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Purpose. To identify gene signatures that are shared by autism spectrum disorder (ASD) and epilepsy (EP) and explore the
potential molecular mechanism of the two diseases using WGCNA analysis. Additionally, to verify the effects of the shared
molecular mechanism on ADHD, which is another neurological comorbidity. Methods. We screened the crosstalk genes
between ASD and EP based on WGCNA and differential expression analysis from GEO and DisGeNET database and analyzed
the function of the genes’ enrichment by GO and KEGG analyses. Then, with combination of multiple datasets and multiple
bioinformatic analysis methods, the shared gene signatures were identified. Moreover, we explored whether the shared gene
signature had influence on the other neurological disorder like ADHD by analyzing the difference of the relative genes’
expression based on bioinformatic analysis and molecular experiment. Results. By comprehensive bioinformatic analysis for
multiple datasets, we found that abnormal immune response and abnormal lipid metabolic pathway played important roles in
coincidence of ASD and EP. Base on the results of WGCNA, we got the hub genes in ASD and EP. In attention deficit and
hyperactivity disorder (ADHD) animal model, we also found a significant difference of gene expression related to sulfatide
metabolism, indicating that the abnormal sphingolipid metabolism was common in multiple neurological disorders.
Conclusion. This study reveals shared gene signatures between ASD and EP and identifies abnormal sphingolipid metabolism
as an important participant in the development of ASD, EP, and ADHD.

1. Introduction

The comorbidity among neurological diseases has attracted
a significant amount of attention because its complex symp-
toms have brought great challenges to diagnosis and treat-
ment in recent years [1]. However, there is still a limited
understanding of the etiology and pathogenesis of the
comorbidity among the neurological diseases. The co-
occurrence of these diseases highly suggests a common neu-
rophysiological mechanism between them. Autism spectrum
disorder (ASD) and epilepsy (EP) are common neurological

diseases that have early onsets in childhood. Epidemiological
study has pointed out that the prevalence of ASD in patients
with EP is 6.3%, which is much higher than that in the gen-
eral population (0.75%-1.1%) [2]. The prevalence of EP for
ASD patients can reach to 25% [3]. These statistics con-
stantly remind us of the frequent comorbidity between the
two diseases, which also suggests that both disorders may
be introduced by the same pathogenesis. It has been
acknowledged that the genetics play an important role in
the pathogenesis of ASD [4] and the EP [5], indicating that
both disorders may have common genetic basis. However,
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the common genetic basis has not still been revealed clearly
in previous studies, which only provided hypotheses sug-
gesting the imbalance between excitation and inhibition
state of the brain, abnormal synaptic plasticity, and gene
transcriptional regulation may cause the occurrence of
ASD and EP [6–10]. It is also reported that synapse-related
gene mutations exited in patients with ASD and EP, and
synapse is the key link of neuronal excitation and inhibition
[11–13]. In addition, research integrating a large number of
EP- and ASD-associated genes in the multiplex network
obtained some shared genes that are enriched in ion trans-
membrane transport and synaptic signaling [14]. Weighted
gene coexpression network analysis (WGCNA) [15] is a sys-
tems biology method used to describe the gene association
patterns between different samples and can possibly identify
highly synergistic gene series. WGCNA can identify the rela-
tionship among a large amount of gene information and
convert them into the relationship between gene set with
similar functional structure and phenotype, avoiding multi-
ple hypothesis test and correction issue. To determine the
genetic link between ASD and EP furtherly, we used
WGCNA analysis to screen overlapping genes with dysregu-
lated expression in ASD and EP, namely, crosstalk genes, to
explore the potential molecular mechanism of the comor-
bidity. This study is aimed at exploring the comorbidity
between ASD and EP by identifying the shared genetic char-
acteristics and molecular mechanisms between these two
diseases based on WGCNA.

2. Method

2.1. Extraction of Microarray Data about ASD and EP. The
gene expression profile of autism spectrum disorder and epi-
lepsy was downloaded from the Gene Expression Omnibus
(GEO) of NCBI (http://www.ncbi.nlm.nih.gov/gds/) by
using the keywords “autistic spectrum disorder” or “ASD”
and “epilepsy”. In our study, the screening criteria of many
datasets were as follows: first, the samples in the dataset
must include both case group and control group; second,
all of the data samples explored in this study should be con-
sistent and collected from blood samples; third, the dataset
must provide preprocessed data or original data that can
be used for reanalysis; fourth, the number of samples in each
group shall not be less than 10 to ensure the accuracy of
WGCNA analysis results; fifth, all of the dataset samples
should be collected from humans. Based on such screening
criteria, two datasets related to ASD (GSE18123 and
GSE42133) and two datasets related to EP (GSE7486 and
GSE143272) were included in this study. The detailed infor-
mation of the dataset is shown on Table 1, and the detailed
flow diagram is shown in Figure 1.

