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Recent revolutionary results of deep learning indicate the advent of reliable classifiers to perform difficult tasks in medical
diagnosis. Fatty liver is a common liver disease, and it is also one of the major challenges people face in disease prevention. It
will cause many complications, which need to be found and treated in time. In the field of automatic diagnosis of fatty liver
ultrasound images, there are problems of less data amount, and the pathological images of different severity are similar.
Therefore, this paper proposes a classification method through combining convolutional neural network with the differential
image patches based on pixel-level features for fatty liver ultrasonic images. It can automatically diagnose the ultrasonic images
of normal liver, low-grade fatty liver, moderate grade fatty liver, and severe fatty liver. The proposed method not only solves
the problem of less data amount but also improves the accuracy of classification. Compared with other deep learning methods
and traditional methods, the experimental results show that our method has better accuracy than other classification methods.

1. Introduction

Abnormality classification and detection on medical images
have attracted the attention of many researchers till the pres-
ent moment [1-14]. There are the classification of fatty liver
disease [1, 4-6], the classification of breast lesions [2, 3, 7, 9,
11, 13], the detection of polycystic ovary syndrome [8], the
examinations of the abdominal aorta [10], the brain abnor-
mality classification [12, 14], the lung diseases detection
[15, 16], and so on. Researches on classification and detec-
tion of medical images are typical for magnetic resonance
imaging (MRI), computed tomography (CT), ultrasound
image, X-ray image, etc. However, the classification and
detection on ultrasound images are more troublesome
because of its low contrast and lots of speckle.

Since Hinton and Salakhutdinow [17] have first pro-
posed a deep learning method in 2006, many deep neural
networks, such as visual geometry group (VGG) [18],
GoogleNet [19], residual network (ResNet) [20], and
AlexNet [21], are utilized to medical image classification

and detection problems. Maxwell et al. [1] proposed the pre-
diction model for chronic diseases through applying deep
learning. Han et al. [2] exploited the deep learning frame-
work to differentiate the distinctive types of lesions and nod-
ules in ultrasound breast images. Shi et al. [3] used stacked
deep polynomial network to classify tumor in the breast
B-mode ultrasound dataset and prostate ultrasound elastog-
raphy dataset. Meng et al. [4] investigated a liver fibrosis clas-
sification method combining transfer learning (TL) and
VGGNet [18]. Talo et al. [12] proposed a deep transfer learn-
ing based on ResNet34 model to automatically classify nor-
mal and abnormal brain MR images. Xi et al. [13] applied
an improved CNN network for automatic feature learning
and classifier building on mammography abnormality detec-
tion. So far, the number of layers in the reported deep learn-
ing networks is several tens of stacked layers (depth) and
even up to more than 100 layers. Liu and Fang [22] demon-
strated that neural networks with more stacked layers (depth)
had not yet shown remarkable advantages compared to con-
ventional methods in a low-level vision task. Therefore, this
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paper investigated a classification method for fatty liver ultra-
sonic images using shallow layer CNN.

Fatty liver is an acquired metabolic stress-related liver
disorder, and about 20%~30% of the population have fatty
liver in China [23]. In general, the texture of the normal liver
ultrasonic image is uniform. When fat particles are con-
tained in the liver, the texture of the liver is nonuniform.
Thus, pixel-level features play an important role in classifica-
tion problems for the normal liver images and the fatty liver
images. A great deal of computational algorithms, such as
gray-level cooccurrence matrix (GLCM) [24, 25], Gabor’s
filters [26], and wavelet transform [27, 28], has been pro-
posed to analyze the ultrasonic images of the fatty liver in
computer-aided diagnosis (CAD) systems. However, there
are few researches on classification of fatty liver ultrasound
images using deep learning method. Che et al. [29] proposed
a multiscale CNN to classify whether there is fatty liver, but
this method only studied the binary classification problem
and did not classify the degree of disease, similar to [30, 31].
Zamanian et al. [32] proposed the combinational deep learn-
ing algorithm, but it combines a variety of network for feature
extraction, resulting in a complex network structure.

