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To address the issues of uneven illumination and inconspicuous leukocyte properties in the gathered cell pictures, a leukocyte
segmentation method based on adaptive retinex correction and U-net was proposed. The procedure begins by processing a
peripheral blood image to clearly distinguish leukocytes from other components in the image. The adaptive retinex correction,
which is based on multiscale retinex with colour replication (MSRCR), redefines the colour recovery function by introducing
Michelson contrast. Then, the image is trained with the U-net convolutional neural network, and the leukocyte segmentation is
completed. The innovation is in the manner of processing peripheral blood images, which improves the accuracy of leukocyte
segmentation. This study conducts experimental evaluations on the Cellavision, BCCD, and LISC datasets. The experimental
results show that the method in this study is better than the current best method, and the segmentation accuracy rate reaches
98.87%.

1. Introduction

Leukocytes are an important part of the human immune sys-
tem. Neutrophils, basophils, eosinophils, monocytes, and
lymphocytes make up the majority of leukocytes [1].
Because the number and proportion of different types of leu-
kocytes correspond to different diseases, leukocyte detection
accuracy is critical for disease auxiliary diagnosis [2].

Manual microscopy is used in the most traditional
leukocyte detection procedures. Manual microscopic exami-
nation is the “gold standard” of clinical examination. It
requires two well-trained and experienced laboratory physi-
cians to observe the morphology and count of leukocytes
under the microscope and finally determine the test results.
This strategy is not only inefficient and time-consuming
but also has a high level of subjectivity [3].

Leukocytes are now segmented and identified using
traditional image processing. These include watershed algo-
rithms [4], edge detection [5], active contour models [6], and
adaptive threshold segmentation [7]. However, the tradi-
tional method can only conduct single-label classification
and cannot perform multilabel classification, and it still has

issues such as incomplete cell segmentation and low accu-
racy. Edge detection is only capable of generating edge
points, not completing image segmentation, and must be
processed further after acquiring edge point information
[5]. The active contour model relies on the initial contour
being chosen correctly; otherwise, a suitable segmentation
result cannot be obtained if the starting contour is incorrect
[6]. In adaptive threshold segmentation, choosing an ade-
quate threshold is critical because it is susceptible to noise
and has low resilience [7]. As a result, the traditional method
is inadequate for today’s practical use.

With improvements in computer performance and the
increase in data volume in recent years, deep learning has
also been widely used in leukocyte detection [8]. Ma et al.
[9] proposed an improved residual neural network (ResNet)
to classify leukocytes, with an accuracy rate of 92%. Kutlu
et al. [10] proposed a regional convolutional neural network
(R-CNN) based on CNN to identify white blood cells. Lym-
phocytes, monocytes, basophils, eosinophils, and neutro-
phils had accuracy rates of 99.52%, 98.40%, 98.48%,
96.16%, and 95.04%, respectively. Geng et al. [11] integrated
the attention mechanism module on the Mask R-CNN
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structure, and the average segmentation accuracy MIoU
achieved 89.30%.

The current study discovered that the public dataset has
few leukocyte data samples, that many studies require data
extension, and that only a single leukocyte segmentation
can be done in an image. This study proposes a leukocyte
segmentation approach based on adaptive retinex correction
and U-net to address the aforementioned issues. To improve
the robustness of training, an adaptive retinex method is
used to preprocess the blood cell image, strengthen the dif-
ferent characteristics of individual leukocytes, and eliminate
the problem of uneven illumination during acquisition.
Then, U-net is used to train and predict the processed data-
set; U-net can train with fewer datasets, which solves the
problem of fewer leukocyte data samples.

2. Methods

The method presented in this study is separated into two
parts: image preprocessing using adaptive retinex correction
and image semantic segmentation using a U-net network.
Among them, the U-net network completes the segmentation
of the pixels in the blood cell image. Pure semantic segmenta-
tion, however, is unable to correctly segment leukocytes due to
the uneven backdrop and a significant number of other cells in
the blood cell image. As a result, in this study, we used the
adaptive retinex method to preprocess blood cells, reducing
uneven illumination during collection and improving leuko-
cyte properties. For semantic segmentation, the generated
images reveal precise leukocyte positions. Figure 1 shows a
schematic diagram of the method.