2.2. Identifying the Significant Modules in ASD and EP by
WGCNA. GSE42133 and GSE143272 from the GEO data-
base were selected as the analysis objects, and all genes of
the datasets were annotated and standardized, respectively.
And then, the gene expression values were transformed into
the matrixes. A total of the top 5000 genes were screened
which have the greatest difference in expression for further

analysis based on the “WGCNA” package (version 1.70-3)
of R program (version 4.0.5) to obtain the significant mod-
ules. More specifically, the gene matrixes were converted to
adjacency matrixes by using Pearson’s correlation coeffi-
cients and established the unsupervised coexpression rela-
tionship. The sample clustering tree was constructed by the
“Hclust” function to remove outlier samples, and the power
β was calculated by the “pickSoftThreshold” function to
make R2 greater than 0.8, so that the constructed gene net-
work basically conformed to the scale-free topology crite-
rion. Based on the adjacency matrix, the topological
overlap (TOM) matrix and dissimilarity matrix were estab-
lished. Next, the genes were matched with the modules of
different colors by dynamic tree cut, and the number of
the genes in a module is generally no less than 30. Other
genes that did not match the module were uniformly divided
into gray modules. Finally, the correlation between the mod-
ules and the clinical feature was calculated to identify signif-
icant modules about ASD and EP separately.

2.3. Identifying the Crosstalk Genes between ASD and EP.
The significant modules related to ASD and EP were
screened, and the related genes were extracted. The intersec-
tion between ASD- and EP-related genes was organized by
Venn diagram. This intersection is the crosstalk gene
between ASD and EP. Functional analysis was performed
to identify the biological functions of crosstalk genes, espe-
cially from the aspects of biological processes and signal
pathways.

2.4. Shared Gene Signatures between ASD and EP Based on
DisGeNET Database. DisGeNET (http://www.disgenet.org)
is a database specially containing the information of genes
and mutation sites related to human diseases. The genes
related to ASD and EP were extracted, respectively, and the
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) were performed to get the shared
gene signatures between ASD and EP.

2.5. Differential Expression Analysis. Differential expression
analysis was performed for the GSE7486 and GSE18123
dataset using the “limma” package in R program. The genes
with a Pvalue < 0:05 and ∣log FC ∣ ≥0:5 were regarded as dif-
ferentially expressed genes (DEGs). We used Venn diagram
to obtain the crosstalk genes between ASD and EP among
DEGs, and we got the shared gene signatures between ASD
and EP from function analysis of the crosstalk genes.

2.6. Analysis of Imbalance of Sphingolipid Metabolism Based
on Database. The datasets were downloaded from GEO

Table 1: The detailed information of included datasets.

ID Series Platform Disease Case Control
Sample
type

1 GSE42133 GPL10558 ASD 91 56 Blood

2 GSE143272 GPL10558 EP 34 51 Blood

3 GSE18123 GPL570 ASD 33 66 Blood

4 GSE7486 GPL570 EP 13 17 Blood
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database including GSE1675, GSE2116, GSE8051, GSE8796,
GSE12457, GSE41552, GSE53363, and GSE144548 to
observe the expression difference of target gene between
SHRs and WKYs.

2.7. Analysis of Imbalance of Sphingolipid Metabolism Based
on Molecular Biology Experiment. Five-week-old male spon-
taneously hypertensive rats (SHR) and Wistar Kyoto (WKY)
rats purchased from the Charles River Laboratories (Beijing,
China) were divided into 2 groups, respectively, in this
study, and there were 5 rats in each group. Before the exper-
iment, all the rats were adaptively fed for one week, with free
drinking and eating. When the rats were six-week-old, etho-
logical experiments including the open field test (OFT) and