Due to the particularity of medical imaging, medical
images are not as high quality as other natural images, and
image annotation can only be performed by professional
doctors. In the field of medical image analysis, only a small
amount of data can be used to train deep learning models,
which often leads to poor results. At the same time, because
ultrasound images of fatty liver do not have obvious texture
features, it will also lead to CNN difficult to obtain ideal
results. As an important factor, statistical regularities of
pixel-level features have been utilized for image denoising
[22] and hyperspectral image classification-based deep
learning [33]. Therefore, in this paper, we combine shallow
layer convolutional neural network (CNN) with the differen-
tial image patches based on pixel-level features to solve the
classification problem of fatty liver ultrasonic images.

The rest of this paper is structured as follows. Section 2
presents the motive of this work. Section 3 proposes our
convolutional neural network architecture. Experimental
results and discussion are given in Section 4, and Section 5
is the conclusions.

2. Problem Statement

In a convolutional neural network, the receptive field size of
the convolutional filter is enlarged when the networks go
deeper. For instance, the geometric receptive size of a stack
of two 3 x3 convolutional layers is equivalent to 5x5.
Therefore, the features learned by deeper convolutional
layers are the abstractions or combinations of the previous
features learned by shallower layers. Intuitively, the perfor-
mance of the networks should improve with the increasing
of depth. However, training deep neural networks would
be trapped into degradation problems. Such degradation is
not caused by overfitting, and adding more layers to a suit-
ably deep model leads to higher training error [20].

The number of features extracted by a convolutional
layer is multiplicatively correlated to the width of the net-
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work (number of channels). Generally speaking, the widen-
ing convolutional networks can help a convolutional layer
to learn more features. However, the main features of the
liver ultrasonic image are usually the different scale of
speckles, whose amount is limited in hundreds. These
speckles of the liver ultrasonic image are approximately
uniformly distributed. Assuming that, in a 30 x 30 sample
image, there are 100 speckles of different shape correspond-
ing to 100 features in the particular layer, the optimal width
of this layer is 100. Adding more channels would be just
redundant and invalid. Thus, the training performance
would not improve continuously with widening the network,
but it is saturated. Figure 1 illustrates the feature maps
through the different convolutional layers in the CNN net-
work. From these results, we can see that the texture features
of the fatty liver image are obvious after one or three convo-
lutional layers. In addition, the liver texture features are
weakened with the convolution layer increases, and this
leads to higher training error for a deep model [20].

Inspired by the application of deep learning with pixel-
level features [20, 22], this paper first investigates the depth
and width of deep learning network for classification of fatty
liver ultrasonic images. Then, we propose a classification
method through CNN with the differential images based
on pixel-level features for the normal liver, low-grade fatty
liver, moderate grade fatty liver, and severe fatty liver.

3. Our CNN Architecture

The architecture of the proposed network is indicated in
Figure 2. It contains two convolutional layers, one pooling
layer, and one fully connected layer. Here, we describe data
extension strategy based on pixel-level features and deter-
mine our network structure components in detail.

3.1. Data Extension Strategy Based on Pixel-Level Features.
In this section, we propose a data extension strategy for
improving the network performance by manipulating its
input data. The augmented image data include two parts:
original image patches and differential image patches.

In order to train the classifier of fatty liver images, we
utilize the ultrasonic image of the normal liver, low-grade
fatty liver, moderate grade fatty liver, and severe fatty liver,
i.e., 32 images with a 1024 x 768 resolution. About 32 ultra-
sonic images come from 16 persons which are composed of
4 normal liver, 4 low-grade fatty liver, 4 moderate grade fatty
liver, and 4 severe fatty liver. For each ultrasonic image, we
use one moving window with the size w to augment the
training images. Figure 3 presents an example of generating
image patches through the annotations of the ultrasonic liver
images. Each class has about 500 examples, and this
amounts to about 2000 training examples. Figure 4 gives
the quantitative and statistical analysis of the training exam-
ples of four liver ultrasonic images. The C1, C2, C3, and C4
correspond to the normal liver, low-grade fatty liver, moder-
ate grade fatty liver, and severe fatty liver. We can see that
most of the image patches have different gray-scale intervals.

