
a correlation between imaging phenotypes and mutant land-
scapes, gene expression, and signaling pathways [17]. At pres-
ent, there are very few articles about the relationship between
P53 and other clinical features such as imaging, and our prac-
tice shows that the effect of common feature selection methods
is not ideal. We expect further improvement.

This work provides a variable clustering based feature
selection to improve positive and negative discrimination
of P53 protein in CRC patients. The similarity of variables
is described by an unsupervised learning method (K-means),
in which a series of target groups are divided, and the feature
that maximizes the variable information value (IV) is
selected as a representative from each group, thereby form-
ing a new feature subset, and this method is recorded as
IV_Cluster. The following are the three primary contribu-
tions of this paper:

(1) Develop a variable clustering IV feature selection
approach that incorporates unsupervised and super-
vised learning concepts

(2) The actual clinical colon cancer tumor medical data-
set used to pick features by this method

(3) The capacity to distinguish between the negative and
positive forms of the P53 protein has improved as a
result of this feature selection
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This paper is organized as follows: the introduction is
done in Section 1. Section 2 describes the relevant knowl-
edge then the detailed introduction of the variable clustering
IV feature selection algorithm is done Section 3. The exper-
imental results and analysis is illustrated in Section 4. The
discussion is shown in Section 5, while Section 6 contains
the conclusion.

2. Prerequisites

The relevant knowledge in the paper includes variable bin-
ning, data WOE encoding, information value definition,
and an introduction to the logistic regression algorithm.

2.1. Variable Binning. In this paper, we apply an optimal
variable partitioning technique, which is a conditional infer-
ence tree [18-20]. It belongs to a supervised variable sorting
technology, which realizes an unbiased variable sorting tech-
nology by means of recursion and statistical hypothesis
testing.

2.2. Weight of Evidence (WOE) Encoding. After the variable
binning of the dataset, we can perform weight of evidence
(WOE) coding on the binning of each variable [20-23].
The calculation formula of WOE is

WOE(x) = log (%) (1)

The denominator and numerator in this formula repre-
sent the proportion of negative and positive in the subset
of each variable bin, respectively. Variable WOE encoding
makes the data more robust and improves the interpretabil-
ity of the results.

2.3. Information Value (IV) of Variable. The IV of the vari-
able [20, 22] is used to describe the discriminative ability
of the variable to the target variable. Calculated as follows:

1V =Y (f(x]1) - £(x/0) }WOE(x). @)

Variable IV is a filtered feature selection that has the
advantage of being simple and effective. We can use Top-K
or Top-Percentage strategies to select variables based on
their IV values. This paper adopts the Top-K strategy for
testing and verification.

2.4. Logistical Regression Model. The logistic regression
model [24-26] is a classic binary classification model that
is simple and easy to interpret. LR model is mathematically
equivalent to solving an unconstrained optimization
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Input: Datasets D, Feature sets F
Output: K features

Do WOE coding for variable binning results.

A

1: Use the optimal decision tree algorithm to do variable binning on the feature set.

Map the dataset D to a new dataset D1 through the WOE encoding of the variable.

Use the formula (see 2) to calculate the variable IV value.

According to the required K feature sets, use the clustering algorithm to do K-cluster variable clustering on D1.
The variable with the largest IV value is selected from the K clusters to form K feature subsets.

ArLgoriTHM 1: Pseudocode of IV_Cluster Methodology.

TasLE 1: Confusion matrix of the classification.

Actual Predicted positive Predicted negative
Positive TP (true positive) EN (false negative)
Negative FP (false positive) TN (true negative)

problem, the formula is as follows:

1Y r
. - 1 1+ [—yi(w xﬁ—b)] )
min 2 los(1+e ) 3)
beR

3. Materials and Methods

This work proposes an IV_Cluster feature selection method.
This method includes three important steps. We use the
conditional inference tree to optimally bin the variables
and calculate the IV value of the variable, and then perform
cluster learning on the variables and select the feature with
the largest IV value in each cluster. A logistic regression
model with 10 cross-validations was performed on a good
feature set and the performance differences of all features
and IV selected features were compared and analyzed.

3.1. Datasets. This proposed method is designed to process a
small sample high-dimensional dataset of the P53 proteome
of colorectal cancer. This dataset is derived from the image
dataset of Dazhou Central People’s Hospital in Sichuan
Province, and obtained a dataset of 349 patients and 867 fea-
tures. These features include the basic information of
patients, laboratory information, and imaging-based wavelet
features to extract P53 protein group information.

