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The membranes that encompass the brain and spinal cord become inflamed by the potentially fatal infectious disease called
pneumococcal meningitis. Pneumonia and meningitis “coinfection” refers to the presence of both conditions in a single host.
In this work, we accounted for the dynamics of pneumonia and meningitis coinfection in communities by erroneously using a
compartment model to analyze and suggest management techniques to stakeholders. We have used the next generation matrix
approach and derived the effective reproduction numbers. When the reproduction number is less than one, the constructed
model yields a locally asymptotically stable disease-free equilibrium point. Additionally, we conducted a sensitivity analysis
to determine how different factors affected the incidence and transmission rate, which revealed that both the pneumonia
and meningitis transmission rates are extremely sensitive. The performance of our numerical simulation demonstrates that
the endemic equilibrium point of the pneumonia and meningitis coinfection model is locally asymptotically stable when
max fR1,R2g > 1. Finally, as preventative and control measures for the coinfection of pneumonia and meningitis illness,
the stakeholders must concentrate on reducing the transmission rates, reducing vaccination wane rates, and boosting the
portion of vaccination rates for both pneumonia and meningitis.

1. Introduction

The word “epidemiology” is derived from the Greek term
“demos,” which means “people,” and “logos,” which means
“the study of”. In other words, the term “epidemiology”
has its roots in the study of the experiences of a population.
Despite the fact that many definitions have been provided,
the one that best encapsulates the fundamental ideas and
public health perspective of epidemiology is: “Epidemiology
is the study of the prevalence and causes of health-related
conditions or incidents in particular populations, as well as
the application of this information to the prevention or
treatment of health issues” [1, 2]. In epidemiology, the fre-

quency and distribution of health events in a population
are studied.

By the term “frequency,” we not only mean the number
of health events, such as the number of cases of meningitis
or diabetes in a population, but also the correlation between
that number and the size of the population [2, 3].

The underlying premise of epidemiology is that disease
does not develop in a community at random but rather
develops only when an individual has the proper confluence
of risk factors or determinants. Individuals are the “patients”
of clinicians, whereas communities are the “patients” of epi-
demiologists. In light of this, while dealing with a patient
who is unwell, the clinician and the epidemiologist have
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separate duties. When a patient with diarrheal illness first
shows up, for instance, both parties are concerned with mak-
ing the right diagnosis [3–5].

A potentially fatal infection called pneumococcal men-
ingitis inflames the membranes that cover the brain and
spinal cord. The meninges, which are these layers, serve
to shield the brain from damage and infection [5]. Mil-
lions of people have died as a result of pneumonia, an air-
borne disease that is caused by breathing harmful
organisms, primarily Streptococcus pneumonia. Other ill-
nesses, including meningitis, ear infections, and sinus
infections, are also brought on by these bacteria [5–7].
Moreover, these illnesses can afflict people of all ages,
from infants to the elderly. Pneumonia is particularly haz-
ardous when the immune system is weakened, as in
infants or the elderly, or when it is concomitant with
another illness like meningitis [7, 8]. Pneumonia is a com-
mon coinfection that occurs at the time of admission in
cases of bacterial meningitis and is independently linked
to a poor prognosis and death [9].

The most frequent pneumococcal infection in children
are caused by 13 different varieties of pneumococcal bac-
teria. There are vaccines named PCV13, which can pro-
tect against these types, and PPSV23, which can protect
against 23 other types. For the sake of this investigation,
we have studied prior work by other researchers who
used mathematical modeling to explain the transmission
and spread of coinfections with pneumonia and meningi-
tis, such as [7, 10–13]. The majority of these investiga-
tions were carried out to identify community-level
infectious disease control methods. To our knowledge,
no one has created and examined the three kinds of vac-
cine independently in a mathematical model of meningi-
tis and pneumonia coinfection in a specific community.
As a result, this recently proposed study considers the
dynamics of meningitis and pneumonia in communities,
utilizing a deterministic compartmental model to analyze
and recommend appropriate management techniques to
actors. Therefore, we are driven and intrigued to investi-
gate the three vaccine kinds for meningitis and pneumo-
nia coinfection in this work by developing a
mathematical model of meningitis and pneumonia coin-
fection combined with regulating techniques. We have
laid up the basic framework for this investigation as fol-
lows: in Section 2, we outline and develop the compart-
mental mathematical model of coinfection with
meningitis and pneumonia. The model analysis includes
the equilibrium points, fundamental reproduction num-
bers, and stability analysis of the submodels and the main
model also presented in Section 2. Numerical simulations
and sensitivity analysis are presented in Section 3. The
study’s discussion and conclusion were then finalized.

2. Mathematical Model Formulations and Its
Qualitative Analysis

In this section we have proposed a mathematical model
which depend upon the assumption and present the qualita-
tive properties of the constructed model.

2.1. Baseline Model Formulation and Assumptions. We have
developed the new model by expanding the model which
was developed previously by another researcher based on
the following hypotheses. Under this study, we consider
homogenous population and that the factors such as
sex, social status, and race do not affect the probability
of being infected. The model subdivides the human total
population NðtÞ into nine mutually-exclusive compart-
ments, namely, susceptible population SðtÞ, pneumonia-
only infectious PIðtÞ, meningitis-only infectious MIðtÞ,
meningitis and pneumonia coinfectious MPIðtÞ, treated
class TðtÞ, meningitis vaccinated MV (t), pneumonia vac-
cinated PV (t), class of people who take both vaccines of
pneumonia and meningitis (PCV13 Pneumococcal conju-
gate vaccine) group MPVðtÞ, and recovered class ðRÞ.
The recovery from natural immunity and the effects of
vertical transmission to pneumonia and meningitis were
assumed to be insignificant in this study. Epidemiologi-
cally, individuals in the removed/recovered compartment
RðtÞ do not attain permanent immunity so that we are
assigned such case by the parameterY .

In this study the mass action-incidence rate of new infec-
tions are used, and the modification parameters ω1 and ω2
are the factors that describe the fact of how infectiousness
level of pneumonia increases the susceptibility level to men-
ingitis disease and vice versa, respectively. The meningitis
disease is assumed to be transmitted after effective contact
between the susceptible and meningitis infectious classes
with effective contact rate a, where a is a composite param-
eter that measures the meningitis contact rate κ and the
probability of transmission upon contact q. Additionally,
pneumonia disease is assumed to be transmitted after effec-
tive contact between the susceptible and pneumonia infec-
tious classes with effective contact rate b, where b is a
composite parameter which measure the pneumonia infec-
tious contact rate c and the probability of transmission upon
contact p. Individuals can get meningitis by contact rate a
from a meningitis-only infected or coinfected person with
force of infection of meningitis α1 = aðMI + ℯ1MPIÞ and join
MI compartment where ℯ1 is the modification parameter.

An individual can get pneumonia with contact rate of
b from a pneumonia-only infected or coinfected person
with force of infection of pneumonia α2 = bðPI + ℯ2MPIÞ
and join the PI compartment with modification parameter
ℯ2. Pneumonia-only infected individuals also can get an
additional meningitis infection with force of infection
and modification parameter ω1α1 and join coinfected
compartment MPI . The coinfected compartment increases
because of individuals that come from meningitis-only
infected compartment are infected by pneumonia with
force of infection and modification parameter ω2 α2. Since
the coinfected individuals are aware of the disease, they
remain there in the treated compartment even if they are
free from either pneumonia or meningitis until they are
free from all the diseases. The parameters used in the
model are described in Table 1.

Using the above assumptions and parameters, we have
constructed the following schematic diagram that is given
in Figure 1.

2 Computational and Mathematical Methods in Medicine



From the diagram given in Figure 1, the corresponding
dynamical systems will be as follows from the assumptions of
themodel and using the above basic model assumption we have
the following flow chart.

dS
dt

= 1 − πð Þλ + ϕ PV + φMV + YR – α1 + α2 + μð ÞS,
dMV

dt
= 1 − ρð Þπλ − μ + φ + ε1ð ÞMV ,

dPV

dt
= ρπλ − μ + ϕ + ε2ð ÞPV ,

dMPV

dt
= ε1MV + ε2PV − μMPV ,

dMI

dt
= α1S – ω2α2 + τ1 + δ1 + μð ÞMI ,

dPI

dt
= α2S − ω1α1 + τ2 + δ2 + μð ÞPI ,

dMPI

dt
= ω1α1PI + ω2α2MI − τ3 + δ3 + μð ÞMPI ,

dT
dt

= τ1MI + τ2PI + τ3MPI − β + μð ÞT,
dR
dt

= βT − Y + μð ÞR:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð1Þ

This system of differential equation is themathematical rep-
resentation of full meningitis and pneumonia model which is
the combination of the two diseases. In the next section, we
have studied the qualitative behavior of the constructed model.
For simplification of our work, we split the full meningitis-
pneumonia coinfection model into submodels, which are
meningitis-only and pneumonia-only models. First, we will
study the qualitative behavior of the submodel and then quali-
tative behavior of the full model is followed.

2.2. Positivity of Solutions and Invariant Region of the Only
Pneumonia-Infected Model. In this subsection, we have con-
sidered the model of pneumonia only in the absence of men-
ingitis disease. This procedure will help us to summarize and
conclude some properties of the full coinfected model
depending on the properties of sub models. To gate this sub-
model from the full model, we set, MI =MPI = 0, and we
have the following dynamical system.

The corresponding dynamical systems are as follow.

dS
dt

= 1 − πð Þλ + ϕ PV + YR – α2 + μð ÞS,
dPI

dt
= α2S − τ2 + δ2 + μð ÞPI ,

dPV

dt
= πλ − μ + ϕð ÞPV ,

dT
dt

= τ2PI − β + μð ÞT,
dR
dt

= βT − Y + μð ÞR:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð2Þ

For the dynamical systems to be epidemiologically
meaningful as well as well-posed, we need to prove that all
the state variables of dynamical systems are nonnegative.