From Figure 4, we have found that the gray scale of the
fatty liver image C1 and C2 classes is close, and that of the
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FIGURE 1: The feature maps with the different convolutional layers.
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FiGUre 2: The flowchart of the proposed CNN architecture.

C3 and (4 classes is close. Therefore, we propose the image
patches expanded strategy based on pixel-level features for
the two groups {C1, C2} and {C3, C4}.

First, the total average value ¢ of the input image patches
of C1 and C2 classes (see Figure 4) is calculated by

1 nl n2
=;<ZC1i+ Zcz,), (1)
i=1 i=1

where n=nl + n2 is the total number of the image patches
in C1 and C2 classes, nl is the number of the image patches
in CI class, and #2 is the number of the image patches in the
C2 class.

Then, the mean values ¢, and ¢, of the image patches in
C1 class and C2 class are estimated from

1 nl

¢1 nl; i (2)
1 n2

@, = EZ C2,. (3)

Finally, the differential images DI, in C1 and C2 classes
are obtained from

DL =1~ (g~ ) (i=1.2;j=12n), ()

where I; is original image patch.
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FiGuRrk 3: Example of generating image patches through the annotations of the ultrasonic liver images. (a) An ultrasonic image of normal
liver. (b) An ultrasonic image of severe fatty liver. In the normal liver, the echo at the rear of the liver is obvious (marked by five blue arrows
in (a)). When a large amount of fat particles is contained in the liver, the liver ultrasonic image turns white and the echo attenuation is

serious (marked by two blue arrows in (b)).
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FIGURE 4: Quantitative and statistical analysis on the training examples of four liver ultrasonic images. The red line stands for the gray mean,
the upper black line is the maximum gray value, and the down black line is minimum gray value.

In this work, we estimated about 250 differential images
for C1 and C2 classes. In order to describe remarkably the
differential images based on pixel-level features, the pseudo-
color images of the differential images are presented (see in
Figure 5). Similarly, the differential images in C3 and C4
classes are likewise obtained. In a word, we may construct
two input data for our CNN architecture, namely, original
image patches and differential image patches (see Figure 5).

3.2. Determine Structure Components of Our CNN Network.
In this section, we investigate an efficient CNN network
architecture that can identify four classes of liver ultrasonic
images. In order to find the parameters that make the possi-
ble optimal performance of our CNN network architecture,
we compare the correct identification rate of four classes of
liver ultrasonic images on our dataset during training with

the different number of layers, different number of filters
for each layer, and different filter sizes, respectively.

A CNN is made of three layers: an input layer, multiple
hidden layers, and an output layer [21]. The hidden layers
typically consist of convolutional layers, pooling layers, fully
connected layers, and normalization layers. The convolu-
tional layer is the core of a CNN that carries out most of
the computational work. The pooling layer is a form of non-
linear downsampling and may reduce the spatial size of the
representation, the number of parameters, and the amount
of computation in the network. Fully connected layer is a
connection to all activations in the previous layer, and these
activations are computed with a matrix multiplication
followed by a bias offset. Fan and Farrell [23] demonstrated
that deeper network’s layers may achieve more powerful the
learning capacity in high-level vision tasks. Then, in low-
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FiGURE 5: Input windows with w = 28, from original ultrasonic images and differential images. The C1, C2, C3, and C4 correspond to the
normal liver, low-grade fatty liver, moderate grade fatty liver, and severe fatty liver.

level vision tasks such as pixel-level features, the depth of
networks is not the key. Thus, we determine the structure
components of our CNN by comparing and analyzing the
number of layers, the number of filters, the size of filters,
and the normalization layers.