2.1. Adaptive Retinex Correction. Single-scale retinex (SSR)
and multiscale retinex (MSR) are two of the most well-
known algorithms in retinex theory. Multiscale retinex with
colour restoration (MSRCR) [12] is offered as a solution to
the colour distortion problem. It did not produce satisfactory
results when used in the processing of blood cell images. The
processing result is shown in Figure 2. In the processed image,
the hue of leukocytes and other blood cells is more similar,
causing some interference in the subsequent training. There-
fore, this study presents an adaptive retinex correction to pro-
cess the image, whichmay better separate the background from
the leukocytes while also clarifying the leukocyte properties.

The fundamental assumption of retinex theory is that
the original image S is the product of the lighting image L
and the reflectance image R, which may be stated as follows:

S x, yð Þ = R x, yð Þ ⋅ L x, yð Þ: ð1Þ

In processing, it is usually transferred to the logarithmic
domain, that is, s = log ðSÞ, l = log ðLÞ, and r = log ðRÞ, to
convert the product relationship into a sum relationship:

log Sð Þ = log R ⋅ Lð Þ, ð2Þ

log S = log R + log L, ð3Þ

s = r + 1: ð4Þ

Retinex theory works by estimating the illumination L
from the original image S, deconstructing the reflection
component R, decreasing the influence of uneven illumina-
tion, and boosting the visual effect of the image, which is
similar to how the human visual system works. That is,

l = f sð Þ, ð5Þ

r = s − f sð Þ: ð6Þ

Following that, the SSR implementation steps are as
follows:

(Step 1) Divide the image into three channels R, G, and
B, and apply the logarithmic transformations
described in Formulas (2) and (3).

(Step 2) Create a Gaussian surround function, convolve
the grayscale images of each channel with the
Gaussian surround function, and obtain the
illumination estimation components for the
three channels.

(Step 3) In the logarithmic domain, execute a difference
operation on the original image and the Gauss-
ian blurred image to retrieve the reflection
component.

(Step 4) Linearly stretch or exponentially transform the
obtained reflection component’s result into the
data type of image output.

(Step 5) To create an SSR-enhanced image, the three-
channel reflection component images are com-
bined into one image.

The MSR selects three scale parameters in Step 2 of the
SSR to form three Gaussian surround functions and then
performs convolution and weighted averaging to obtain the
illumination estimation components of each channel to
effectively maintain details and colour information. MSRCR
is based on MSR. In Step 4, the colour recovery function is
used to multiply the MSR enhancement function of each
channel to obtain the image enhancement reflection compo-
nent of the three channels to reduce the colour shift. The
adaptive retinex algorithm proposed in this study converts
the image in RGB colour space to HSV colour space on
the basis of MSRCR [13]. To provide colour correction for
the H and S components, a block-based colour recovery
mechanism is introduced. The H- and S-component images
are first separated into n small blocks of k × k [14], and then,
Michelson contrast is applied to each small block to select
the appropriate β. Figure 3 depicts the overall algorithm pro-
cessing procedure.

The MSRCR model is as follows:

FMSRCR x, yð Þ = ci x, yð ÞFMSR x, yð Þ, ð7Þ

where ciðx, yÞ represents the colour recovery function, and
the formula satisfies
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ci x, yð Þ = α ⋅ log β ⋅
Si x, yð Þ
∑iSi x, yð Þ

� �
, ð8Þ

where i ∈ fR,G, Bg, α, and β are the gain factor offsets that
affect the colour recovery of the image, and they are all
constants. Generally, the value of α is 46, and the value of
β is 125.

β is employed as a constant, and the colour recovery
function and each pixel in the MSR-enhanced image must
be multiplied according to Formula (7). As a result, MSRCR
is used to process the Wright-stained blood cell image to
ensure that the pixel point ratio between each channel is
consistent with that of the original image, which will make
the overall image tend to the same tone. In the blood cell
image after Wright’s staining, the colour of leukocytes will
be darker than other cells or impurities, and the pixel value
of the background is the lowest, so β should be changed
according to different ranges of pixel values.

First, the pixel distribution of the H and S components
of the blood cell image is counted, and the relationship
between white blood cells and other cells and the back-
ground is observed. As shown in Figure 4, the H component
distinguishes between the background and the cells; there-
fore, the background is handled there to solve the problem
of a too bright or too dark background. Background, other
cells and impurities, and leukocytes are separated in the S
component, so they are processed separately in the S compo-

nent to increase the detailed features of leukocytes, and the
three components are normalized independently at the same
time. The MSRCR is adjusted according to the relationship
between pixel values and pixels in the block-based colour
recovery function developed in this study, and Michelson
contrast is introduced to distinguish leukocytes from other
cells and impurities.