Theorem 1. All the populations of the system with positive
initial conditions are positive.

Proof: assume Sð0Þ > 0, PIð0Þ > 0, PVð0Þ > 0, Tð0Þ > 0
and Rð0Þ > 0 are positive for time t > 0 and for all nonnega-
tive parameters.

First, let us take T = sup ft > 0 such that S ðt ′Þ > 0, PI

ðt ′Þ > 0, PVðt ′Þ > 0, Tðt ′Þ > 0 and Rðt ′Þ > 0, t ′ ∈ ½0, t�}.
From the first equation of system (2), we do have dS/dt =

ð1 − πÞλ + ϕ PV + YR – ðα2 + μÞS⇒ SðtÞ = Sð0Þe−
Ð T

0
ðα2+μÞdt ′

+ e−
Ð T

0
ðα2+μÞdt ′ ½Ð T0 e

Ð T

0
ðα2+μÞdt ′ ½ð1 − πÞλ + YR + ϕ PV �dt� > 0

⇒ SðtÞ > 0.
There, SðtÞ is positive. Following the same procedure, all

the remaining state variables are nonnegative. Therefore,
from proof, we can conclude that whenever the initial values
of the systems are all nonnegative, then all the solutions of
our dynamical system are positive.

Table 1: Descriptions of parameters of the model.

Parameter Description

a Meningitis effective contact rate

b Pneumonia effective contact rate

τ1
The rate at which meningitis-infected

individuals are treated enter to and treated class

τ2
The rate at which pneumonia-infected individuals

are treated and enter to treated class

τ3

The rate at which meningitis and pneumonia
coinfected individuals are treated and enter to

treated class

β The rate at which treated class recovered

μ Natural death rate

δ1 Meningitis-only caused death rate

δ2 Pneumonia-only caused death rate

δ3
Meningitis and pneumonia coinfection

caused death rate.

ω1 Modification parameter and ω1 ≥ 1
ω2 The modification parameter and ω2 ≥ 1
Y Rate of loss of immunity

π The portion of vaccinated new born

λ Recruitment rate

ε2
The rate at which a pneumonia vaccinated
individual takes meningitis vaccination

ε1
The rate at which a meningitis vaccinated
individual takes pneumonia vaccination

ϕ Pneumonia vaccine wanes rate

φ Meningitis vaccine wanes rate

ρ The portion in which pneumonia vaccine is given
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Theorem 2. The total human population of the dynamical
system (2) is positively closed in the closed invariant
setΩ1 = fðS, PI, PV ,T , RÞϵℝ4

+ : N1 ≤ ðλ/μÞg.
Furthermore, the system’s nonnegative solutions are all

constrained, and it may exhibit the persistence property under
any nonnegative initial concentration conditions [14].

Proof: assume the total population of the model is N1. To
get an invariant region, which shows boundedness of solution,
it can be obtained as follows.

N1 = S + PI + PV + T + R⇒ dN1

dt
= λ − μS − δ2PI − μPI − μPV − μT − μR,

ð3Þ

dN1

dt
= λ − μN1 − δ2PI ⇒

dN1

dt
+ μN1 ≤ λ, ð4Þ

N1 tð Þ ≤N0e
−μt +

λ

μ
⇒ lim

t⟶∞
N1 tð Þ ≤ λ

μ
, ð5Þ

⇒0 ≤N1 ≤ λ/μ .
Therefore, the dynamical system that we do have is

bounded.

2.3. Existence and Stability of Disease-Free Equilibrium
Point. The disease-free equilibrium point is obtained by
making all the equations equal to zero, provided that PI =
0 and the obtained disease-free equilibrium point is given by

E0
p = SO, PV ,

O PI
O, T0, ROÀ Á

= λ

μ

1 − πð Þ μ + ϕð Þ + πϕ

μ + ϕð Þ
� �

, πλ

μ + ϕð Þ , 0, 0, 0
� �

:
ð6Þ

2.3.1. Effective Reproduction Number. The reproduction
number is the number of secondary cases produced by one
infectious individual joining in a completely susceptible pop-
ulation during its infectious period [15–17].

Using the next generation matrix method, we have
obtained the effective reproduction number of
pneumonia-infected-only submodel, which is Ref ðpÞ = ðλb/
μÞðð1 − πÞðμ + ϕÞ + πϕ/ðμ + ϕÞðτ2 + δ2 + μÞÞ.

Theorem 3. The disease-free equilibrium point E0
p of the

model in system (2) is locally asymptotically stable if the effec-
tive reproduction number Ref ðpÞ < 1 and is unstable
if Ref ðpÞ > 1.

Proof: from the Jacobean matrix JðE0
p Þ of the model (2),

with respect to ðS, PV , PI , T , RÞ at the disease-free equilibrium
point, we have the following characteristics equation.

–μ − λ1ð Þ r1 − r2ð Þ − λ2ð ÞÞ − μ + ϕð Þ − λ3ð Þ
Á − β + μð Þ − λ4ð Þ − Y + μð Þ − λ5ð Þ = 0

ð7Þ

Where r1 =Ref ðpÞ r2 and r2 = ð τ2 + δ2 + μÞ,

⇒λ1 = –μ, λ3 = − μ + ϕð Þ, λ4 = − β + μð Þ, λ5 = − Y + μð Þ: ð8Þ

Hence, all the parameters are nonnegative, and all the
eigenvalues of the corresponding Jacobean matrix are nega-
tive. But λ2 = ðr1 − r2Þ =Ref ðpÞ r2 − r2 = r2ðRef ðpÞ − 1Þ,

⇒λ2 = r2 Ref pð Þ − 1
� �

, ð9Þ

⇒λ2 < 0 if f Ref ðpÞ < 1.Therefore, the disease-free equilibrium
point is locally asymptotically stable if and only if Ref ðpÞ < 1,
otherwise it is unstable, that is, ifRef ðpÞ > 1.

2.3.2. Global Stability of Disease-Free Equilibrium Point of
the Model. To verify the global stability of the disease-free
equilibrium point of the pneumonia monoinfection model,
we have used an adopted method of Castillo-Chavez et al.
used by others scholar such as [18, 19].
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Figure 1: Schematic diagram of full pneumonia and meningitis codynamics.
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Lemma 4. If the pneumonia monoinfection model can be
written as

dY
dt

=G Y ,Wð Þ,
dZ
dt

=H Y ,Wð Þ,H Y , 0ð Þ = 0,
ð10Þ

where Y ∈ℝm be the components of noninfected individ-
uals and W ∈ℝn be the components of infected individuals
including treated class and E0

p = ðY∗, 0Þ denotes the disease-
free equilibrium point of dynamical system (2).

Assume

(i) For ðdY/dtÞ = GðY , 0Þ, Y∗ is globally asymptotically
stable (GAS)

(ii) HðY ,WÞ = BW −HˇðY ,WÞ, HˇðY ,WÞ ≥ 0 for ðY ,
WÞ ∈Ω1 where B =DWHðY∗, 0Þ is an M-matrix,
i.e., the off diagonal elements of B are nonnegative
and Ω1 is the region in which the system makes bio-
logical sense. Then the fixed point E0

p = ðY∗, 0Þ is glob-
ally asymptotically stable equilibrium point of the
system (2) wheneverRef ðpÞ < 1.

Lemma 5. The disease-free equilibrium point E0
p of the pneu-

monia monoinfection model (2) is globally asymptotically sta-
ble if Ref ðpÞ < 1 and the two sufficient conditions given in
Lemma 4 are satisfied.

Proof: here we are applying Lemma 5 on the pneumonia
monoinfection model (2) and we have gotten the following
matrices.

dY
dt

= G Y ,Wð Þ =
1 − πð Þλ + ϕ PV + YR – α2 + μð ÞS

πλ − μ + ϕð ÞPV

" #
,

dW
dt

=H Y ,Wð Þ =
α2S − τ2 + δ2 + μð ÞPI

τ2PI − β + μð ÞT
βT − Y + μð ÞR

2
664

3
775,

G Y , 0ð Þ =
1 − πð Þλ + ϕ PV − μS

πλ − μ + ϕð ÞPV

" #
,

ð11Þ

and

Hˇ Y ,Wð Þ =
Hˇ

1 Y ,Wð Þ
Hˇ

2 Y ,Wð Þ
Hˇ

3 Y ,Wð Þ

2
664

3
775 =

bλ
μ

1 − πð Þ μ + ϕð Þ + πϕ

μ + ϕð Þ
� �� �

PI − α2S

0

0

2
66664

3
77775,

Hˇ Y ,Wð Þ =
Hˇ

1 Y ,Wð Þ
Hˇ

2 Y ,Wð Þ
Hˇ

3 Y ,Wð Þ

2
664

3
775 =

S0 − Sð ÞbPI

0

0

2
664

3
775:

ð12Þ

Since S ≤ S0, we have Hˇ
1ðY ,WÞ ≥ 0, thus, the disease-

free equilibrium point E0
p is globally asymptotically stable if

Ref ðpÞ < 1. Biologically, whenever Ref ðpÞ < 1, the only pneu-
monia infection disease dies out while the total population
increases [18].

2.4. The Existence and Stability of Endemic Equilibrium
Point. The endemic equilibrium point of the dynamical sys-
tem of (2) is obtained by making the right side of the system
equal to zero, providing that PI ≠ 0. We have supposed that
the endemic equilibrium point of the model is denoted by
E∗
p = ðS∗, PI

∗, Pv
∗, T∗, R∗ Þ and the corresponding force of

infection is α2ðtÞ = bðPI
∗ðtÞÞ.