First, we discussed the influence of the different number
of layers on the accuracy of the liver image classification. As
we can see in Figure 6(a), the performance of CNN is the
highest in the liver ultrasonic image classification when the
number of the convolutional layer is 2. This result also indi-
cated that fewer network layers might achieve higher perfor-
mance in low-level vision tasks [5].

Next, the different number of filters in CNNs is imple-
mented to identify the liver ultrasonic images while the
number of layers is fixed to 2. We can see that the accuracy
of liver images keeps growing vastly in a few training steps
while the number of filters is up to 198K from Figure 6(b).
These results show that the CNN with 198K has achieved
remarkable performance gains than the networks with other
filters 64K and 250 K.

Third, we analyze the recognition rate of the liver images
under the different size of filters when the number of layers
and filters is unchanged. From Figure 6(c), we can find that
there is almost no difference in the accuracy of three filters
with different sizes. However, the filter size of 3 x 3 has a fas-
ter convergence speed, and its parameter amount and calcu-
lation amount are less than 5x 5 and 7 x 7. Therefore, the
size of final filter is 3 x 3.

Finally, the influence of BN layer to the structure of a
neural network is explored. At present, most of the
researches on deep learning indicate that adding BN layer
may improve the performance of the network. However, is
the BN layer necessary in low-level vision tasks [34]? Here,
we compare the added BN layer network with the network
without BN layer and the result is shown in Figure 6(d).
We find that the accuracy of the network with BN layer
has very significant fluctuations, and that of the network
without BN is more stable.

To summarize, our CNN consists of two convolutional
layers, one pooling layer, and one fully connected layer.
The number of filters is 198 K, and the size of filter is 3 x 3.

3.3. Optimizing the CNN Architecture. In this CNN network,
we need to classify four types for all fatty liver images. The
output of the network structure is an array, and it contains

four elements. Let the output of the fully connected layer
be y1, y2, ¥3, and y4; the output is regressed by the softmax
function [35].

eyi

Y (i) = softmax(y,) = ﬂ.

(5)

Obviously, we make the output of each class range from
0to1and Y7y, = 1. In our classification model, we aim to
learn a mapping function R(i)=Y(i;0), where 0 is the
weight parameter of the network structure. The distance
L(0) [35] between the true value and the network output
is calculated by the cross-entropy function (6). Generally,
the smaller the distance, the better the classification effect
of the CNN network.

L(6) =~ Y R(i) log Y(i36), (6)

where L(6) is the loss function. In order to improve the
nonlinearity of the proposed network model, we select the
rectified linear unit (ReLU) function which is widely used as
the activation function. The ReLU function [35] G(hy(x)) is
written by

G(hg(x)) = max (0, hg(x)), (7)

where hy(x) is the output of the convolutional layers, and 6 is
the weight parameter of the proposed network. When the
input is negative, the output of the function becomes zero.
This property of ReLU can disable many neurons in the neural
network and make the network sparse. This sparsity is very
effective for CNN models. In fact, when extracting features,
there are not many features in an image. Especially for ultra-
sonic images of fatty liver, feature information is the most use-
ful information for network models. A large amount of
redundant information is not conducive to feature extraction
of CNN, improves the training difficulty of the model, and
reduces the learning ability. The activation function makes
many neural nodes invalid, and it also activates some nodes.
The sparse network generated in this way is conducive to more
efficient feature extraction of the model.

The network structure is determined by the characteris-
tics of the fatty liver ultrasound image itself. In order to
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FiGure 6: Comparison of accuracy on liver ultrasonic images during training for CNNs with different structure components: (a) number of
layers, (b) number of filters, (c) size of filters, and (d) with or without BN (batch normalization).

enhance the gray-scale features of fatty liver images, we esti-
mate the difference between different types of images to get
the differential image, which can significantly improve the
classification accuracy. A skip connection with the differen-
tial images is added to the network structure in order to
improve the classification accuracy.