the Làt maze were performed to evaluate difference of
behaviors between two groups. In the OFT, we put a box
which was 90 cm × 90 cm × 50 cm cube on the ground, with
the black inner wall and the bottom divided into 9 squares.
Then, a camera was set up above the box about 2m to ensure
that its field of vision can cover the whole inside of the box.
When the rat placed on the corner grid facing the wall was
allowed to roam free for 5 minutes, we recorded their activ-
ities including the number of square crossings and the num-
ber of rearing by the camera to observe the horizontal and
vertical activity levels of rats. In the Làt maze, a 30 cm × 30
cm × 40 cm plexiglass box was placed in the middle of a 60
cm × 60 cm × 40 cm box to make the rats move between
the big box and the glass box. We also fixed a camera above
the equipment which was used to record the rats’ free activ-
ities for 30 minutes. We counted the number of square
crossings and the number of rearing, which represented
the general activity level and nonselective attention level of
rats. We obtained the prefrontal cortex (PFC) and hippo-
campus (Hip) of the rats. Moreover, the total RNA was
extracted from PFC and Hip with TRIzol reagent (Invitro-
gen, USA) according to the manufacturer’s instructions
and was reverse transcribed to cDNA, which was conducted
as a template to perform polymerase chain reaction (PCR)
and real-time polymerase chain reaction (QPCR). The spe-
cific primers used in the experiment are listed on Table 2.

3. Result

3.1. Identifying Significant Modules and Genes in ASD and
EP by WGCNA. We firstly analyzed the sample data consist-
ing of the 91 ASD patients and 56 healthy individuals from
GSE42133. The soft-threshold power (β) was calculated as
7 according to the scale independence and mean connectiv-
ity (Figure 2(a)), and we found that the scale-free topology
was good when β was 7 because R2 was greater than 0.85
(Figure 2(b)), suggesting biological significance. As it is
shown in Figures 2(c) and 2(d) that all genes were classified
into different modules in GSE42133. Similarly, GSE143272

ASD and EP

GSE42133

WGCNA DEG Venn

GSE143272
GSE18123
GSE7386

DisGeNET
Database

GEO database Molecular
experiment

GO and KEGG analysis

ADHD

Figure 1: The flow diagram.

Table 2: Detailed information for specific primers.

Symbol Primers

Gba
Sense 5-GCAGCCAGAAGAGAAGTT-3

Antisense 5-GTGTCAGCATAGGTGTAGAT-3

Ugcg
Sense 5-ATAGCGGAATACGAGTCATT-3

Antisense 5-GGTCACATTGGCAGAGATA-3

B4galt6
Sense 5-GTTCACTACTCTGGATACAATG-3

Antisense 5-GGTCACATTGGCAGAGATA-3

Glb1
Sense 5-AACGACACTTCCTCAAGATT-3

Antisense 5-GGAGTTGCCATAGTTCACA-3

Galc
Sense 5-TGGAAGGTGGTTGATGTTATAG-3

Antisense 5-ATTGTGGCGGTCATATTGC-3

Arsa
Sense 5-TCTATGTGCCTGTGTCTCTG-3

Antisense 5-CCTACTCCAAGATGCCACTT-3

Ugt8
Sense 5-GTGGAGTGCTGTTGGAATA-3

Antisense 5-CTGGAGGCTGTAGTGATTAG-3

Gal3st1
Sense 5-CTGGATGTGCGTCTCTAC-3

Antisense 5-TGCTCTTCTTGAGGTTGTAA-3

Gapdh
Sense 5-GTATCGGACGCCTGGTTAC-3

Antisense 5-GCTCCTGGAAGATGGTGATG-3
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dataset was analyzed by using the same analysis method, and
the results were displayed in Figure 3 when β was deter-
mined to be 9. It was particularly noteworthy that we only

selected 85 samples that were not affected by drugs, which
consisted of 51 healthy individuals and 34 EP patients from
GSE143272. Given the analysis of GSE143272, the scale-free
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Figure 2: Weighted gene coexpression network analysis (WGCNA) of GSE42133. (a) Scale independence and mean connectivity. (b) The
scale-free topology when β = 7. (c) The cluster dendrogram of coexpression genes in ASD. (d) Network heat map of all genes.
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Figure 3: Weighted gene coexpression network analysis (WGCNA) of GSE143272. (a) Scale independence and mean connectivity. (b) The
scale-free topology when β = 9. (c) The cluster dendrogram of coexpression genes in EP. (d) Network heat map of all genes.
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Figure 5: The enrichment analysis of 166 crosstalk genes. (a) Gene Ontology (GO). (b) Kyoto Encyclopedia of Genes and Genomes
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topology was good when β was 9 because R2 was 0.88
(Figures 3(a) and 3(b)), and the cluster dendrogram of coex-
pression genes and network heat map was displayed in
Figures 3(c) and 3(d). A total of 16 modules were identified
in GSE42133 according to the WGCNA (Figure 4(a)). Genes
in GSE143272 were divided into 10 modules (Figure 4(b)).
In the analysis of ASD dataset, yellow module (r = 0:24, P
= 0:003), black module (r = −0:37, P = 5e − 06), and red
module (r = −0:24, P = 0:003) were positively correlated
with ASD phenotype. In the analysis of EP dataset, red mod-
ule (r = 0:37, P = 6e − 04) and turquoise module (r = 0:41,
P = 9e − 05) were positively correlated with EP phenotype.
We extracted the genes in these modules and did intersec-
tion analysis by Venn diagram, to find 166 overlapping
genes (Figure 4(c)).