For simplification of algebraic manipulation, we have
assumed the parameters in the model by another variable
as follows, k1 = ð1 − πÞλ, k2 = τ2 + μ, k3 = τ2 + δ2 + μ, k4 = π
λ, k5 = ϕ + μ,

k6 = β + μ, k7 = Y + μ, k8 = γβτ2, k9 = k3k6k7 , k10 = k1 +
ðϕk4/k5Þ, k11 = k9k10, k12 = k2k9

k13 = k3k12 and k14 = k8k3. Now the equation of force of
infection can be rearranged as

α2
∗ k14 α2

∗ + bk11 − k13ð Þ = 0⇒ α2
∗ = 0 or k14 α2∗ + bk11 − k13 = 0, ð13Þ

⇒α2
∗ = k13 − bk11/k14 but α2

∗ = k13 − bk11/k14 = ðβ + μÞ
ðY + μÞððτ2 + δ2 + μÞðτ2 + μÞðϕ + μÞ − bλððϕ + μÞð1 − πÞ − ϕ

πÞ/γβτ2ðϕ + μÞÞ = ðβ + μÞðY + μÞððτ2 + δ2 + μÞðτ2 + μÞðϕ +
μÞ/γβτ2ðϕ + μÞ − λbððϕ + μÞð1 − πÞ + ϕπÞ/γβτ2ðϕ + μÞÞ, α2∗
= ðβ + μÞðY + μÞððτ2 + δ2 + μÞðτ2 + μÞðϕ + μÞ/γβτ2Þððλb/μÞ
ðð1 − πÞðμ + ϕÞ + πϕ/ðμ + ϕÞðτ2 + δ2 + μÞÞ − 1Þ⇒ α2

∗ = ðβ
+ μÞðY + μÞððτ2 + δ2 + μÞðτ2 + μÞðϕ + μÞ/γβτ2ÞðRp − 1Þ
⇒ α2

∗ > 0 if Ref ðpÞ > 1.
Therefore, there is a unique endemic equilibrium point

for pneumonia monoinfected model as given by E∗
p = ðS∗,

PI
∗, Pv

∗, T∗, R∗ Þwhere

S∗ =
τ2 + δ2 + μð Þ β + μð Þ Y + μð Þð Þ ϕ + μð Þ − ϕ + μð Þ 1 − πð Þλ − ϕπλ

ϕ + μð Þ τ2 + μð Þ τ2 + δ2 + μð Þ β + μð Þ Y + μð Þð Þ − γβτ2α2
∗ð Þ ,

PI
∗ =

τ2 + δ2 + μð Þ β + μð Þ Y + μð Þð Þ ϕ + μð Þ − ϕ + μð Þ 1 − πð Þλ − ϕπλ

ϕ + μð Þ τ2 + μð Þ τ2 + δ2 + μð Þ β + μð Þ Y + μð Þð Þ − γβτ2α2
∗ð Þ

α2
∗

τ2 + δ2 + μ

� �
, Pv

∗ =
πλ

ϕ + μ
,

T∗ =
α2

∗τ2
τ2 + δ2 + μð Þ β + μð Þ

� �
τ2 + δ2 + μð Þ β + μð Þ Y + μð Þð Þ ϕ + μð Þ − ϕ + μð Þ 1 − πð Þλ − ϕπλ

ϕ + μð Þ τ2 + μð Þ τ2 + δ2 + μð Þ β + μð Þ Y + μð Þð Þ − γβτ2α2
∗ð Þ ,

R∗ = τ2 + δ2 + μð Þ β + μð Þ Y + μð Þð Þ ϕ + μð Þ − ϕ + μð Þ 1 − πð Þλ − ϕπλ

ϕ + μð Þ τ2 + μð Þ τ2 + δ2 + μð Þ β + μð Þ Y + μð Þð Þ − γβτ2α2
∗ð Þ

βτ2α2
∗

τ2 + δ2 + μð Þ β + μð Þ Y + μð Þ
� �

:

ð14Þ

Theorem 6. The endemic equilibrium point of system (2)
E∗
p = ðS∗, PI

∗, Pv
∗, T∗, R∗ Þ is locally asymptotically stable for

the reproduction number Ref f ðpÞ > 1.
Proof: to show that the local stability of the

endemic equilibrium point, we have used the method
of the Jacobian matrix and the Routh Hurwitz stability
criteria.

5Computational and Mathematical Methods in Medicine



Then the corresponding characteristic equation is
obtained from the determinant of

A − λ B C 0 D

E F − λ 0 0 0

0 0 G − λ 0 0

0 H 0 I − λ 0

0 0 0 J K − λ

��������������

��������������
= 0, ð15Þ

where A = –ðα2Ip∗ + μÞ, B = −α2S∗, C = ϕ, D = Y , E =
α2Ip

∗, F = α2S
∗ − ð τ2 + δ2 + μÞ,

G = − μ + ϕð Þ,H = τ2, I = − β + μð Þ, J = β and k = − Y + μð Þ,
⇒a0λ

5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ + a5 = 0,

ð16Þ

where a0 = 1, −ðI + A + F +G + KÞ = a1, ðIA + IF + AF
+ IG + AG + FG + IK + AK + FK +GKÞ = a2, −ð−B + IAF
+ IAG + IFG + AFG + IAK + IFK + AFK + IGK + AGK +
FGKÞ = a3, −ðIB − IAFG +DEHJ + BK − IAFK − IAGK − I
FGK − AFGKÞ = a4, a5 =DEGHJ + IBK − IAFGK .

To apply the Routh-Hurwitz stability criteria, it is oblig-
atory to check if the necessary condition of all the coeffi-
cients have the same sign or not. Since a0 = 1 is positive in
sign, all a1, a2, a3, a4, and a5 should be positives in sign.
All the coefficients of the characteristic’s polynomial are pos-
itives whenever Ref f ðpÞ > 1. We have observed that the first
column of the Routh Hurwitz array has no sign change, thus
the root of the characteristics equation of the dynamical sys-
tem are negative. Hence, the endemic equilibrium point of
the dynamical system is locally asymptotically stable.

2.5. Positivity of Solutions and Invariant Region of the Only
Meningitis-Infected Model. We have made PI =MPI = 0
from the full pneumonia and meningitis coinfection model
to obtain this submeningitis-only model, and got the follow-
ing dynamical system.

dS
dt

= 1 − πð Þλ + φMV + YR – α1 + μð ÞS,
dMI

dt
= α1S – τ1 + δ1 + μð ÞMI ,

dMV

dt
= πλ − μ + φð ÞMV ,

dT
dt

= τ1MI − β + μð ÞT,
dR
dt

= βT − Y + μð ÞR:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð17Þ

The above dynamical systems are needed to be epidemi-
ologically meaningful as well as well-posed. To prove that,
we have intimated that all the state variables of dynamical
systems are nonnegative.

Theorem 7. All the populations of the system with positive
initial conditions are positive.

Proof: assume Sð0Þ > 0,MIð0Þ > 0,MVð0Þ > 0, Tð0Þ > 0
and Rð0Þ > 0 are positive for time t > 0 and for all nonneg-
ative. First let us take T = sup ft > 0 such that Sðt ′Þ > 0,MI

ðt ′Þ > 0,MVðt ′Þ > 0, Tðt ′Þ > 0 and Rðt ′Þ > 0, t ′ ∈ ½0, t�g.
From the first equation of system (17), we do have

dS
dt

= 1 − πð Þλ + φMV + YR – α1 + μð ÞS,

S tð Þ = S 0ð Þe−
Ð T

0
α1+μð Þdt ′ + e−

Ð T

0
α1+μð Þdt ′

Á
ðT
0
e
Ð T

0
α1+μð Þdt ′ 1 − πð Þλ + YR + φMV½ dt

� �
> 0,

⇒S tð Þ > 0:

ð18Þ

Therefore, SðtÞ is positive. Subsequent to the same proce-
dure, the remaining state variables are nonnegative. There-
fore, from the stated proof, we can conclude that whenever
the initial values of the systems are all nonnegative, then all
the solutions of our dynamical system are positive.

Theorem 8. All the populations of the system with positive
initial conditions are nonnegative

The total human population of the dynamical system (17)
is positively closed in the closed invariant set Ω2 = fðS,MI,
MV ,T , RÞϵℝ5

+ : N2 ≤ λ/μg. Furthermore, the system’s non-
negative solutions are all constrained, and it may exhibit
the persistence property under any nonnegative initial con-
centration conditions [14].

Proof: to get an invariant region, boundedness of solution
is obtained as follow.

N2 = S +MI +MV + T + R,
dN2

dt
= λ − μN2 − δ1MI ⇒ 0 ≤N2 ≤

λ

μ
:

ð19Þ

Therefore, the dynamical system that we do have is
bounded.

2.6. Existence and Stability of Disease-Free Equilibrium
Point. The disease-free equilibrium point is obtained by
making all the equations in the system equal to zero, pro-
vided that providing that MI = 0. Therefore, the disease-
free equilibrium point is

E0
p = SO,MV

O,MI
O, T0, ROÀ Á

=
λ

μ

1 − πð Þ μ + φð Þ + πφ

μ + φð Þ
� �

,
πλ

μ + φð Þ , 0, 0, 0
� �

:
ð20Þ

2.6.1. Effective Reproduction Number. The reproduction
number can be defined as a number of secondary cases
produced by one infectious individual joining in a
completely susceptible population during its infectious
period [16, 17, 20].
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To compute the reproduction number, first distinguish-
ing the new infected from all other changes in the host pop-
ulation is mandatory as follows.

Let F iðxÞ: be the rate of appearance of new infected in
compartment i,

V +
iðxÞ: be the rate of transfer of individuals in to com-

partment i,
V −

iðxÞ: be the rate of transfer of individuals out of
compartment i.

