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Prostate cancer (PCa) is the commonly generated noncutaneous neoplasm among men worldwide. Glycolysis had been validated
to promote cancer progression. However, the clinical significance of glycolytic regulators in PCa was not well understood. Here,
we discovered that glycolytic regulators were dysregulated in PCa samples using GSE8511, GSE6919, and GEPIA. By detecting the
expression of these regulators in PCa samples, we found that SLC2A1, SLC2A3, HK2, PFKFB2, TPI1, PKM2, and LDHA had
higher expression in PCa compared with normal tissues. Moreover, both higher expression of TPI1, ALDOA, ENO1, LDHA,
and PKM and lower expression of LDHB and HK2 were significantly related to shorter progression-free survival time in PCa.
Of note, an 8 gene-based risk score was further constructed and confirmed to have a good performance in predicting
progression-free survival (PFS) time in PCa. The signature risk score significantly correlated with NK cell, neutrophil cell,
macrophage M2 cell, and myeloid dendritic cell infiltration levels in PCa. After bioinformatics analysis, our data suggested
glycolytic regulators participated in the regulation of multiple nonmetabolic biological processes, such as RNA transport,
biosynthesis of antibiotics, and cell cycle. We recapitulate that the glycolytic regulator signature was a prospective indicator for
prognosis and immune cell infiltration levels in PCa.

1. Introduction

Prostate cancer (PCa) was one of the widely occurring malig-
nant neoplasms amid males worldwide [1]. The lethality of
PCa ranked fifth among carcinoma-related death in men.
Although emerging studies revealed that androgen receptor
(AR) signaling functioned crucially in the advance of PCa,
the mechanism towards modulating PCa tumorigenesis and
development needed further investigation [2]. Previous
reports implied that the dysregulation of metabolic could serve
as a primary driver in PCa development [3]. Epidemiological
investigation showed population with a higher dietary fat
intake exhibited a higher PCa morbidity and mortality [4]. It
is therefore urgent to uncover prospective metabolic regula-
tors conducing to digging out more new biomarkers for PCa.

As a multifactorial pathema, PCa has the characteristics
of abnormal activities of diverse regulatory pathways. Among
the pathways, Warburg effect was regarded as one pivotal
indicator of cancer cell [5]. Warburg effect indicated that
more glucose could be converted into lactic acid by cancer
cells other than normal cells even under the supply of aero-
bic. The dysregulation of glycolytic enzymes consisting of
SLC2A1, HK2, PFKFB2, TPI1, ENO1, PKM2, and LDHB
had been demonstrated in numerous types of human cancers
[6–8]. Meanwhile, a few metabolism regulators comprising
MYC, HIF1A, and TP53 were reported to participate in
regulating cancer development [9, 10]. For instance, several
carcinomas, such as gastric [11], bladder [12], and prostate
cancers [13], highly expressed PKM2 (the key glycolytic
enzyme). LDHA was upregulated in PCa, and ablating
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Figure 1: Continued.

2 Computational and Mathematical Methods in Medicine



LDHA could result in impediment of PCa progression [14].
Nevertheless, the prognostic value of glycolytic enzymes
was not well understood till now.

The immune therapy is becoming the promising method
to treat tumors, such as lung cancer, gastric cancer, and
colon cancer. Despite the fact that PD-1/L1 has not been
confirmed to be efficacious in PCa, several novel immune
therapies had been approved. For example, Sipuleucel-T
was approved for the treatment of castrate-resistant PCa.
Besides this, several other immunotherapies such as ipilimu-
mab and CAR-T cell therapy are in clinical development of
PCa. Thus, there was still an urgent need to identify novel
biomarkers for immune therapy response prediction in
PCa. Immune infiltration had been reported as a crucial fac-
tor affecting the efficiency of immune therapy in cancers. In
PCa, immune infiltration had been confirmed to influence
PCa development. For example, high levels of CD3+,
CD4+, or CD8+ cells were found to be protumorigenic. In
addition, CD20+ B cells were enriched in PCa samples com-
pared to normal tissue. High infiltration levels of IL-23-
positive cells correlate with abiraterone effectiveness in
PCa. Several factors had been reported to correlate to
immune infiltration. For example, GPR30 knockdown
reduced macrophage infiltration and M2 polarization in
PCa. HCG18 and MCM3AP-AS1 increased abundance of
M2 macrophage infiltration in PCa. However, the effect of
glycolytic enzymes on immune infiltration in PCa remained
to be unclear.