The Michelson contrast can be defined as follows:

CM = Imax − Imin
Imax + Imin

, ð9Þ

where Imax and Imin represent the brightest and darkest
brightnesses, respectively.

Taking γ as a constant, β is defined as

β = γ ⋅ exp CMð Þ: ð10Þ

Then, the ciðx, yÞ colour recovery function satisfies

ci x, yð Þ = α ⋅ log γ ⋅ exp CMð Þ ⋅ Si x, yð Þ
∑iSi x, yð Þ

� �

= α ⋅ log γ ⋅ exp Imax − Imin
Imax + Imin

� �
⋅

Si x, yð Þ
∑iSi x, yð Þ

� �
:

ð11Þ

For each k × k patch, in the H component, Imax repre-
sents all cells and impurities in the blood cell image, and

Improved enhanced feature 
extraction networkU-net convolutional neural network

Segmentation results

VGG16 backbone feature 
extraction network

Predict

White blood cell dataset

Adaptive retinex correction

Figure 1: Schematic diagram of the leukocyte segmentation model.

(a) (b)

Figure 2: Result plot processed with MSRCR. (a) Original image. (b) After MSRCR processing.
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Imin represents the background in the blood cell image.
When CM increases gradually, it means that the contrast
between the cells and the background in the image is large;
then the value of β increases with the increase of contrast,
which can suppress the influence of uneven brightness
caused by nonuniform illumination; as CM gradually
decreases, it may be under the same black background or
gray all cells and impurities in the image; the value of β tends
to be constant, ensuring that leukocytes and other impurities
are not overly similar. In the S component, Imax represents
the leukocytes in the blood cell image, and Imin represents
the background in the blood cell image. The value of β varies
with CM , refining the leukocyte characteristics while increas-
ing the contrast between leukocytes and other cells and
impurities.

If the brightest and darkest brightnesses are the same,
that is, Imax = Imin, then CM = 0, and β = γ ⋅ exp ðCMÞ = γ,
the colour recovery function is simplified to

ci x, yð Þ = α ⋅ log γ ⋅
Si x, yð Þ
∑iSi x, yð Þ

� �
: ð12Þ

This is the same as the original colour recovery function,
but the colour recovery function designed in this study has a
better effect when processing blood cell images.

2.2. U-Net Convolutional Neural Network. As shown in
Figure 5, the U-net semantic segmentation model in this
study can be divided into the following three parts:

The backbone feature extraction network is the initial
part, and the VGG16 network is employed in this study.
Using the backbone feature extraction component, five pre-
liminary effective feature layers may be created, and these
five effective feature layers are used for feature fusion in
the second part.

The strengthening of the feature extraction network is
the second step. This part performs upsampling and feature

Fusion processed HSV triple channel

Convert to RGB colour space

H component

S componentV component

Adaptive MSRCR algorithm introducing 
block-based colour restoration function

RGB blood cell image

HSV blood cell image

Figure 3: Adaptive retinex correction process.
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fusion on the five preliminary effective feature layers
acquired in the first phase, resulting in a final effective fea-
ture layer that incorporates all features. Upsampling is
directly doubled in this part, followed by feature fusion to

optimize the height and breadth of the augmented feature
layer to match the backbone feature layer.

The prediction network is the third part, and it employs
the last effective feature layer to categorize each feature

H 
component

Pixel 
distribution 

statistics 

S 
component

Pixel 
distribution 

statistics 

Figure 4: H and S components and their pixel distribution statistics.

Prediction
netw

ork

Strengthen the feature
extraction network

Backbone feature extraction network

Conv 3x3, ReLU
Copy and crop
Max pool 2x2

Upconv 2x2
Conv 1x1

3 64 64

128

51
22

51
22

51
22

25
62

25
62

25
62

128

256 256256

12
82

12
82

12
82

12
82

512 512 512

64
2

64
2

64
2

64
2

512 512

322 322 322 322

64
2

64
2

64
2

5121024

256

12
82

12
82

12
82 768

384 128

192 64 64 2
25

62

25
62

25
62

51
22

51
22

51
22

51
22

Figure 5: U-net semantic segmentation model in this study.
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point, which is equivalent to classifying each pixel point to
obtain a segmentation result.