And thenV iðxÞ =V −
iðxÞ −V +

i but F = ½ð∂F i/∂XjÞðXoÞ�
and V = ½ð∂V i/∂XjÞðXoÞ�, where F and V are mxm matrix
with m is number of infected compartment. Fv−1 is the next
generation matrix, and the spectral radius of next generation
matrix is needed for the reproduction number we are seeking
for.

Thus ∂F iðXÞ/∂Xj = aS and ∂V iðXÞ/∂Xj and FV−1 =
ðλa/μÞðð1 − πÞðμ + φÞ + πφ/ðμ + φÞðτ1 + δ1 + μÞÞ

Therefore, the effective reproduction number of menin-
gitis monoinfected submodel is

Ref mð Þ =
λa
μ

1 − πð Þ μ + φð Þ + πφ

μ + φð Þ τ1 + δ1 + μð Þ
� �

: ð21Þ

Theorem 9. The disease-free equilibrium point E0
m of the

model in system (17) is locally asymptotically stable if the
effective reproduction number Ref ðmÞ < 1, and it is unstable
if Ref ðmÞ > 1.

Proof:
Using the Jacobean matrix JðE0

p Þ of the model (17) with
respect to ðS,MV , MI , T , RÞ at the disease-free equilibrium
point, we have the characteristic equation

⇒ –μ − λ1ð Þ t1 − t2ð Þ − λ2ð ÞÞ − μ + φð Þ−λ3Þ − β + μð Þ − λ4ð Þð
Á − Y + μð Þ − λ5ð Þ = 0where t1 = Ref mð Þ t2 and t2 = τ1 + δ1 + μð Þ,

⇒λ1 = –μ, λ3 = − μ + φð Þ, λ4 = − β + μð Þ, λ5 = − Y + μð Þ:
ð22Þ

Hence, all the parameters are nonnegative, all the eigen-
values of the corresponding Jacobean matrix are negative
other than λ2.

For λ2, λ2 = t2ðRef f ðmÞ − 1Þ⇒ λ2 = t2ðRef f ðmÞ − 1Þ,

⇒λ2 < 0 iff Ref mð Þ < 1: ð23Þ

Therefore, the disease-free equilibrium point of the men-
ingitis monoinfected model is locally asymptotically stable if
the effective reproduction number Ref ðmÞ < 1 and is unstable
if Ref ðmÞ > 1.

2.6.2. Global Stability of Disease-Free Equilibrium Point. We
utilized the approach developed by Castillo-Chavez et al.
and used it to confirm the overall stability of the disease-
free equilibrium point of the meningitis monoinfection
model [18, 19].

Lemma 10. If the pneumonia monoinfection model can be
written as

dY
dt

= G Y ,Wð Þ,
dZ
dt

=H Y ,Wð Þ,H Y , 0ð Þ = 0,
ð24Þ

where Y ∈ℝm be the components of noninfected individ-
uals and W ∈ℝn be the components of infected individuals
including the treated class, and E0

m = ðY∗, 0Þ denotes the
disease-free equilibrium point of the dynamical system (3).

Assume

(i) For ðdY/dtÞ =GðY , 0Þ,Y∗ is globally asymptotically
stable (GAS)

(ii) HðY ,WÞ = BW −HˇðY ,WÞ, HˇðY ,WÞ ≥ 0 for ðY ,
WÞ ∈Ω1 where B =DWHðY∗, 0Þ is an M-matrix,
i.e., the off diagonal elements of B are nonnegative
and Ω2 is the region in which the system makes bio-
logical sense

Then the fixed point E0
m = ðY∗, 0Þ is globally asymptoti-

cally stable equilibrium point of the system (17) whenever
Ref ðmÞ < 1.

Lemma 11. The disease-free equilibrium point E0
m of the

pneumonia monoinfection model (17) is globally asymptoti-
cally stable if Ref ðmÞ < 1 and the two sufficient conditions
given in Lemma 10 are satisfied.

Proof: here we are applying Lemma 11 on the meningitis
monoinfection model (17) and we have gotten the following

matrices dY/dt = GðY ,WÞ = ð1 − πÞλ + φMV + YR – ðα1 + μÞS
πλ − ðμ + φÞMV

" #
,

dW
dt

=H Y ,Wð Þ

=

aλ
μ

1 − πð Þ μ + ϕð Þ + πϕ

μ + ϕð Þ
� �

− τ1 + δ1 + μð Þ 0 0

τ1 − β + μð Þ 0

0 β − Y + μð Þ

2
666664

3
777775,

G Y , 0ð Þ =
1 − πð Þλ + φMV − μS

πλ − μ + φð ÞMV

" #
:

ð25Þ

Here after some steps of calculations, we have determined
that

Hˇ Y ,Wð Þ =
Hˇ

1 Y ,Wð Þ
Hˇ

2 Y ,Wð Þ
Hˇ

3 Y ,Wð Þ

2
664

3
775 =

S0 − Sð ÞaMI

0

0

2
664

3
775: ð26Þ

Since S ≤ S0, we have Hˇ
1ðY ,WÞ ≥ 0, thus, the disease-free

equilibrium point E0
m of model (17) is globally asymptotically

stable if Ref ðmÞ < 1. Biologically, whenever Ref ðmÞ < 1, the
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meningitis monoinfection disease dies out while the total popula-
tion increases [18].

2.7. Existence and Stability of Endemic Equilibrium Point.
The endemic equilibrium point of the dynamical system of
(3) is obtained by making the right side of the system equal
to zero, providing that MI ≠ 0. We have supposed that the
endemic equilibrium point of the model is denoted by E∗

m
= ðS∗,MI

∗,Mv
∗, T∗, R∗Þ and the corresponding force of

infection is α1ðtÞ = bðMI
∗ðtÞÞ. For simplification of algebraic

manipulation, we have assumed the parameters in the model
by another variable as follows.

n1 = 1 − πð Þλ, n2 = τ1 + μ, n3 = τ1 + δ1 + μð Þ,
n4 = πλ, n5 = μ + φð Þ,

n6 = β + μ, n7 = Y + μ, n8 = γβτ1, n9 = n3n6n7,
n10 = n1 + φn4/n5, n11 = n9n10, n12 = n2n9

ð27Þ

n13 = n3n12 and n14 = n8n3 . Now the equation of force of
infection can be rearranged as

α1
∗ n14 α1

∗ + an11 − n13ð Þ = 0⇒ α1
∗ = 0 or n14 α1∗ + an11 − n13 = 0

⇒α1
∗ =

n13 − an11
n14

, but α1∗ =
n13 − an11

n14

= β + μð Þ Y + μð Þ τ1 + δ1 + μð Þ τ1 + μð Þ φ + μð Þ − aλ φ + μð Þ 1 − πð Þ − φπð Þ
γβτ1 φ + μð Þ

� �

= β + μð Þ Y + μð Þ τ1 + δ1 + μð Þ τ1 + μð Þ φ + μð Þ
γβτ2 ϕ + μð Þ −

λa φ + μð Þ 1 − πð Þ + φπð Þ
γβτ1 φ + μð Þ

� �
,

α1
∗ = β + μð Þ Y + μð Þ τ1 + δ1 + μð Þ τ1 + μð Þ φ + μð Þ

γβτ1

� �
λa
μ

1 − πð Þ φ + μð Þ + πφ

φ + μð Þ τ1 + δ1 + μð Þ
� �

− 1
� �

,

⇒α1
∗ = β + μð Þ Y + μð Þ τ1 + δ1 + μð Þ τ1 + μð Þ φ + μð Þ

γβτ1

� �
Ref f mð Þ − 1

� �
⇒ α1

∗ > 0 if Ref f mð Þ > 1:

ð28Þ

Therefore, the unique endemic equilibrium point for the
meningitis monoinfected model is given by E∗

m = ðS∗,MI
∗,

Mv
∗, T∗, R∗ Þ, where

S∗ =
τ1 + δ1 + μð Þ β + μð Þ Y + μð Þð Þ φ + μð Þ − φ + μð Þ 1 − πð Þλ − φπλ

φ + μð Þ τ1 + μð Þ τ1 + δ1 + μð Þ β + μð Þ Y + μð Þð Þ − γβτ1α1
∗ð Þ ,

MI
∗ =

τ1 + δ1 + μð Þ β + μð Þ Y + μð Þð Þ φ + μð Þ − φ + μð Þ 1 − πð Þλ − φπλ

φ + μð Þ τ1 + μð Þ τ1 + δ1 + μð Þ β + μð Þ Y + μð Þð Þ − γβτ1α1
∗ð Þ

Á α1
∗

τ1 + δ1 + μð Þ
� �

,

Mv
∗ =

πλ

φ + μð Þ ,

T∗ =
α1

∗τ1
τ1 + δ1 + μð Þ β + μð Þ

� �
τ1 + δ1 + μð Þ β + μð Þ Y + μð Þð Þ φ + μð Þ − φ + μð Þ 1 − πð Þλ − φπλ

φ + μð Þ τ1 + μð Þ τ1 + δ1 + μð Þ β + μð Þ Y + μð Þð Þ − γβτ1α1
∗ð Þ ,

R∗ =
τ1 + δ1 + μð Þ β + μð Þ Y + μð Þð Þ φ + μð Þ − φ + μð Þ 1 − πð Þλ − φπλ

φ + μð Þ τ2 + μð Þ τ1 + δ1 + μð Þ β + μð Þ Y + μð Þð Þ − γβτ2α2
∗ð Þ

Á βτ2α2
∗

τ1 + δ1 + μð Þ β + μð Þ Y + μð Þ
� �

:

ð29Þ

Theorem 12. The endemic equilibrium point of system (17)
E∗
m = ðS∗,MI

∗,Mv
∗, T∗, R∗ Þ is locally asymptotically stable

for the reproduction number Ref f ðmÞ > 1.
Proof: To show the local stability of the endemic equilib-

rium point we have used the method of Jacobian matrix
and Routh Hurwitz stability criteria.