3.2. Function Analysis of Crosstalk Genes from the Result of
WGCNA. A total of 166 crosstalk genes between ASD and
EP were filtered by WGCNA. Using analysis of GO and
KEGG, we found that the crosstalk genes were mostly asso-
ciated with immune pathways. As Figure 5 showed, for bio-
logical process, most crosstalk genes were enriched in
adaptive immune response, followed by platelet activation.
From the analysis of KEGG, we got the top 30 of enrichment
pathways, in which the top 5 enriched pathways were related
to immune system, especially T cell immune pathways.
Through further analysis of the 166 genes, we also discov-
ered that the lipid metabolism was involved in these diseases
in addition to the immune response. As shown in Figure 6,
the P values of glycerolipid metabolic process and lipid
phosphorylation are significant (0.027 and 0.042) according
to the GO analysis of the crosstalk genes based on WGCNA.

3.3. Analysis of Genes between Related to ASD and EP from
the DisGeNET Database. We extracted 1071 genes related
to ASD (c1510586) and 1215 genes related to EP
(c0014544) from the DisGeNET database and then per-
formed GO analysis and KEGG analysis on these genes,
respectively. We extracted the GO terms where the P
value < 0:05 from the biological process of gene enrichment
related to ASD (Figure 7(a)) and related to EP (Figure 7(b)).
We also extracted the pathways where the Pvalue < 0:05
from the KEGG analysis of the genes related to ASD
(Figure 7(c)) and EP (Figure 7(d)). The results were indi-
cated that both T cell-related immune response and lipid
metabolism had a bearing on two diseases in both biological
process analysis and KEGG analysis.

3.4. Differential Gene Analysis in ASD and EP. We performed
the differential gene analysis on the GSE18123 and GSE7486
datasets. By setting the cut-off value as P < 0:05 and ∣log 2FC
∣ >0:5, a total of 550 DEGs, we included 233 upregulated and
227 downregulated genes that were identified in the comparison
between the peripheral serum of ASD patients and the control
samples (Figure 8). For EP, a total of 729 DEGs, including
344 upregulated and 385 downregulated genes, were identified.
There were 29 genes (Figure 9(c)) overlapped in the DEGs of
ASD and EP. The GO terms of gene enrichment were shown
in Figure 9(a), and the pathways of gene enrichment based on
KEGG were shown in Figure 9(b). Although these genes were
not enriched into immune-related GO terms or KEGG path-
ways, they were associated with sphingolipid metabolism. The
P value of sphingomyelin biosynthetic process is 0.00747, and
the P value of glycosphingolipid metabolic process is 0.0426,
which belongs to biological process. For KEGG analysis, the P
value of sphingolipid metabolism is 0.0445.
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Figure 8: (a) Volcano map of ASD differentially expressed genes. (b) Volcano map of EP differentially expressed genes.
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Figure 11: Expression of the objective genes in whole brain of three-week-old and six-week-old model rats of ADHD.
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3.5. The Role of Sphingolipid Metabolism in ADHD. The
combination of WGCNA, the differential gene analysis,
and the analysis of DisGeNET database showed that lipid
metabolism, especially sphingolipid metabolism, played an
important role in the ASD and EP. According to our previ-
ous research, CycloManN propanyl perac (CycloManN pro),
an oligosaccharide compound similar to structure of sulfa-
tide, could promote the growth of neurites of PC12 cells
and played a certain role in nerve differentiation [16]. It
prompted that the imbalance of sphingolipid metabolism
might not only affect the occurrence and development of
ASD and EP but also affected the pathophysiological process
of other nervous system diseases. With Wistar Kyoto rats