Here, we for the first time validated glycolytic enzyme
expression pattern in PCa utilizing public datasets, such as
GSE6919, GSE8511, and GEPIA datasets. Then, we deter-
mined the expression of glycolytic enzymes in the tissues
of PCa. Meanwhile, we also explored the association existing
in survival time and gene expression. Finally, we conducted
bioinformatics analysis to identify the potential impacts of
the dysregulation of glycolytic enzymes on PCa. Collectively,
our literature could offer new biomarkers for PCa prognosis.

2. Materials and Methods

2.1. Public Data Analysis. Normalized GSE6919 and
GSE8511 datasets were completely analyzed by robust multi-
array average (with RMA) method under R 2.6.2 statistical
software with affy package from BioConductor, and then,
they were applied to ensure the differently expressed
mRNAs [15]. Here, we individually represented and per-
formed the normalization for LCM and homogenized tissue
datasets. log2-transformed values by RMA indicated normal-
ized gene expression level. A total of 75 metastatic prostate
tumor samples, 52 normal samples, and 192 PCa samples
were included in the GSE6919 database. A total of 16 benign
prostate samples, 13 metastatic prostate tumor samples, and
12 local PCa samples were included in the GSE8511 data-
base. The validation of glycolytic enzyme expression pattern
in PCa was performed using the GEPIA database (http://
gepia.cancer-pku.cn/).

2.2. PPI Network and Module Analysis. PPI information was
validated by the STRING database search tool. We defined
that the comprehensive score > 0:4 was significant. PPI net-
work construction was completed by Cytoscape software.
Plugin molecular complex detection (MCODE) toolset was
applied to screen the cytokeratin (PPI) network module
according to MCODE scores and node number. P < 0:05
meant there was obvious difference.

2.3. Tissue Collection. The study was approved by the
Research Ethics Committee of the Central Hospital of
Wuhan, and verbal consent was obtained from all patients.
All samples were collected from the Central Hospital of
Wuhan, Tongji Medical College.

2.4. RNA Isolation and Real-Time qPCR. qRT-PCR for
mRNAs was performed as described previously. The Ct
values were normalized using β-actin as an internal control.
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Figure 1: Several glycolytic regulators were dysregulated in PCa in two GEO databases. (a) HK2, PFKFB3, SLC2A1, PGK1, PKM2, and
LDHA were upregulated, and PGAM1, SLC2A3, and LDHB were downregulated in the GSE8511 database. (b) HK2, SLC2A1, PKM2,
and SLC2A3 were upregulated, and LDHA, ALDOA, PGAM1, and LDHB were downregulated in the GSE6919 database.
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Relative mRNA expression was calculated using the 2−ΔΔCt
method.

2.5. Establishment of Prognostic Signature. To establish a
prognostic signature, the relationship between glycolytic
enzymes and OS was evaluated by LASSO and multivariate
Cox regression analyses using glmnet packages in R. The

Kaplan–Meier (K-M) survival analysis was performed based
on the risk scores. The receiver operating characteristic
(ROC) curve was analyzed based on the survival ROC pack-
age in R.