From Jacobian matrix, we have obtained the following
characteristic equation

a − λð Þ f − λð Þ g − λð Þ i − λð Þ k − λð Þ − b i − λð Þ k − λð Þ − de g − λð Þhj = 0

ð30Þ

Where a = –ðα1Im∗ + μÞ, b = −α1S∗, c = φ, d = Y , e =
α1Im

∗, f = α1S
∗ − ð τ1 + δ1 + μÞ,

g = − μ + φð Þ, h = τ1, i = − β + μð Þ, j = β and k = − Y + μð Þ:
⇒a0λ

5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ + a5 = 0

ð31Þ

Where a0 = 1, −ði + a + f + g + kÞ = a1, ðai + if + af + ig
+ ag + f g + ik + ak + f k + gÞ = a2, −ð−b + aif + aig + if g +
af g + aik + if k + af k + gik + agk + f gkÞ = a3, −ðbi − aif g +
dehj + bk − aif k − aigk − if gk − af gkÞ = a4

a5 = aeghj + bik − aif gk.

To apply Routh-Hurwitz stability criteria, it is the must
to check the necessary condition of all the coefficients have
the same sign or not. Since a0 = 1 is positive in sign, all a1,
a2, a3, a4 and a5 should be positives in sign. All the coeffi-
cients of the characteristic’s polynomial are positives
wheneverRef f ðpÞ > 1.

We have observed that the first column of the Routh
Hurwitz array has no sign change, thus the root of the char-
acteristics equation of the dynamical system a0λ

5 + a1λ
4 +

a2λ
3 + a3λ

2 + a4λ + a5 = 0 are negative. Hence, the endemic
equilibrium point of the dynamical system is locally asymp-
totically stable.

2.8. Positivity and Boundedness of Full Pneumonia and
Meningitis Coinfected Model. The corresponding dynamical
system of the full pneumonia and meningitis coinfection
model is given in Equation (1).

The constructed model is expected to be meaningful epi-
demiologically as well as well-posed. We need to prove that
all the state variables of the dynamical system are positive.

Theorem 13. All the population of the system with positive
initial conditions are nonnegative

Proof: Assume Sð0Þ > 0,MVð0Þ > 0, PVð0Þ > 0,MPVð0Þ
> 0 , MIð0Þ > 0, PIð0Þ > 0,MPIð0Þ > 0 Tð0Þ > 0, and Rð0Þ >
0 are positive for time t > 0 and for all nonnegative parame-
ters. Let us define τ = sup ft > 0 such that SðtÞ > 0,MVðtÞ
> 0, PVðtÞ > 0,MPVðtÞ > 0,MIðtÞ > 0, PIðtÞ > 0,MPIðtÞ > 0,
TðtÞ > 0, RðtÞ > 0 and t ∈ ½0, t�g.

Since all SðtÞ,MVðtÞ, PVðtÞ,MPVðtÞ,MIðtÞ, PIðtÞ,MPI
ðtÞ, TðtÞ and RðtÞ are continuous, we can say for τ > 0. If
τ = +∞, then positivity holds.

Nevertheless, if 0 < τ < +∞, then all the state variables
are zeros.
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From the first equation of system (1) we do have

dS
dt

= 1 − πð Þλ + ϕ PV + φMV + YR – α1 + α2 + μð ÞS S tð Þ

= S 0ð Þe−
Ð τ

0
α1+α2+μð Þdt + e−

Ð τ

0
α1+α2+μð Þdt

Á
ðτ
0
e
Ð τ

0
α1+α2+μð Þdt 1 − πð Þλ + ϕPV + φMV + YRð Þdt

� �
> 0⇒ S tð Þ > 0

ð32Þ

Following same procedure, all the remaining state vari-
ables are nonnegative.

Therefore, from proof, we can conclude that whenever the
initial values of the systems are all nonnegative, then all the
solutions of our dynamical system are positive.

Theorem 14. The total human population is assumed to be N
and the dynamical system (1) is positively invariant in the
closed invariant set Ω = fðS,MV , PV , MPV , MI, PI,MPI,T , RÞ
ϵℝ9

+ : N ≤ λ/μg. Furthermore, the system’s nonnegative solu-
tions are all constrained, and it may exhibit the persistence
property under any nonnegative initial concentration condi-
tions [24]. Proof: to get an invariant region, which shows
boundedness of solution, is obtained as follow.

dN
dt

=
dS
dt

+
dMV

dt
+
dPV

dt
+
dMPV

dt
+
dMI

dt
+
dPI

dt
+
dMPI

dt
+
dT
dt

+
dR
dt

,

ð33Þ

⇒ dN
dt

= λ − μN − δ2PI − δ1MI − δ3MPI , ð34Þ

⇒N tð Þ ≤N0e
−μt +

λ

μ
⇒ 0 ≤N ≤

λ

μ
: ð35Þ

Therefore, the dynamical system that we have constructed
is bounded.

2.9. Disease-Free Equilibrium Point and Its Stability. The
disease-free equilibrium point of full pneumonia and menin-
gitis coinfection model Epm

O is obtained by making all the
right-hand-side of equation in system (1), providing that
all the infectious classes are equal to zero.

SO,MV ,
O PV

O,MPV
0,MI

0, PI
0,MPI

0, T0, ROÀ Á
=

1 − πð Þλ
α1 + α2 + μð Þ +

πλ

α1 + α2 + μð Þ
� �

ϕρ

μ + ϕ + ε2ð Þ +
1 − ρð Þφ

μ + φ + ε1ð Þ
� �

,
�
1 − ρð Þπλ
μ + φ + ε1ð Þ ,

ρπλ

μ + ϕ + ε2ð Þ ,
1 − ρð Þπλε1

μ μ + φ + ε1ð Þ
+

ρπλε2
μ μ + ϕ + ε2ð Þ , 0, 0, 0, 0, 0

�

ð36Þ

2.9.1. Effective Reproduction Number. The reproduction
number is the average number of people that become
infected because of the entry of one infectious person into

a completely susceptible population in the absence of inter-
vention. Moreover, reproduction number is utilized to deter-
mine the effect of the control measures and to understand
the capability of the spread of the infection to disseminate
in the entire community when the control strategies are
applied [15, 17, 21].

The reproduction number of pneumonia and meningitis
confection model denoted byRef f , which is manipulated by
the Van den Driesch, Pauline, and James Warmouth next
generation matrix approach [20], is the largest eigenvalue

of the next generation matrix FV−1 = ½∂F ið Er
OÞ/∂xj�

½∂νið Er
OÞ/∂xj�−1 , where F i is the rate of appearance of

new infection in compartment i , νi is the transfer of infec-
tions from one compartment i to another, and E0

pm is the
disease-free equilibrium point.

The

F i xð Þ =

α1SO

α2SO

0

0

0

0

0

0

0

2
666666666666666666664

3
777777777777777777775

,

νi =

π − 1ð Þλ − ϕ PV
O − φMV

O − YR0 + μSO

μ + φ + ε1ð ÞMV
O − 1 − ρð Þπλ

μ + ϕ + ε2ð ÞPV
O − ρπλ

μMPV
0 − ε1MV

O − ε2PV
O

ω2α2 + τ1 + δ1 + μð ÞMI
0

ω1α1 + τ2 + δ2 + μð ÞPI
0

τ3 + μð ÞMPI
0 − ω1α1PI − ω2α2MI

0

β + μð ÞT − τ1MI
0 − τ2PI − τ3MPI

0

Y + μð ÞR0 − βT0

2
666666666666666666664

3
777777777777777777775

:

ð37Þ

Then

F =
1 − πð Þλ

μ
+

πλ

μ

� �
ϕρ

μ + ϕ + ε2ð Þ +
1 − ρð Þφ

μ + φ + ε1ð Þ
� �� �

Á
a 0 a

0 b b

0 0 0

2
6664

3
7775,

ð38Þ
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and

V =

τ1 + δ1 + μð Þ 0 0

0 τ2 + δ2 + μð Þ 0

0 0 τ3 + μð Þ

2
6664

3
7775

⇒ FV−1 =

a
τ1 + δ1 + μð Þ 0

a
τ3 + μð Þ

0
b

τ2 + δ2 + μð Þ
b

τ3 + μð Þ
0 0 0

2
6666664

3
7777775
:

ð39Þ

The eigenvalues of the next generation matrix F:V−1 are

0,
aλ 1 − πð Þ

τ1 + δ1 + μð Þ μð Þ +
ϕρ μ + φ + ε1ð Þ + φ 1 − ρð Þ μ + ϕ + ε2ð Þ

μ + ϕ + ε2ð Þ μð Þ
�

Á πλa
τ1 + δ1 + μ

� �
,

bλ 1 − πð Þ
τ2 + δ2 + μð Þ μð Þ

+
ϕρ μ + φ + ε1ð Þ + φ 1 − ρð Þ μ + ϕ + ε2ð Þ

μ + ϕ + ε2ð Þ μð Þ
πλb

τ2 + δ2 + μ

� ��
:

ð40Þ

Therefore, the effective reproduction number of full
meningitis and pneumonia model is

Ref f =max
aλ 1 − πð Þ
τ1 + δ1 + μð Þμ +

ϕρ μ + φ + ε1ð Þ + φ 1 − ρð Þ μ + ϕ + ε2ð Þ
μ + ϕ + ε2ð Þμ

�

Á πλa
τ1 + δ1 + μ

� �
,

bλ 1 − πð Þ
τ2 + δ2 + μð Þμ

+
ϕρ μ + φ + ε1ð Þ + φ 1 − ρð Þ μ + ϕ + ε2ð Þ

μ + ϕ + ε2ð Þμ
πλb

τ2 + δ2 + μ

� ��
,

ð41Þ

Ref f =max fR1, R2g where R1 = aλð1 − πÞ/ð τ1 + δ1 + μ

Þμ + ðϕρðμ + φ + ε1Þ + φð1 − ρÞðμ + ϕ + ε2ÞÞ/ðμ + ϕ + ε2Þμðπ
λa/τ1 + δ1 + μÞ, and R2 = bλð1 − πÞ/ð τ2 + δ2 + μÞμ + ðϕρðμ
+ φ + ε1Þ + φð1 − ρÞðμ + ϕ + ε2Þ/ðμ + ϕ + ε2ÞμÞðπλb/ðτ2 + δ2
+ μÞÞ.