(WKYs) regarded as a control strain, spontaneously hyper-
tensive rats (SHRs) are considered as a validated animal
model of ADHD [17]. To verify our assumption, the expres-
sion of genes associated with sulfatide metabolism in ADHD
model rats based on GEO database was analyzed at first. We
counted the fold change expression of the objective genes,
including Ugt8, Ugcg, Gba, Galc, Gal3st1, Glb1, Arsa, and
B4galt6, from GSE1675, GSE2116, GSE8051, GSE8796,
GSE12457, GSE41552, GSE53363, and GSE144548. We
found that the expression of Galc was significantly upregu-
lated in SHRs. In addition, the expression of Ugt8 also had
an upregulated trend in SHRs (Figure 10). To investigate
the differences in the expression of lipids in different tissue,

PFC Ugcg

6

SHR

0

2

4

Re
lat

iv
e g

en
e e

xp
re

ss
io

n

WKY

⁎

PFC Arsa
8

6

SHR

0

2

4

Re
lat

iv
e g

en
e e

xp
re

ss
io

n

WKY

⁎

PFC Ugt8

2.5

2.0

1.5

1.0

0.5

0.0

SHR

Re
lat

iv
e g

en
e e

xp
re

ss
io

n

WKY

⁎⁎⁎

PFC Cst
1.5 ns

1.0

0.5

0.0

SHR

Re
lat

iv
e g

en
e e

xp
re

ss
io

n

WKY

PFC Galc
1.5 ns

1.0

0.5

0.0

SHR

Re
lat

iv
e g

en
e e

xp
re

ss
io

n

WKY

PFC Glb1
1.5 ns

1.0

0.5

0.0

SHR

Re
lat

iv
e g

en
e e

xp
re

ss
io

n

WKY

PFC Gba
1.5 ns

1.0

0.5

0.0

SHR

Re
lat

iv
e g

en
e e

xp
re

ss
io

n

WKY

PFC B4galt6
2.0 ns

1.0

0.5

0.0

1.5

SHR

Re
lat

iv
e g

en
e e

xp
re

ss
io

n

WKY

PFC

SHR WKY SHR WKY SHR WKY SHR WKY

SHR

ARSA GBA GALC GAPDH

WKY SHR WKY SHR WKY

SHR WKY SHR WKY SHR WKY

SHR WKY

(a)

Hip Ugt8

1.5

1.0

0.5

0.0

SHR

Re
lat

iv
e g

en
e e

xp
re

ss
io

n

WKY

⁎⁎⁎

Hip Galc

1.5

1.0

0.5

0.0

SHR

Re
lat

iv
e g

en
e e

xp
re

ss
io

n

WKY

⁎⁎⁎

Hip Cst

1.5 ns

1.0

0.5

0.0

SHR

Re
lat

iv
e g

en
e e

xp
re

ss
io

n

WKY

Hip Glb1

1.5
ns

1.0

0.5

0.0

SHR

Re
lat

iv
e g

en
e e

xp
re

ss
io

n

WKY

Hip B4galt6

1.5 ns

1.0

0.5

0.0

SHR

Re
lat

iv
e g

en
e e

xp
re

ss
io

n

WKY

Hip Ugcg

1.5
⁎⁎

1.0

0.5

0.0

SHR

Re
lat

iv
e g

en
e e

xp
re

ss
io

n

WKY

Hip Arsa

1.5 ns

1.0

0.5

0.0

SHR

Re
lat

iv
e g

en
e e

xp
re

ss
io

n

WKY

Hip Gba

2.5 ns

2.0

0.5

0.0

1.5

1.0

SHR

Re
lat

iv
e g

en
e e

xp
re

ss
io

n

WKY

Hip

SHR WKY SHR WKY
SHR WKY SHR WKY

SHR WKY SHR WKY SHR WKY

SHR WKY SHR WKY SHR WKY SHR WKY

SHR WKY

(b)

Figure 12: Expression of the objective genes in specific brain regions detected by QPCR and PCR. (a) Expression of the objective genes in
PFC of model rats of ADHD. (b) Expression of the objective genes in Hip of model rats of ADHD.
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we analyzed the expression of these genes in brain tissues of
SHRs and WKYs individually. The results suggested a signif-
icant difference in the expression of Ugt8 and Glb1 in whole
brain tissue (Figure 11). In addition to the analysis of GEO
database, we also detected differential expression of the
objective genes in PFC and Hip of SHRs and WKYs. The
behavior of SHRs and WKYs was evaluated first; then, the
general activity level and anxiety level of SHRs were evalu-
ated by open field test, and their activity level and nonselec-
tive attention were evaluated by Làt maze. We found that
SHRs had significantly more square crossing and rearing
than WKYs (Supplementary Figure S1), which showed that
SHRs had significantly increased activity and vulnerable
attention, which was consistent with the symptoms of
ADHD. The expression of the objective genes was detected.
As shown in Figure 12, the expression of Ugcg and Ugt8
was significantly upregulated in PFC of SHR rats compared
to WKY rats. In addition, the expression of Ugt8 and Galc
was downregulated, and the expression of Ugcg was
upregulated in Hip.