3. Experiment

3.1. Lab Environment. The experiments in this study are
based on the deep learning framework TensorFlow, and
the experimental environment is Python3.6. The processor
is i7-9700f, the memory is 8G, the graphics card is
GTX1660, and the operating system is Windows 10.

3.2. Model Training. The dataset used in this study is the
LISC dataset. There are 250 image samples in all. The num-
ber is sufficient, and the cell image condition is somewhat
complex; therefore, the training set is essentially met. Eighty
of them were selected. First, the methods proposed in this
study were applied to these 80 datasets. Then, the sample
dataset is divided into 40 training and testing sets. Finally,
the model is trained with 40 training sets using U-net. In
the experiment, the pretrained weights are the initialization
weights of the VGG16 network. All the training data are
normalized to 512 × 512 × 3, and then training is started
from the 0th generation. The model is first frozen for 50 gen-
erations and then trained for 50 generations after thawing.
Two data samples were captured each time. The initial learn-
ing rate is set to 1 × 10−4.

3.3. Dataset. This study conducts comparison experiments
using different datasets to verify the effectiveness of the pro-
posed method. Cellavision, BCCD, and LISC datasets are
used in this study. Among them, in addition to the BCCD
dataset, other datasets contain five types of leukocytes,
namely, neutrophils, lymphocytes, monocytes, eosinophils,
and basophils. The BCCD dataset is devoid of basophils.

The LISC dataset [15] was obtained from the Imam Kho-
mein Hospital’s Center for Heamatology-Oncology and
BMT Research in Tehran, Iran, and comprises 250 cell
images at a resolution of 720 × 576 pixels. The Cellavision
dataset [16] contains 100 JPG-formatted colour photos at a
resolution of 300 × 300 pixels. The BCCD dataset consists
of 364 blood cell images of 416 × 416 pixels.

3.4. Evaluation Metrics. Train_loss and val_loss are pre-
sented in this study to check whether the parameter choices
of the U-net network model training are adequate. Train_
loss is the loss on the training data, which measures the fit-
ting ability of the model on the training set. Val_loss is the
loss on the validation set, which measures the fitting ability
on the test set, which can also be said to have the generaliza-
tion ability. As shown in Figure 6, both train_loss and val_
loss decrease continuously, indicating that the network
training state is normal.

To evaluate the image segmentation performance, four
parameters, the Dice coefficient, mean intersection over
union (MioU), mean pixel accuracy (MPA), and accuracy,
were selected. Suppose that set X represents the set of pre-
dicted value pixels obtained by the algorithm model, set Y
represents the set of artificially labelled ground-truth pixels,
and k represents the total number of categories. Then, each
parameter is defined as follows.

3.4.1. Dice Coefficient. A set similarity measure function
calculates the similarity of two samples. The value range is
[0, 1]; the closer the value to 1, the better the model effect.
The definition is shown in

Dice = 2 X ∩ Yj j
Xj j + Yj j : ð13Þ
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Figure 6: Loss curve.
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3.4.2. MioU. It is a standard measure for semantic segmenta-
tion, calculating the ratio of the intersection and union of
two sets of true and predicted values. The definition is
shown in

MIoU = 1
k
〠
k

i=1

X ∩ Y
X ∪ Y

: ð14Þ

3.4.3. MPA. It is the average of the sum of pixel accuracies
across all classes. The definition is shown in

MPA = 1
k + 1〠

k

i=0

X ∩ Y

∑k
j=0 Y − X ∩ Yð Þ

: ð15Þ

3.4.4. Accuracy. It shows the accuracy of all predicted values
compared to the true values. The IoU value is used as a com-
parison parameter. Generally, when the IoU of a prediction
result for a specific category is more than 0.5, the category

of the prediction result is considered accurate. However, to
obtain more accurate results, the critical value of IoU is set
as 0.8. The definition is shown in

Accuracy = number of IoU > 0:8
total number of forecast samples : ð16Þ

4. Results

4.1. Comparison Results of the LISC Dataset. Adaptive reti-
nex corrected blood cell images and U-net-based leukocyte
segmentation and classification are the two primary sections
of this study. Figure 7 shows the image processing results of
adaptive retinex corrected blood cells. Three images with
different background brightnesses of the original image were
selected for comparison, and good results were obtained
from the processing results. The backdrops tend to be uni-
formly bright, which eliminates the problem of backgrounds
that are either too bright or too dark. Other cells and

Adaptive retinex
correction

Original image

Figure 7: Adaptive retinex correction of blood cell image results.