In the proposed convolutional network, the characteris-
tics of fatty liver images gradually were reduced with the
number of networks increasing because the texture informa-
tion of the fatty liver images was not very rich. This may lead
to a reduction in the accuracy of the classification on fatty
liver image. Therefore, we add a skip connection to the pro-

posed network structure. Let x; be the output of the previous
layer and A be a skip connection; the input of the current
layer y, is written by [35]

yi=x;+A (8)

For the proposed network (see in Figure 1), a skip con-
nection from the input end to the input of the second convo-
lutional layer is added to make up the lost details. In the skip
layer, we have sampled the differential images, and the
downsampling technology is pooling.
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4. Experimental Results

4.1. Experimental Setting

4.1.1. Training and Testing Data. The fatty liver ultrasound
data were obtained from real patients in the hospital with
the help of professional radiologists. The image labels are
marked by doctors, who judge the image according to clini-
cal experience to determine which type of fatty liver belongs
to. For liver ultrasonic images, we choose four types of ultra-
sonic images: the normal liver, low-grade fatty liver, moder-
ate grade fatty liver, and severe fatty liver. Eight images of
size 1024 x 768 pixels were obtained for each class image.
And we generated about 500 image patches with same size
using the moving windows and about 250 differential images
using the data extension strategy based on pixel-level fea-
tures. This amounts to 3000 training examples, in which
each class is equally represented. The image dataset includ-
ing image patches and the differential images has been
divided into a training and a testing set, where the differen-
tial images used to build the CNN model are not utilized for
the testing set. In the proposed CNN for image classification
with known types, we select 50% image patches (1000
patches) and all differential image patches (1000 patches)
to train the CNN model and the remaining 50% image
patches (1000 patches) for the testing set. The size of the
image patches is 28 x 28 pixels.

4.1.2. Parameter Setting and Network Training. All experi-
ments are performed on a computer with an AMD Ryzen
1700 3.0 GHz processor, 16GB of RAM, and GTX 1070Ti
graphics cards. We implement the training with step learn-
ing rate policy along the basic learning rate of 0.001 and
chose Adam as an optimization function. Meantime, the
learning rate will gradually decrease with the increase of
the epoch.

Through the comparison of the final experimental
results, we finally determined that the CNN network struc-
ture has two convolution layers, one pooling layer, and one
fully connected layer. We used 198 convolution kernels.
The parameters in our CNN model are listed in Table 1.
The final network structure is not very deep, but very wide,
which is more suitable for our fatty liver image.

4.2. Comparison with Other Methods. In the first experiment,
we compare the proposed CNN adding a skip connection
(see the structure of A in Figure 7) with the proposed
CNN without a skip connection (see the structure of B in
Figure 7). We found that a training network with a deeper
structure may cause liver image texture or gray features dis-
appear. The image recognition rate has little improvement
with the number of layers increasing. Hence, the differential
images are added to the output of the pooling layer in order
to avoid the fatty liver image texture or gray features
disappear. Figure 7 illustrates the effect of the structure A
with a skip connection and the structure B without a skip
connection. This result shows that the accuracy of the
structure A is higher than that of the structure B after 200
steps of training.

TaBLE 1: The parameters in our CNN model.

Input (28 x 28 ultrasound image patches)
Conv3: 3 x 3 size, 64 filters, stride = 1, padding =1
ReLU: max (0, hg(x))

Pool: 2 x 2 size, stride=1
Conv3: 3 x 3 size, 198 filters, stride = 1
ReLU: max (0, hy(x))

FC-19200 (full connect)