3.1.1. Data Preprocessing

(1) Missing Value Processing. For the dataset, first do the
missing detection, and then use the following method to
process the features with missing values. The numerical var-
iables are filled with the mean, and the categorical variables
are filled with the mode. After processing, it is guaranteed
that the dataset has no missing values.

(2) Feature Divergence Analysis. According to the principles
of statistical knowledge and feature selection, the divergence
of features is calculated and analyzed; variance is used to

measure divergence, and features with a threshold greater
than 0.1 are retained.

3.2. IV_Cluster Methodology. The IV feature selection
method is a supervised feature selection method. It is a filter-
ing feature selection method. By calculating the variable IV
value, according to the level of the IV value and the feature
selection strategy, it can quickly select Top-K or Top-
Percent’s feature set. This method has the advantages of a fil-
tered feature selection method, and at the same time, it also
has good interpretability.

The IV_Cluster method is an improved feature selection
method. On the one hand, it takes advantage of the advan-
tages of clustering, that is, the largest similarity within the
class and the largest difference between the classes, and on
the other hand, it takes advantage of the advantages of IV,
that is, it is efficient and easy to explain. This method first
performs unsupervised clustering learning on the variable
set to divide some target clusters, then selects the feature
with the largest IV value from the target cluster as the repre-
sentative, and finally combines these representative features
to obtain the selected feature set. The IV_Cluster feature
selection method can be expressed by the following formula:

Argmaxfj = IV(fj C C,~>, (4)

where C; is the ith variable cluster, i=1,2..K and f i is the

feature set belonging to C;

The calculation of the IV of the variable can be calcu-
lated according to the Formula (2), and the method of vari-
able clustering adopts the K-means algorithm [27]. The
pseudocode of the IV_Cluster feature selection method, see
Algorithm 1:

4. Result and Analysis

4.1. Metrics. In this paper, we use the 10-fold cross-
validation [28] method for the preprocessed dataset using
feature selection. Evaluate the Accuracy value [29] and
Kappa value [30] of the LR model under different feature
sets.

4.1.1. Accuracy. For the binary classification problem, the
sample can be categorized into four cases: true positive
(TP), false positive (FP), true negative (TN), and false nega-
tive (FN), according to the combination of its real category
and the classifier prediction category. The TP, FP, TN, and
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TaBLE 2: Accuracy and Kappa values of the model under different eigenvalues of the P53 dataset are as follows: min, mean, and max.

Metrics Condition Feature Min Mean Max
IV_Cluster_LR 5 0.60 0.67 0.77
IV_LR 5 0.57 0.64 0.74
IV_Cluster_LR 15 0.62 0.71 0.86
Accuracy IV_LR 15 0.57 0.70 0.83
IV_Cluster_LR 25 0.57 0.73 0.89
IV_LR 25 0.56 0.69 0.83
ALL_LR ALL 0.34 0.49 0.66
IV_Cluster_LR 5 0.19 0.34 0.54
IV_LR 5 0.11 0.28 0.48
IV_Cluster_LR 15 0.23 0.42 0.71
Kappa IV_LR 15 0.14 0.38 0.66
IV_Cluster_LR 25 0.14 0.45 0.77
IV_LR 25 0.10 0.37 0.65
ALL LR ALL -0.29 -0.01 0.32
0.70 A 0.75
0.65 4 0.70
0.65 -
g 0.60 - §
§ § 0.60
< 0.55 <
0.55 -
0.50 0.50 -
T T T 0'45 T T T
IV_Cluster_ LR IV_LR All_LR IV_Cluster_ LR IV_LR All_LR

(a)

Accuracy

0.7

o
[=)}
Il
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IV_Cluster LR IV_LR

(0

All_LR

()

FIGURE 1: Accuracy error bar for feature sets. (a) 5 features and all features. (b) 15 features and all features. (c) 25 features and all features.

FN represent the corresponding samples. The “confusion

matrix” of the classification result is shown in Table 1.
According to the confusion matrix, the accuracy, preci-

sion, and recall can be defined. Accuracy is the correct pro-

portion of all predictions and is defined as

A - .
Y = TPy FP+ FN+ TN

TP+ TN

(5)
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FIGURE 2: Error bar of Kappa under feature sets. (a) 5 features and all features. (b) 15 features and all features. (c) 25 features and all features.