2.6. Statistical Analysis. All derived data of three indepen-
dent experiments was represented as the mean ± SD. T-test
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Figure 2: Several glycolytic regulators were dysregulated in PCa in GEPIA databases. (a) HK2, (c) SLC2A1, (f) LDHA, (k) PFKFB2, (l) TPI1,
and (m) ENO1 were upregulated, while (b) PFKFB3, (g) ALDOA, (h) PGAM1, (i) SLC2A3, and (j) LDHB were downregulated in GEPIA
databases.

4 Computational and Mathematical Methods in Medicine



0.015

0.010

0.005

0.000

Normal
(n = 8)

Tumor
(n = 20)

Re
lat

iv
e e

xp
re

ss
io

n 
of

 H
K2

 to
 𝛽

-a
ct

in ⁎

(a)

Normal
(n = 8)

Tumor
(n = 20)

0.0010

0.0008

0.0002

0.0000

0.0006

0.0004

ns

Re
lat

iv
e e

xp
re

ss
io

n 
of

 P
FK

FB
3 

to
 𝛽

-a
ct

in

(b)

Normal
(n = 8)

Tumor
(n = 20)

0.03

0.02

0.01

0.00

⁎⁎

Re
lat

iv
e e

xp
re

ss
io

n 
of

 S
LC

2A
1 

to
 𝛽

-a
ct

in

(c)

Normal
(n = 8)

Tumor
(n = 20)

0.3

0.2

0.1

0.0

ns

Re
lat

iv
e e

xp
re

ss
io

n 
of

 P
G

K1
 to

 𝛽
-a

ct
in

(d)

Normal
(n = 8)

Tumor
(n = 20)

0.6

0.4

0.2

0.0

⁎

Re
lat

iv
e e

xp
re

ss
io

n 
of

 P
KM

2 
to

 𝛽
-a

ct
in

(e)

Normal
(n = 8)

Tumor
(n = 20)

0.4

0.2

0.0

⁎

Re
la

tiv
e e

xp
re

ss
io

n 
of

 L
D

H
A

 to
 𝛽

-a
ct

in

(f)

Normal
(n = 8)

Tumor
(n = 20)

0.0

0.1

0.2

0.3

0.4 ns

Re
lat

iv
e e

xp
re

ss
io

n 
of

 A
LO

D
A

 to
 𝛽

-a
ct

in

(g)

Normal
(n = 8)

Tumor
(n = 20)

−0.02

0.00

0.02

0.04

0.06

0.08
ns

Re
lat

iv
e e

xp
re

ss
io

n 
of

 P
G

A
M

1 
to

 𝛽
-a

ct
in

(h)

Figure 3: Continued.
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or Mann–Whitney U test was utilized to compare the differ-
ence existing in different groups. P < 0:05 (∗∗) meant there
was significant difference with a 95% confidence level. Prism
software (GraphPad) was applied to perform statistical
analyses.

3. Results

3.1. Dysregulated Glycolytic Regulators in PCa Patients. As
mentioned above, some glycolytic gene expression had been
reported to be overexpressed in human cancer samples, but
the most glycolytic genes had not been reported in PCa so
far. Thus, we applied GSE691930 and GSE8511 two GEO

databases to determine whether glycolytic gene levels were
differently expressed in PCa tissues, after comparison with
those in normal prostate tissues.

GSE8511 database analysis result showed that compared
to normal tissues, HK2, PFKFB3, SLC2A1, PGK1, PKM2,
and LDHA were upregulated, and PGAM1, SLC2A3, and
LDHB were downregulated in PCa (Figure 1(a)). GSE6919
database analysis result indicated that HK2, SLC2A1,
PKM2, and SLC2A3 were upregulated, and LDHA, ALDOA,
PGAM1, and LDHB were downregulated in PCa
(Figure 1(b)). The combined analysis data suggested that
HK2, SLC2A1, and PKM2 were increased, while PGAM1
and LDHB were decreased in both datasets.
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Figure 3: Several glycolytic regulators were dysregulated in PCa samples. (a) HK2, (c) SLC2A1, (e) PKM2, (f) LDHA, (i) SLC2A3, (k)
PFKFB2, and (l) TPI1 levels were higher in the samples of PCa, and (j) LDHB was decreased in PCa.
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Figure 4: Continued.
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Next, the GEPIA dataset was applied to validate these
analyses based on RNA-sequence data. We observed a simi-
lar result that HK2, SLC2A1, LDHA, PFKFB2, TPI1, and
ENO1 were upregulated, while PFKFB3, ALDOA, PGAM1,
SLC2A3, and LDHB were downregulated in PCa compared
to those in normal prostate tissues (Figure 2).