FC-4 (output of our CNN model)
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FiGUure 7: Comparison of the accuracy on the structure A with a
skip connection and the structure B without a skip connection.
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In the second experiment, the proposed CNN method is
performed using the image patches with the different size as
28 x 28, 35 x 35, 40 x 40, and 55 x 55 pixels. We can see that
there is not much difference between the different size
images from Figure 8. The size of 55 x 55 pixels may have
higher accuracy in the early stage of training, but its accu-
racy is decreasing with the number of iterations increasing.
This is because the size of the image is too large, and there
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TaBLE 2: The comparison of the proposed method with other three methods.
Methods Layers Filters Filter size FLOPs (M) Params (M) Accuracy Specificity Sensitivity
Proposed method 3 198 3x3 2448 2376 92% 95% 83%
VggNet [18] 16 512 3x3 1055 134 82% 88% 78%
Inception-v3 [36] 22 192 nxl1 234 21 85% 90% 79%
GLCM-svm [24] - — — - - 79% 81% 46%
Gabor’s filters-svm [26] — — — — — 54% 55% 46%
Wavelet-svm [28] — — — — — 80% 82% 79%
TaBLE 3: The comparison of the proposed method with other three methods.
Methods Filters Filter size Accuracy (%) Specificity Sensitivity
CNNs with 10 layers (40 x 40) [21] 32 3%3 82% 0.88 078
CNNs with 20 layers (40 x 40) [21] 32 3x3 80% 0.86 0.75
Our CNN without a skip connection 198 3x3 88% 0.92 0.81
Our CNN with a skip connection 198 3x3 92% 0.95 0.83

is an overfitting problem during the iteration. Different size
image patches have almost no substantial difference for the
accuracy of the image classification. A larger size of 55 x 55
pixels is slightly better in accuracy, but it may have an over-
fitting problem in training.

The third experiment is that the proposed CNN method
is the comparison with several state-of-the-art liver image
classification methods, including VGGNet [18], inception-
v3 [36], GLCM-svm [24], Gabor’s filters-svm [26], and
wavelet transform-svm [28].

For the classification of fatty liver images, the most com-
monly used is GLCM computing eigenvectors to analyze
texture features and then classify. Now with the develop-
ment of deep learning, some networks for image classifica-
tion have been widely used, such as inception-v3 [36] and
VggNet [18]. In this experiment, we classify our experimen-
tal datasets using these three networks, and the classification
results are listed in Table 2.

From Table 2, VggNet [18] and inception-v3 [36] do not
achieve good results for the classification of the fatty liver
images although these methods can get a higher recognition
rate for natural images. The traditional gray GLCM method
[24] also has great limitations for our fatty liver image clas-
sification because it is time consuming. The result of wavelet
transform [28] is better than that of Gabor’s filter [26], but it
is inferior to that of the proposed method. Comparing the
traditional methods [24, 26, 28], the CNN model can extract
deeper features of ultrasound images. At the same time, we
compare the complexity of three kinds of networks. The cal-
culation amount corresponds to the time complexity, and
the parameter amount corresponds to the space complexity.
In the field of deep learning, the indicator commonly used to
evaluate the amount of calculation is floating point opera-
tions (FLOPs), and the parameter amount is abbreviated as
Params. It can be seen that the proposed method has higher

FLOPs and Params. This is because this method only uses a
small number of layers, which will result in a large shape of
the fully connected layer. The fully connected layer produces
more than 90% of FLOPs and Params. To sum up, the pro-
posed method uses complexity to exchange precision and
has the best results in accuracy and other indicators.

In addition, we also used the networks with the different
layers to classify fatty liver images using the same image
patches with the size as 40 x 40 pixels. The experimental
results are listed in Table 3. We can see that although the
network is very deep, the effect is not as good as our shallow
network structure. This is because our fatty liver texture fea-
tures will gradually disappear with the network deepening.
When we optimize the use of the jump layer through adding
the differential images, the final classification effect is better
without increasing the depth of the network structure.

5. Conclusion

In this work, we have described a fatty liver image classifica-
tion method through combining shallow layer convolutional
neural network (CNN) with the differential image patches
based on pixel-level features. Data extension strategy based
on pixel-level features was proposed to augment the dataset
of fatty liver ultrasonic images in order to solve the problem
of insufficient samples and obscure image texture features.
Experimental results show that the proposed method is good
enough to boost the accuracy by combining the image
patches with differential images of fatty liver ultrasonic
images. In the future work, we will continue to study more
efficient methods. It is expected to further improve the accu-
racy and reduce the amount of parameters and calculations.
At the same time, we will get a large amount of fatty liver
image samples in cooperation with a hospital and will
explore the application of this method.
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