4.1.2. Kappa. The Kappa value is an indicator used for con-
sistency check, that is, whether the model prediction results
are consistent with the actual classification results. For
binary classification problems, Kappa is defined as follows:

-7, (©)

e

Kappa =

where P() = Ziz:lpii and Pe = Z?:lptﬂpj

4.2. Results. The model evaluation indicators Accuracy and
Kappa of P53 under different feature sets 5, 15, and 25 are
shown in Table 2.The error bar of Accuracy under the fea-
ture set 5, 15, and 25 of the P53 dataset is shown in
Figure 1.The error bar of Kappa under the feature set 5,
15, and 25 of the P53 dataset is shown in Figure 2.
Through the results in Table 2 and Figures 1 and 2, we
can find that the IV feature selection method of fusion vari-
able clustering proposed in this paper is effective. First of all,
for the problem of small sample high-dimensional data, it is
necessary to perform the preprocessing operation of feature
selection to reduce and eliminate redundant and useless fea-
ture sets. Through the experimental results, we found that
the P53 protein recognition performance of the former was

significantly improved compared with the latter when the
feature selection method was used and the feature selection
method was not used. Secondly, the IV feature selection
method that integrates variable clustering, compared with
the filter-type IV feature selection method, the recognition
power of P53 is improved in the three sets of feature set tests,
and the accuracy rates are increased by 4.4%, 2.0%, and
5.8%, respectively, the Kappa value increased by 21.8%,
8.6%, and 22.4%, respectively. Finally, in order to more
robustly compare and analyze the utility of feature selection,
we used 10-fold cross-validation, and plotted the error curve
for each case, the performance improvement can be intui-
tively felt by the mean, and the standard error can be a dis-
persion of properties was observed. Comparing with and
without feature selection, we find that the performance of
the model is significantly improved and the performance is
more robust.

5. Discussion

In this paper, we design and propose a new feature selection
algorithm for the problems and challenges brought by the
actual small sample high-dimensional tumor clinical medi-
cal dataset.



In the problem of real small-sample high-dimensional
clinical medical data, the number of samples is small, and
the number of variables is large, which will lead to the
redundancy and similarity of variables. The filtering feature
selection algorithm uses a scoring mode to measure the rela-
tionship between variables and targets, which is concise and
effective, but ignores the relationship and structure between
variables. Therefore, on the basis of IV algorithm, we further
consider the structure between variables, and design a new
feature selection method that integrates variable clustering
and IV.

This new algorithm adopts an integration strategy, on
the one hand, it absorbs the advantages and interpretability
of the information value (IV) feature selection algorithm
and, on the other hand, it considers the ability of unsuper-
vised learning to acquire potential internally similar
structures.

We tested and verified the P53 proteome dataset of colo-
rectal cancer, and observed the accuracy of the model and
the consistency between the model prediction results and
the actual results. It was found that the new feature selection
algorithm proposed in this paper is effective. Firstly, com-
pared with without the feature selection algorithm, the per-
formance of the model has been significantly improved.
This suggests that feature selection is an effective approach
in dealing with small sample and high-dimensional prob-
lems. Secondly, compared with the information value feature
selection algorithm, the performance of the model has been
further improved. This shows that integrating feature selec-
tion strategy and considering the internal structure of fea-
ture sets can help to select more effective feature sets.
Thirdly, this new algorithm is helpful for the interpretability
of the model. In this paper, we tested three feature sets.
These small feature sets are helpful for clinical practitioners
in attribution analysis and practice.

However, this new feature selection algorithm has a
hyperparameter, that is, the number of feature selection or
the number of variable clustering. To solve this problem,
on the one hand, we can absorb the prior knowledge of
tumor clinicians to determine the interval of hyperpara-
meters; on the other hand, we can consider some methods
to find the best hyperparameters, such as grid search method
or random search method. In this paper, the differences of
model performance under 5, 15, and 25 feature sets were
compared and analyzed by using the prior knowledge of
clinicians.

6. Conclusion

P53 is a proteomic gene with clinical expression and signif-
icance for CRC problems. Aiming at the current situation
of small samples of high-dimensional data, a variable clus-
tering IV feature selection method proposed in this paper
improves the recognition of P53 and has a certain value for
clinical guidance of CRC problems. The follow-up research
will start from the following two aspects: on the one hand,
continue to study the feature selection method for small
sample high-dimensional data; on the other hand, consider
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new model construction methods, such as the design and
construction of ensemble models.
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