3.2. RT-PCR Assay Validation of Glycolytic Regulators’
Expression Levels in PCa. RT-PCR assay was then conducted
to examine glycolytic regulators’ expression levels in 80 nor-
mal prostate tissues and 20 PCa tissues. The data indicated
that HK2, SLC2A1, PKM2, LDHA, SLC2A3, PFKFB2, and
TPI1 levels were higher in the samples of PCa than those
in the samples of normal prostate (Figures 3(a), 3(c), 3(e),
3(f), 3(i), 3(k), and 3(l)). In contrast, LDHB was decreased
in PCa relative to that in normal prostate samples
(Figure 3(j)). However, PFKFB3, ALODA, PGK1, PGAM1,
and ENO1 expression was not alternated both in the sam-
ples of PCa and normal prostate (Figures 3(b), 3(d), 3(g),
3(h), and 3(m)).

3.3. Screening and Verification of Prognosis-Related DEGs.
We tried to verify the correlation of the 13 glycolytic regula-
tors with PCa patients’ prognosis. We carried out LASSO
regression with tenfold cross-validation to obtain the mini-
mum partial likelihood deviance (λmin = 0:025)-derived
optimal lambda value (Figure 4(a)), which had a relationship
to 14 DEGs significantly related to progression-free survival
(Figure 4(b)).

We used TCGA dataset to conduct Kaplan–Meier
curve analysis for further evaluating the prognostic value
of glycolytic regulators in PCa. The glycolytic regulators’
median expression was considered as the cutoff to separate
PCa into highly expressed and lowly expressed samples.
Figure 4 illustrates that obvious correlation between higher
expression of TPI1 (Figure 4(c)), ALDOA (Figure 4(d)),
ENO1 (Figure 4(e)), LDHA (Figure 4(g)), and PKM
(Figure 4(i)) and longer progression-free survival time
was demonstrated in PCa. Meanwhile, our data also

revealed that slight association between highly expressed
LDHB (Figure 4(f)) and HK2 (Figure 4(h)) in PCa and
shorter progression-free survival time was shown in PCa.
Our findings implied that the dysregulated glycolytic regu-
lators in PCa were probable promising indicators in prog-
nosing PCa.

3.4. Establishing and Estimating the 8-Gene Prognostic
Signature. Then, we constructed the 8 gene-based risk
score on the basis of their Cox coefficients: risk score =
ð−0:069Þ∗ EXP ðHK2Þ + ð0:1896Þ ∗ EXP ðPGK1Þ + ð0:1718Þ
∗ EXP ðPKMÞ + ð0:0105Þ ∗ EXP ðLDHAÞ + ð0:3124Þ ∗ EXP
ðALDOAÞ + ð−0:1481Þ ∗ EXP ðLDHBÞ + ð0:0121Þ ∗ EXP
ðTPI1Þ + ð0:1128Þ ∗ EXP ðENO1Þ. Then, we calculated each
patient’s risk score, and then, we utilized “survminer” R
package to acquire the median cutoff point and classified
those patients into the high- and low-risk groups
(Figure 5(a)). Our data suggested that compared to the low-
risk group, the high-risk group showed worse PFS
(Figure 5(b)). Furthermore, the area under the curve (AUC)
analysis indicated that the 8-gene prognostic signature had
well predictive capability in 1-year, 3-year, and 5-year PFS
for prostate cancer (Figure 5(c)).