Theorem 15. The disease-free equilibrium point Epm
O of the

model in system (17) is locally asymptotically stable if the
effective reproduction number Ref f < 1 and is unstable
ifRef f > 1.

Proof:
The Jacobean matrix JðEpm

O Þ of the model (1) with
respect to ðS,MV , PV ,MPV ,MI , PI ,MPI , T , RÞ at the
disease-free equilibrium point is the following:

J Epm
OÀ Á

=

–μ φ ϕ 0 r1 r2 r3 0 Y

0 r4 0 0 0 0 0 0 0

0 0 r5 0 0 0 0 0 0

0 ε1 ε2 −μ 0 0 0 0 0

0 0 0 0 r6 0 0 0 0

0 0 0 0 0 r7 0 0 0

0 0 0 0 0 0 r8 0 0

0 0 0 0 τ1 τ2 τ3 r9 0

0 0 0 0 0 0 0 β r10

2
666666666666666666664

3
777777777777777777775

, ð42Þ

where

r1 = −a 1 − πð Þλ/μð Þ + πλ/μð Þ ϕρ/ μ + ϕ + ε2ð Þð Þðð
+ 1 − ρð Þφ/ μ + φ + ε1ð Þð ÞÞÞ, r2 = −b 1 − πð Þλ/ α1 + α2 + μð Þð
+ πλ/μð Þ ϕρ/ μ + ϕ + ε2ð Þð Þ + 1 − ρð Þφ/ μ + φ + ε1ð Þð Þð ÞÞ,

r3 = − aℯ1 + bℯ2ð Þ 1 − πð Þλ/μð Þ + πλ/μð Þ ϕρ/ μ + ϕ + ε2ð Þð Þðð
+ 1 − ρð Þφ/ μ + φ + ε1ð Þð ÞÞÞ, r4 = − μ + φ + ε1ð Þ, r5 = − μ + ϕ + ε2ð Þ,

r6 = a
1 − πð Þλ

μ
+

πλ

μ

� �
ϕρ

μ + ϕ + ε2ð Þ +
1 − ρð Þφ

μ + φ + ε1ð Þ
� �� �

– τ1 + δ1 + μð Þ,

r7 = b
1 − πð Þλ

μ
+

πλ

μ

� �
ϕρ

μ + ϕ + ε2ð Þ +
1 − ρð Þφ

μ + φ + ε1ð Þ
� �� �

− τ2 + δ2 + μð Þ,

r8 = − τ3 + μð Þ, r9 = − β + μð Þ and r10 = − Y + μð Þ⇒ λ1 + μð Þ λ4 + μð Þ
Á −λ2 + r4ð Þ −λ3 + r5ð Þ −λ5 + r6ð Þ −λ6 + r7ð Þ −λ7 + r8ð Þ −λ8 + r9ð Þ
Á −λ9 + r10ð Þ⇒ λ1 = −μ, λ4 = −μ, λ2 = r4 = − μ + φ + ε1ð Þ,

λ3 = r5 = − μ + ϕ + ε2ð Þ, λ7 = r8 = − τ3 + μð Þ, λ8 = r9 = − β + μð Þ ,

λ5 = τ1 + δ1 + μð Þ aλ μ + φð Þ
μ 1 − πð Þ μ + φð Þ + πφ

� ��

Á μ + ϕ + ε2ð Þ + πϕρ

μ + ϕ + ε2ð Þ +
1 − ρð Þπφ
μ + φ + ε1ð Þ

� �

Á aλ 1 − πð Þ μ + φð Þ + πφ

μ μ + φð Þ τ1 + δ1 + μð Þ
� �

− 1
� ��

⇒ λ5 = τ1 + δ1 + μð Þ aλ μ + φð Þ
μ 1 − πð Þ μ + φð Þ + πφ

� ��

Á μ + ϕ + ε2ð Þ + πϕρ

μ + ϕ + ε2ð Þ +
1 − ρð Þπφ
μ + φ + ε1ð Þ

� �
Ref f mð Þ − 1

� ��
:

λ6 = τ2 + δ2 + μð Þ bλ μ + ϕð Þ
μ 1 − πð Þ μ + ϕð Þ + πφ

� ��

Á μ + ϕ + ε2ð Þ + πϕρ

μ + ϕ + ε2ð Þ +
1 − ρð Þπφ
μ + φ + ε1ð Þ

� �

Á λb
μ

1 − πð Þ μ + ϕð Þ + πϕ

μ + ϕð Þ τ2 + δ2 + μð Þ
� �� �

− 1
�

⇒ λ6 = τ2 + δ2 + μð Þ bλ μ + ϕð Þ
μ 1 − πð Þ μ + ϕð Þ + πφ

� ��

Á μ + ϕ + ε2ð Þ + πϕρ

μ + ϕ + ε2ð Þ +
1 − ρð Þπφ
μ + φ + ε1ð Þ

� �

Á Ref f pð Þ − 1
� ��

and λ9 = r10 = − Y + μð Þ:

ð43Þ
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Hence, all the parameters are nonnegative as well as all
the eigenvalues of the corresponding Jacobean matrix are
negative except λ5 and λ6.

The sign of eigenvalues λ5 and λ6 depends on the values
of Ref f ðmÞ and Ref f ðpÞ, respectively. Moreover, λ5 < 0 when-
ever Ref f ðmÞ < 1 and λ6 < 0 if and only if Ref f ðpÞ < 1.

Therefore, the disease-free equilibrium point of the full
meningitis and pneumonia coinfection model is local
asymptotically stable only if Ref f ðmÞ < 1 and Ref f ðpÞ < 1 , oth-
erwise it is unstable.

2.9.2. Global Stability of Disease-Free Equilibrium Point. The
disease-free equilibriums of the meningitis monoinfection
model and the pneumonia monoinfection model are both
globally asymptotically stable whenever their corresponding
effective reproduction numbers values are smaller than unity,
as demonstrated in Section 3 Figure 2 and 3, respectively. In
light of this conclusion, the disease-free equilibrium point of
the pneumonia and meningitis coinfection model (1) is glob-
ally asymptotically stable if Ref f =max fR1,R2g < 1:

2.10. Endemic Equilibrium Point and Its Stability. The
endemic equilibrium point of the dynamical system (1) is
obtained by making the right side of the system equal to zero
providing that MI ≠ 0, PI ≠ 0 and MPI ≠ 0. We have sup-
posed the endemic equilibrium point of the model is
denoted by E∗

pm = ðS∗,Mv
∗, Pv

∗,MPv
∗,MI

∗, PI
∗,MPI

∗, T∗,
R∗Þ and the corresponding forces of infection are

α1
∗ = a MI

∗ + ℯ1MPI
∗ð Þ and α2∗ = b PI

∗ + ℯ2MPI
∗ð Þ,

S∗ =
1

α1
∗ + α2

∗ + μð Þ
Á 1 − πð Þλ + ϕρπλ

μ + ϕ + ε2ð Þ + 1 − ρð Þφπλ
μ + φ + ε1ð Þ + Y

βT∗

Y + μð Þ
� �

,

Mv
∗ =

1 − ρð Þπλ
μ + φ + ε1ð Þ ,Pv

∗ =
ρπλ

μ + ϕ + ε2ð Þ ,

MPv
∗ =

ε1
μ

� �
1 − ρð Þπλ
μ + φ + ε1ð Þ

� �
+

ε2
μ

� �
ρπλ

μ + ϕ + ε2ð Þ
� �

,

MI
∗ =

α1
ω2α2

∗ + τ1 + δ1 + μð Þ
� �

1
α1

∗ + α2
∗ + μð Þ

�

Á 1 − πð Þλ + ϕρπλ

μ + ϕ + ε2ð Þ +
1 − ρð Þφπλ
μ + φ + ε1ð Þ + Y

βT∗

Y + μð Þ
� ��

,

PI
∗ =

α2
ω1α1

∗ + τ2 + δ2 + μð Þ
� �

1
α1 + α2

∗ + μð Þ
�

Á 1 − πð Þλ + ϕρπλ

μ + ϕ + ε2ð Þ +
1 − ρð Þφπλ
μ + φ + ε1ð Þ + Y

βT∗

Y + μð Þ
� ��

,

MPI
∗ =

1
τ3 + μð Þ

� �
ω1α1

∗ð Þ α2
ω1α1

∗ + τ2 + δ2 + μð Þ
� �

Á 1
α1

∗ + α2
∗ + μð Þ 1 − πð Þλ + ϕρπλ

μ + ϕ + ε2ð Þ
��

+
1 − ρð Þφπλ
μ + φ + ε1ð Þ + Y

βT∗

Y + μð ÞÞÞ

+
α1 ω2α2

∗

ω2α1
∗ + τ1 + δ1 + μð Þ α1

∗ + α2
∗ + μð Þ τ3 + μð Þ

� ��

Á 1 − πð Þλ + ϕρπλ

μ + ϕ + ε2ð Þ +
1 − ρð Þφπλ
μ + φ + ε1ð Þ + Y

βT∗

Y + μð Þ
� ��

,

T∗ =
τ1MI

∗ + τ2PI
∗ + τ3MPI

∗

β + μð Þ , R∗ =
βT∗

Y + μð Þ : ð44Þ

Theorem 16. The endemic equilibrium point E∗
pm is locally

asymptotically stable if the Ref f > 1, otherwise it is unstable.
Proof: the local stability of the endemic equilibrium point

of the full model is verified by using a numerical simulation in
Section 4 Figure 3.
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Figure 2: Sensitivity indices for R2.
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Figure 3: Stability of endemic equilibrium when Ref f =max fR1,
R2g>1.
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3. Sensitivity Analysis and
Numerical Simulations

In this section, we have carried out the sensitivity analysis to
find the possible sensitive parameters having important
implications to prevent and control the meningitis and
pneumonia coinfection spread and the numerical simula-
tions of model parameters and model solutions to approve
the analytical results that we have done in Section 3.