Test set

Annotation map

Final result

Figure 8: Segmentation result.
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impurities distinguish leukocytes clearly, giving the ground-
work for training. The features of leukocytes are also more
distinct than in the original image.

The segmentation results of any three blood cell images
in the 40 test sets are shown in Figure 8. The images in the
test set are photos of leukocytes with noticeable characteris-
tics after the adaptive retinex in this study has corrected the
original blood cell images. The result of manual labelling is
the annotation map, which serves as a comparison to the
segmentation result. The final segmented image is obtained
by removing the background and leaving only the leukocytes

on the original image for the predicted segmentation result.
The accuracy value ultimately reached 98.87%.

The training of convolutional neural networks is carried
out using the original data samples and the preprocessed
data samples to validate that the method suggested in this
study has a better effect. Table 1 shows the before and after
results for MioU, MPA, and Accuracy. The findings demon-
strate that the preprocessing method utilized in this study
has improved significantly. Not only is the number of data
samples used cut in half, but MioU is improved by 22.09%,
MPA by 15.53%, and accuracy by 15.24%.

Table 1: Comparison of parameters before and after processing by this method.

Sample Number of data samples Dice MIoU (%) MPA (%) Accuracy (%)

Raw image dataset 80 0.771 70.83 82.3 83.63

Processed dataset 40 0.944 92.92 97.83 98.87

Cellavision datasets BCCD datasets

(a)

(b)

(c)

(d)

Figure 9: Segmentation results of different CNN methods in different datasets. (a) Original image. (b) DeepLabV3+. (c) PSPNet. (d) U-net
proposed in this study.

Table 2: Comparison of parameters of different methods under different datasets.

Datasets Method Dice MIoU (%) MPA (%) Accuracy (%)

Cellavision datasets

DeepLabV3+ 0.837 75.12 86.81 90.90

PSPNet 0.828 74.69 86.06 89.49

U-net 0.898 87.52 93.02 94.98

BCCD datasets

DeepLabV3+ 0.804 76.48 85.19 88.33

PSPNet 0.772 73.89 83.84 86.15

U-net 0.901 88.75 92.55 94.27
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4.2. Comparison Results of Different Segmentation Methods
on Leukocytes. To further verify that the U-net convolutional
neural network proposed in this study has good perfor-
mance for the segmentation of leukocytes, two different
semantic segmentation models are used for comparative

analysis on the Cellavision and BCCD public datasets.
Figure 9(a) shows two raw random images taken from these
two datasets. DeepLabV3+ [17], PSPNet [18], and U-net
[19] are the comparative methods. The comparison of seg-
mentation results is shown in Figure 9. These approaches

Cellavision datasets LISC datasetsBCCD datasets

(a)

(b)

(c)

(d)

(e)

(f)

(h)

(g)

(i)

Figure 10: Segmentation results of different methods on leukocytes. (a) Original image. (b) RGB to CIE image. (c) Mask segmented by the
method of [20] (Local Adaptive Threshold). (d) The segmentation result of the fusion of (a) and (c). (e) Segmented results by the method of
[21] (Feedback-based Watershed Algorithm Aided Multiple Thresholds). (f) The segmentation result of the fusion of (a) and (e). (g)
Adaptive retinex processing results. (h) Mask segmented by the method of this study (adaptive retinex correction and U-net). (i) The
segmentation result of the fusion of (a) and (h).
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can yield relatively optimal segmentation results according
to the comparison results. However, U-net has better results
than the other two methods. In terms of edge processing, the
other two techniques have flaws. For example, the edge pro-
cessing of the DeepLabV3+ model is too sharp, removing
details such as cytoplasm; the performance of the PSPNet
models even makes leukocytes incomplete and loses the
characteristics of leukocytes. The best performing method
is the segmentation method suggested in this study, which
overcomes the foregoing difficulties and produces fairly
standard segmentation results.