3.5. The Glycolysis Signature Could Predict the Tumor
Immune Infiltration Levels in PCa. Then, we evaluate the
correlation of glycolysis signature risk score with neoplasm
immune infiltration levels in PCa. Our results showed higher
risk score was significantly negatively related to lower NK
cell infiltration levels (Figure 6(a)), neutrophil cell infiltra-
tion levels (Figure 6(b)), and macrophage M2 cell infiltration
levels (Figure 6(d)) in PCa. However, higher risk score was
significantly positively related to higher myeloid dendritic
cell infiltration levels (Figure 6(c)) in PCa.

3.6. Bioinformatics Analysis of Glycolytic Regulators in PCa.
Despite the function of these regulators in modulating
glycolysis had been elucidated clearly, the nonmetabolic
function of glycolytic regulators in PCa was not yet clear.

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + +

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++ ++++++ + +

Log−rank P = 0.216
HR (G1) = 1.292

 95% CI (0.861, 1.94)

PKM-H
PKM-L

0.00

0.25

0.50

0.75

1.00

+
+

0 5 10 15
Time (years)

Pr
og

re
ss

io
n 

fre
e s

ur
vi

va
l p

ro
ba

bi
lit

y
(i)

Figure 4: Screening and verification of prognosis-related DEGs. (a) LASSO regression with tenfold cross-validation was used to obtain the
minimum partial likelihood deviance (λmin = 0:025)-derived optimal lambda value. (b) 14 DEGs were significantly related to progression-
free survival of PCa. (c) TPI1, (d) ALDOA, (e) ENO1, (g) LDHA, and (i) PKM were positively related to longer progression-free survival
time. (f) LDHB and (h) HK2 were positively related to shorter progression-free survival time.
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Figure 5: Continued.
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Herein, we conducted coexpression analysis for glycolytic
regulators to identify their downstream targets. Bioinformat-
ics analysis results showed that positively-related glycolytic
regulators took part in regulating MAPK cascade, mitochon-
drial electron transport, NIK/NF-kappaB signaling, cell
adhesion, mitochondrial respiratory chain complex I assem-
bly, extracellular matrix organization, Wnt signaling path-
way, mitochondrial translational elongation, inflammatory
response, and angiogenesis (Figure 7(a)). Glycolytic regula-
tors negatively related were involved in regulating transcrip-
tion, histone acetylation, cellular response to DNA damage
stimulus, covalent chromatin modification, viral process,

histone H3-K4 methylation, chromatin remodeling, protein
sumoylation, protein polyubiquitination, and DNA repair
(Figure 7(b)).

4. Discussion

PCa is the commonly generated noncutaneous neoplasm in
men worldwide [1]. Despite a few pathways, such as AR
signaling [2], Wnt signaling [15], and mTOR signaling
[16], identified to be involved in regulating PCa progression,
the mechanisms of PCa tumorigenesis were yet elusive.
Accordingly, to uncover split-new biomarkers for forecasting
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Figure 5: The 8-gene prognostic signature had well predictive capability. (a) The median cutoff of the high- and low-risk groups. (b) The
high-risk group was positively related to shorter PFS. (c) The predictive capability of 8-gene prognostic signature in 1-year, 3-year, and 5-
year PFS for prostate cancer.
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PCa still faced the challenge. Here, we focused on evaluating
the prognostic value of glycolytic regulators in PCa. We
observed glycolytic regulators were dysregulated in PCa sam-
ples using GSE8511, GSE6919, and GEPIA. By detecting
their expression in clinical PCa samples, we validated
SLC2A1, SLC2A3, HK2, PFKFB2, TPI1, PKM2, and LDHA
had higher expression in PCa than normal prostate tissues.
Interestingly, we found higher expression of SLC2A3 and
LDHB in PCa was associated with shorter PFS time in PCa.
Bioinformatics analysis indicated that glycolytic regulators
took part in the regulation of various nonmetabolic biological
processes, such as RNA transport, biosynthesis of antibiotics,
and cell cycle.