In the numerical simulation of the meningitis and pneu-
monia coinfection model, we assessed the possible impact of
controlling strategies on the dynamics of the disease.

3.1. Sensitivity Analysis. Definition. the normalized forward
sensitivity index of a variable meningitis and pneumonia
reproduction number denoted by the symbol Ref f that
depends differentially on a parameter ξ is defined as
SIðpÞ = ∂Ref f /∂ξ ∗ ξ/Ref f [2, 17].

Conducting sensitivity analysis provides a number of
benefits for decision-makers. First, it acts as an in-depth
study of all the variables. Secondly, it allows decision-
makers to identify where they can make improvements in
the future. In our case, it helps us to determine the relative
and importance of different parameters in meningitis and
pneumonia incidence and prevalence. The most sensitive
parameter has the magnitude of the sensitivity index larger
than that of all other parameters. We have manipulated
the sensitivity index in terms of

Ref f =max
aλ 1 − πð Þ
τ1 + δ1 + μð Þμ

�

+
ϕρ μ + φ + ε1ð Þ + φ 1 − ρð Þ μ + ϕ + ε2ð Þ

μ + ϕ + ε2ð Þμ
Á πλa

τ1 + δ1 + μ

� �
,

bλ 1 − πð Þ
τ2 + δ2 + μð Þμ

+
ϕρ μ + φ + ε1ð Þ + φ 1 − ρð Þ μ + ϕ + ε2ð Þ

μ + ϕ + ε2ð Þμ
Á πλb

τ2 + δ2 + μ

� ��
:

ð45Þ

We could have manipulated the sensitivity index in
terms of R1 and R2 since Ref f =max fR1,R2g.

Sensitivity analysis results and the numerical simulation
are given in this section with parameter values given in
Table 2 with the initial population of the full meningitis
and pneumonia coinfection model.

3.1.1. The Sensitivity Indices for R1. In this section, we have
stated the sensitivity indices for R1. Using the values of the
parameters in Table 2, the sensitivity indices forR1 is calcu-
lated in the following:

(1) SIðaÞ = ∂R1/∂a ∗ ða/R1Þð∂R1/∂aÞ = λ½1 − π�/μðμ +
δ1 + τ1Þ + ðπλðϕρ½1 + μ + φ� + ð1 + μ + ϕÞφ½1 − ρ�ÞÞ/
μð1 + μ + ϕÞðμ + δ1 + τ1Þ⇒ SIðaÞ = 1

(2) SIðδ1Þ = ∂R1/∂δ1 ∗ δ1/R1
⇒-
∂R1/∂δ1 = −aλ½1 − π�/μðμ + δ1 + τ1Þ2 − ðaπλðϕρ½1
+ μ + φ� + ð1 + μ + ϕÞφ½1 − ρ�ÞÞ/μð1 + μ + ϕÞ
ðμ + δ1 + τ1Þ2 ⇒ SIðδ1Þ = −δ1/ðμ + δ1 + τ1Þ

Following the procedures we have generalized and stated
the sensitivity parameters as follows:

In this section, the obtained figure was explored with
parameter values given in Table 2, and we have gotten R1
= 12:33 at a = 0:9, which implies meningitis has been
expanded throughout the considered community, and addi-
tionally, we have manipulated the sensitivity indices for
other parameters as show in Figure 4. The obtained sensitiv-
ity analysis shows that the recruitment rate λ and meningitis
effective contact rate a have the highest impact onR1.

3.1.2. The Sensitivity Indices for R2. In this section we have
presented the sensitivity indices for R2 . Using the values
of parameters in Table 2, the sensitivity indices forR2 is cal-
culated in following chart.

(1) SIðbÞ = ∂R2/∂b ∗ ðb/R2Þð∂R2/∂bÞ = ðπλϕρ½1 + μ +
φ� + ð1 + μ + ϕÞðλ½1 − π� + πλφ½1 − ρ�ÞÞ/μð1 + μ + ϕÞ
ðμ + δ2 + τ2Þ⇒ SIðbÞ = 1

Table 2: Parameter values used for the coinfection model
simulation.

Parameter Values Unit Source

a 0.9 size−1 ∗ Time−1 [8]

b 0.007-0.6 size−1 ∗ Time−1 [8]

τ1 0.02 Time−1 [8]

τ2 0.012 Time−1 [8]

τ3 0.31 Time−1 [8]

β 0.06 -0.13 Time−1 [16, 17]

μ 0.01 Time−1 [8]

δ1 0.002-0.2 Time−1 [8]

δ2 0.006-05 Time−1 [8]

δ3 0.008-0.7 Time−1 [8]

ω1 1 Time−1 Assumed

ω2 1 Time−1 Assumed

Y 0.007-0.4 Time−1 [8]

π 0.105 Time−1 [8]

λ 0.0413∗N0 Size ∗ Time−1 [8]

ε2 0.007 Time−1 Assumed

ε1 0.025 Time−1 Assumed

ϕ 0.0115 Time−1 [22]

φ 0.5 Time−1 [23]

ρ 0.05 Time−1 [21]
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(2) SIðδ2Þ = ∂R2/∂δ2 ∗ δ2/R2 ⇒ ∂R2/∂δ2 = ðbðπλðð1
+ μÞρðϕ − φÞ + ð1 + μ + ϕÞφÞ + ð1 + μ + ϕÞλ½1 − π�ÞÞ
/μð1 + μ + ϕÞðμ + δ2 + τ2Þ

Following the procedures we have generalized and stated
the sensitivity parameters as follow

In this section, the obtained figure was explored with
parameters values given in Table 2 and we have got R2 =
15:1 at b = 0:85 which implies pneumonia has been
expanded throughout the considered community and addi-
tionally we have manipulated the sensitivity indices for
another parameters as show in Figure 2 above. The obtained
sensitivity analysis shows that the recruitment rate λ and
pneumonia effective contact rate b have the highest impact
onR2.

3.2. Numerical Simulations. MATAB software is used to
ensure the accuracy of the mathematical terminology
descriptions and the validity of the analytical solution. To
show the verification of the analytical solution we acquired
in the previous part, we utilized the MATLAB code ODE
45. Additionally, we have shown and investigated the effects
of a number of traits (parameters) that are related to menin-
gitis and pneumonia coinfection illness.

3.2.1. Local Stability of the Endemic Equilibrium Point. The
parameters from Table 2 were used to run a numerical sim-
ulation using the ODE 45, which produced the results shown
in Figure 3. From Figure 3, we can observe that after a year,
the solutions of the meningitis and pneumonia coinfection
dynamical system (1) will be approaching to the endemic
equilibrium point of the meningitis and pneumonia coinfec-
tion depends on the value of Ref f =max fR1,R2g. More
specifically, Figure 3 shows that after a time, the solutions

of the meningitis and pneumonia infection transmission
dynamics will be converging to its endemic equilibrium
point, i.e., the endemic equilibrium point is locally asymp-
totically stable whenever a = 0:9 and Ref f =max fR1,
R2g = 15:1 > 1. This mathematical conclusion illustrates
the physical phenomena known as the proliferation and
spread of meningitis and pneumonia coinfection regularly
happening throughout the population which is confined
to a certain location.

Figure 5 demonstrates that while the Ref f =max fR1,
R2g < 1, the solution of the system is converged to the
disease-free equilibrium point.

3.2.2. The Impact of Meningitis Treatment Rate on
Meningitis and Pneumonia Coinfected Populations. We
looked at how the coinfected class was affected by τ3 in this
part. We can see from Figure 6 that the prevalence of men-
ingitis and pneumonia coinfection decreases as values of τ3
rise. To manage the disease in the community, public
authorities must focus on increasing the values of the treat-
ment rate τ3.

3.2.3. The Impact of Meningitis Treatment Rate on
Coinfected Class. The endeavor we conducted about the
impact of τ1 on the coinfected class is illustrated in
Figure 7. The figure shows that the population with coinfec-
tions of meningitis and pneumonia is decreasing as the
values of the meningitis treatment rate, indicated by τ1, rise.
The most crucial thing to remember is that treating just
meningitis-infected people can significantly reduce the cooc-
currence of meningitis and pneumonia infections in com-
munities, which is one of the study’s main findings.
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Figure 4: Sensitivity indices for R1.
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As a result, we advise the stakeholders to maximize the
meningitis treatment rate in order to confine and stop the
spread of the meningitis and pneumonia coinfection illness
in the community.

3.2.4. The Impact of Pneumonia Treatment Rate on
Coinfected Class. The influence of pneumonia treatment rate
(τ2) on the coinfected class is shown in Figure 8.