4. Discussion

ASD is a common neurodevelopmental disorder in children
with a prevalence of approximately 6.2% [1]. Even though it
has a significant genetic component, little is known about
how hereditary predisposition leads to its emergence [18].
More than 70 million people worldwide suffer from EP, with
an average of 7.6 per 1,000 people living with EP throughout
their lives [19]. Similarly, EP has a strong genetic predispo-
sition [18]. The frequent comorbidity phenomenon of ASD
and EP suggests that they could share a common genetic
basis. Therefore, identifying the shared genetic variations
involved in both diseases can help further understand the
development of ASD and EP. We used publicly accessible
databases to identify and screen crosstalk genes and related
pathways in ASD and EP through various bioinformatic
methods. The genetic link between ASD and EP was
explored by using WGCNA. Based on WGCNA, we found
that abnormal immune response and lipid metabolism path-
ways are enriched in ASD and EP. Consequently, the abnor-
mality of immune system might be a key to the common
neurophysiological mechanism between ASD and EP. How-
ever, the data from DisGeNET database and other datasets
in GEO database only supported the lipid metabolism,
instead of immune response, as the important player in
ASD and EP development. With the participation of differ-
ent analysis, we uncovered the sphingolipid metabolic path-
way, and it was the key biological pathways causing the
coincidence of ASD and EP. Previous studies have found
abnormal development in myelination in both ASD and
EP [20–25], but little has been associated with their comor-
bidity. The results of our study suggest that abnormal sphin-
golipid metabolic pathway affects the development of ASD
and EP by modifying myelination. Interestingly, the result
of a previous experiment conducted by our group identified
an oligosaccharide compound that shared a similar structure
with sulfatide, which involves in the sphingolipid metabolic
pathway [16]. This compound can promote the growth of

neurites of PC12 cells and play a certain role in nerve differ-
entiation. Consequently, we suspected that the abnormal
sphingolipid metabolic pathway may cause pathogenesis of
comorbidities in other neurological disorders in addition to
ASD and EP. It has been reported that abnormal myelin for-
mation may be an underlying pathophysiological process of
ADHD [26, 27], but the association of sulfatide-related met-
abolic pathway with ADHD is unknown. We analyzed the
expression of the genes related to sulfatide metabolism in
ADHD animal model based on GEO database and found
that there were significant differences in involved gene
expression. Moreover, we detected the expression of these
genes in specific brain regions, and there are still expression
abnormalities. Our hypothesis was confirmed that there
were abnormal expressions of sulfatide-related metabolic
genes in ADHD that may contribute to the development of
ADHD by affecting myelination. Our study suggests that
sphingolipid metabolism is not only involved in ASD and
EP but also ADHD, which is not correlated with those two
diseases. This result implies that the sphingolipid metabo-
lism pathways are possibly involved in multiple other neuro-
logical disorders. Further investigations, possibly involve
clinical samples, are necessary to find a specific sphingolipid
that is involved in ASD, EP, and other neurological diseases.
This sphingolipid can be a potential drug target that might
deter the development of these neurological diseases. As het-
erogeneous diseases, the clinical characteristics of ASD, EP,
and ADHD are different, and the diseases are affected by
many factors. The analysis based on large-scale data will
undoubtedly obtain more detailed and accurate results.
However, due to the lack of relevant databases at present,
we only screened out four data sets that met the selection
criteria for blood sample sources and thus to reach a conclu-
sion based on small samples first. The mechanism of abnor-
mal sphingolipid metabolism pathway in the pathogenesis of
neurological diseases still needs to be further verified by
large-scale data sets, especially brain tissue data and model
animal experiments.

5. Conclusion

We identified the crosstalk genes between ASD and EP
based on WGCNA and found abnormal lipid metabolism,
especially the sphingolipid metabolism, playing an impor-
tant role in comorbidity of ASD and EP. Moreover, we
found that there was abnormal gene expression of sphingo-
lipid metabolism in ADHD animal model by GEO database
analysis and molecular experiment. In summary, abnormal-
ities in the sphingolipid metabolism are involved in the
development of ASD, EP, and ADHD, which may affect
many other neurological diseases by regulating the process
of myelination.
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