Emerging studies showed that cancer cells were prone to
sustaining energy supply via Warburg effect even under
ambient oxygen supply. Multiple enzymes comprising
SLC2A1, SLC2A3, HK2, PFKFB2, PFKFB3, ALDOA, TPI1,
PGK1, PGAM1, ENO1, PKM2, LDHA, and LDHB were
reported to be involved in regulating this biological process.
Previous studies reported these glycolytic regulators were
dysregulated in multiple types of cancers. For instance,
PKM2 was upregulated in cervical cancer [17], and knock-
down of PKM2 suppressed cancer epithelial-mesenchymal
transition [18]. PFKFB3 was overexpressed in tumor sam-
ples and could promote breast cancer xenograft growth
[19]. In prostate cancer, a few regulators, such as HK2 and
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Figure 6: The glycolysis signature could predict the tumor immune infiltration levels in PCa. The higher risk score was significantly
negatively related to lower (a) NK cell infiltration levels, (b) neutrophil cell infiltration levels, and (d) macrophage M2 cell infiltration
levels in PCa. (c) The higher risk score was significantly positively related to higher myeloid dendritic cell infiltration levels.
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SLC2A3, were indicated to participate in the regulation of
PCa progression [20, 21]. For instance, HK2 was involved
in the cell growth regulation in PTEN and p53 deficiency-
driven PCa [22].

In our context, we discovered HK2, SLC2A1, PKM2,
ALDOA, SLC2A1, SLC2A3, HK2, PFKFB2, PFKFB3,
ALDOA, TPI1, PGK1, and PGAM1 expression was increased.
HK2, PFKFB2, PFKFB3, ALDOA, TPI1, PGK1, and PGAM1
expression was decreased in PCa. Besides, our data suggested
that upregulated SLC2A3, LDHB, and PFKFB3 and downreg-
ulated SLC2A1 had association with longer PFS in PCa. More-
over, we revealed dysregulation of TPI1, ALDOA, ENO1,
LDHA, PKM, LDHB, and HK2 exhibited a correlation with
PFS time in PCa. Furthermore, we constructed a new 8-gene
glycolytic regulator signature, which could predict the PFS
time and tumor immune infiltration levels of PCa. These
results showed glycolytic regulators could be thought as newly
produced biomarker for PCa prognosis.

Although glycolytic regulators’ roles in Warburg effect
had been demonstrated clearly, the nonmetabolic function
in human cancers needed to be deeply explored. For
example, PKM2 promotes ovarian cancer growth though
regulating CCND1 and CDKN1A expression [23]. PGK1
could mediate the activation of the AKT/mTOR pathway,
thus facilitating lung cancer metastasis [24]. We here
firstly explored the nonmetabolic roles of these genes in
PCa by coexpression analysis. Our data suggested that gly-
colytic regulators were involved in regulating MAPK cas-
cade, mitochondrial electron transport, NIK/NF-kappaB
signaling, cell adhesion, transcription, histone acetylation,
and DNA repair. Oncogenic activation of the MAPK path-
way was frequently observed in PCa progression. The
recent studies indicated the crosstalk among AR, MAPK,
and WNT signaling participated in modulating facilitated
PCa growth and drug resistance. Characterization of the
genomic landscape of prostate cancer has demonstrated
frequent aberrations in DNA repair pathways, identifiable

in up to 25% of patients with metastatic disease, which
may sensitize to novel therapies, including PARP inhibi-
tors and immunotherapy.

5. Conclusions

To sum up, the present study showed glycolytic regulators
were dysregulated and associated with the PFS time in
PCa. Nonetheless, we still need more validation of these
glycolytic regulators’ molecular mechanism in PCa, but our
study could also provide a new hint of unearthing novel
biomarkers for PCa prognosis.
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