The graph shows that when the incidence of pneumonia
treatment rises, the population with coinfections of meningi-
tis and pneumonia declines. This study’s other key observa-
tion is that treating pneumonia-infected people only has a
substantial impact on reducing the cooccurrence of menin-
gitis and pneumonia infections in communities, which is
perhaps most relevant. In order to prevent and slow the
spread of the meningitis and pneumonia coinfection illness
in the community, we advise the stakeholders to maximize
the values of the pneumonia treatment rate of τ2.

3.2.5. The Impact of Parameters on Ref f =max fR1,R2g.
In this subsection, as we see in Figure 9, we have investigated
the effect of vaccination ðε2Þ and the effective reproduction
number Ref f =max fR1,R2g. The figure reflects that
when the value of ε2 increases, both R1 and R2 decrease,
which implies that the maximum of them also declines.

Moreover, the value Ref f =max fR1,R2g becomes
smaller than one when the value of ε2 > 0:39:

In this subsection, as we can see in Figure 10, we have
investigated the effect of vaccination ðε1Þ and the effective
reproduction number Ref f =max fR1,R2g. The figure
reflects that when the value of ε1 increases, both R1 and
R2 decrease, which implies that the maximum of them also
declines.

Moreover, the value Ref f =max fR1,R2g becomes
smaller than one when the value of ε1 > 0:258:

Figure 11 elaborates the investigation of effect contact
rates a and b on Ref f =max fR1,R2g.The figure repre-
sents that as the values of a and b increase, both R1 and
R2 increase. To have the minimum values of Ref f =max
fR1,R2g, the value of a and b should be less than 0:19.
As a result, we urge all relevant parties to pay close attention
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Figure 7: Plot effect of meningitis treatment rate on the coinfected
groups.
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to the effectiveness of the pneumonia vaccine in preventing
the coinfection of meningitis and pneumonia in society.

In this subsection, as we see in Figure 12, we have investi-
gated the effect of a portion of vaccination of pneumonia pro-
tection portion ρ on the effective reproduction number
Ref f =max fR1,R2g. The figure reflects that when the
value of ρ increases, both R1 and R2 decrease, which implies
that the maximum of them also declines. Moreover, when the
value of ρ > 0:629, the value of R2 is less than one; when the
value of ρ > 0:831, the value of R1 is less than one.

This suggests that if and only if the percentage of pneu-
monia vaccination rate is higher than 0.831, then Ref f =
max fR1,R2g < 1. Therefore, to avoid and regulate the

dynamic transmission of meningitis and pneumonia coin-
fection, public authorities must look to increase the gains
of the pneumonia vaccination portion.

Figure 13 elaborates the investigation of the effect of
pneumonia vaccination wanes (ϕ) on Ref f =max fR1,
R2g.The figure represents as the value of ϕ increases, both
R1 and R2 increase. To have the minimum values of
Ref f =max fR1,R2g, the value ϕ should be less than 0.4.
As a result, we urge all relevant parties to pay close attention
to the effectiveness of the pneumonia vaccine in preventing
the coinfection of meningitis and pneumonia in society.
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Figure 9: Effect of vaccination ðε2Þ on reproduction numbers.
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Figure 10: Effect of vaccination ðε1Þ on reproduction numbers.
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Figure 11: Effect of effective contact rate on reproduction
numbers.
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Figure 14 explains the investigation of the effect of meningi-
tis vaccination wanes ðφÞ on Ref f =max fR1,R2g. The
graph illustrates how both R1 and R2 grow when the value
of φ rises. Our conclusion from this finding is that when the
value of φ is smaller than 0.396, the minimal value of Ref f =
max fR1,R2g is reached. The effectiveness of the meningitis
vaccination in avoiding the coinfection of meningitis and pneu-
monia in society should thus be closely monitored, thus we
encourage all pertinent parties to pay attention for it.

Analytic solution of some differential equations is compli-
cated and tough. In such case, we need a numerical simulation
of the system. In our case we have used a numerical simulation
for stability analysis of steady state and obtained the result; after
a year, the solutions of the meningitis and pneumonia coinfec-
tion dynamical system will tend to the endemic equilibrium
point of the model. This expression of the plot illustrates the
biological meaning of the proliferation and spread of meningitis
and pneumonia coinfection which is regularly happening
throughout the population of which is confined to a certain
location. Additionally, we have used a numerical simulation to
investigate the effects of a number of traits (parameters) that
are related to the meningitis and pneumonia coinfection illness,
such as, treatment rate, meningitis treatment rate, pneumonia
treatment rate, effect of vaccination, and effective contact rate
and vaccination wanes rate. As a result, we have shown that
increasing availability tomeningitis and pneumonia prevention,
treatment, and meningitis and pneumonia coinfection vaccine
has a significant influence on the frequency of meningitis and
pneumonia in a particular population.

4. Discussion

We addressed the epidemiology and historical context of
meningitis and pneumonia in Section 1.

In Section 2, the deterministic meningitis and pneumo-
nia coinfection dynamical system was built by dividing the
entire human population into nine groups based on the
severity of the infection. Moreover, we looked at the model’s
descriptive phenomena, including the model’s prospective
solutions being positive, the dynamical system being
bounded, the existence of a disease-free equilibrium point,
the existence of an effective reproduction number using the
next generation matrix technique, the existence of endemic
equilibriums, and the stability analysis of the disease-free
equilibrium point using the Routh-Hurwitz criteria in this
section. Additionally, the Routh-Hurwitz criteria were used
to demonstrate the local stability of endemic equilibrium
points of submodels, and we were able to conclude that these
points are locally asymptotically stable if the reproduction
number is less than one. Nevertheless, the endemic equilib-
rium point of the combined meningitis and pneumonia
coinfection model is revealed by numerical simulation pre-
sented in Section 3 by Figure 3, i.e., the endemic equilibrium
point is locally asymptotically stable just when a = 0:9, b =
0:85, andRef f =max fR1 = 12:33,R2 = 15:1g > 1.

Through the use of numerical simulation, we have exam-
ined the effects of several parameters on the effective repro-
duction rate as well as the prevention and control of the
development of meningitis and pneumonia infections in
Section 3. The results show that increasing availability to
meningitis and pneumonia prevention, treatment, and men-
ingitis and pneumonia coinfection vaccine has a significant
influence on the frequency of meningitis and pneumonia
in a particular population. The optimal control analysis of
pneumonia and meningitis coinfection [8] having solely
evaluated prevention for both meningitis and pneumonia,
we found that preventative regulation had a significant influ-
ence on reducing the spread of meningitis, pneumonia, and
their coinfection within the given time frame. Efforts to
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Figure 13: Effect of pneumonia vaccination wanes rate on
reproduction numbers.
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avoid pneumonia and treat meningitis are two more tech-
niques addressed in this study. They discovered that each
of the stated measures is successful in reducing the growth
of the infectious populations that only have meningitis,
pneumonia, or both throughout the allotted time frame.

A mathematical model of seven nonlinear differential
equations for the pneumonia and meningitis coinfection
with PCV vaccination for a newly born population and
treatment for coinfected class has also been developed and
entitled as “mathematical model analysis and numerical
simulation for codynamics of meningitis and pneumonia
infection with intervention” [5]. They have taken into
account the PCV13 (pneumococcal conjugate vaccine),
which is a vaccination given to infants and protects against
a variety of pneumococcal bacteria that can cause the most
severe forms of pneumococcal illness, such as pneumonia
and meningitis. Additionally, researchers [7] have demon-
strated that the availability of hospital beds, medicines, and
other treatment options all contribute to a decline in the
number of cases of bacterial meningitis. However, they
observe that an increased recruitment rate causes a back-
ward split in a town with few hospital beds.

Finally, they advise using vaccination when there is a
large influx of new people. Numerous studies have demon-
strated that meningitis and pneumonia infections may be
wiped out in the community when treatment and immuni-
zation efforts are combined. Despite treatment interven-
tions, these diseases and their combined forms continue to
exist in the entire population. Three different vaccine combi-
nations with similar treatments were not taken into account
in any model across all studies. In contrast to the previous
studies described above, the model developed in this study
took into consideration all three vaccines, namely the men-
ingitis vaccine, the pneumonia vaccine, and people who
had received both the vaccine and therapy at the same time.

5. Conclusion

The study is aimed at building and examining a compart-
mental deterministic mathematical model of the dynamics
of the spread of the coinfection of meningitis and pneumo-
nia. In the population under the study, this model consid-
ered how vaccination and therapy of single infection of
meningitis or pneumonia may reduce the risk of meningitis
and pneumonia coinfection. When the effective reproduc-
tion number is smaller than unity, the model possesses a
disease-free equilibrium point that is locally asymptotically
stable. The outcome of the numerical simulation demon-
strates that when Ref f > 1, the meningitis and pneumonia
coinfection model’s endemic equilibrium point is locally
asymptotically stable.

Besides obtaining the model’s matching effective repro-
duction number Ref f , we were able to identify the effects
of changing specific parameter values and provide future
guidance for the public’s partners. Our findings have signif-
icant public health implications because they affect whether
a disease is eradicated or persists in the community under
investigation.

As a result of our numerical findings which show that
Ref f = 15:1 at b = 0:85 and a = 0:9, we notify public author-
ities to focus on raising or maximizing the values of the
involved individuals’ meningitis vaccination, pneumonia
vaccination, and meningitis and pneumonia coinfection vac-
cination as well as treatment rates in order to reduce and
eradicate the disease from the study’s target community.
Finally, other key results of this study are meningitis contact
rates, pneumonia contact rates, and vaccination deficits of
corresponding diseases that have contributed immensely to
the spread of meningitis and pneumonia coinfection in the
community.
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