Table 2 represents the parameter comparison of different
methods for leukocyte segmentation. It can be seen that the
U-net proposed in this study achieves the highest accuracy.

In recent years, in addition to using CNNs for leukocyte
segmentation, traditional segmentation methods have also
been widely favour by researchers, as the locally adaptive
threshold segmentation method mentioned [20] and the
feedback-based watershed algorithm aided multiple thresh-
olds [21]. Moreover, in [20, 22], an image preprocessing
method converting RGB to CIE to solve the problem of
uneven illumination of the collected cell images is used. In
this subsection, the benefits and drawbacks of the prepro-
cessing method proposed in this study and those proposed
in [20, 22] will be discussed for comparison. At the same
time, the results of the segmentation method proposed in
this study and in [20, 21] in leukocyte segmentation will be
discussed. The results are shown in Figure 10.

To solve the problems of similar colour and uneven illu-
mination of other cells and leukocytes in blood cell images,
two preprocessing methods were used to conduct compara-
tive experiments on three different datasets. Line (a) in

Figure 10 converts the original RGB colour space to CIE
L∗u∗v∗. In fact, L∗u∗v∗ is an excellent intensity (repre-
sented by lightness L∗) and chromaticity (denoted by u∗
and v∗ components) decoupler [20]. The results of the adap-
tive retinex correction proposed in this study are shown in
line (g). Comparing these two methods, it is found that the
method in this study achieves better results for blood cell
images. In the Cellavision and LISC datasets, the processed
CIE images still have the problem that the colour of leuko-
cytes is similar to that of other cells, and even in the LISC
dataset, there is a fusion effect. In addition, this study also
adopted three segmentation methods to segment leukocytes.
Lines (c) and (d) are the method of [20], (c) is the mask
obtained by using the CIE image to perform local adaptive
threshold segmentation, and (d) is the segmentation result
after fusion of the original blood cell image and the mask.
Lines (e) and (f) are the method of [21], (e) is the result of
the feedback-based watershed algorithm aided multiple
threshold segmentation using the CIE image, and (f) is the
segmentation result plotted on the original blood cell image.
Lines (h) and (i) are the method proposed in this study, (h)
is the segmentation result predicted by the U-net neural net-
work on the image processed by adaptive retinex correction,
and (i) is the leukocyte obtained by fusing the original blood
cell image with the segmentation result. Comparing these
three methods, in the Cellavision dataset, neither [20] nor
[21] achieved satisfactory results. Because leukocytes are
too similar to other cells, there is a problem of less segmen-
tation of the cytoplasm. There is also such a problem in the
BCCD dataset, and the additional question is to segment the
impurities; there is even a loss of leukocytes in the LISC
dataset. In addition to the problems listed above, the method

Original image

Segmentation result

Connected domain plotting

Count callout

Leukocyte count 3 2 3

Figure 11: Leukocyte counts.
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of [21] showed that other cells were also segmented. How-
ever, the segmentation results presented by the method pro-
posed in this study are good and meet the requirements of
leukocyte segmentation.

4.3. Leukocyte Count.White blood cell count refers to count-
ing the number of white blood cells contained in a unit vol-
ume of blood. Inflammation or other diseases in the body
can cause changes in the total number of white blood cells,
so counting the number of white blood cells is also worthy
of attention. Through the discussion in Sections 4.1 and
4.2, the white blood cell segmentation method based on
adaptive retinex correction and U-net proposed in this study
has a good segmentation effect and can obtain well-
segmented white blood cells with background removed and
U-net predicted with red colour block-segmented image.
Because the prediction result contains a certain number of
red colour blocks, these red colour blocks represent the
white blood cells in the image. Therefore, in this study, the
number of white blood cells in the blood cell image was
determined by determining the number of red colour blocks.

As shown in Figure 11, first, the segmentation result map
is obtained by using the leukocyte segmentation method
proposed in this study; then the image is binarized, and
the connected domain is found and drawn; finally, the num-
ber of leukocytes is marked in order in the segmentation
result graph, among which the black background is 0. This
method preliminarily met the requirement of counting white
blood cells.

5. Conclusions

This study proposes a leukocyte segmentation method based
on adaptive retinex correction and U-net. First, the adaptive
retinex method is used to process blood cell images taken
under the microscope, increasing the clarity of leukocyte fea-
tures and eliminating the problem of uneven lighting during
acquisition, using the OpenCV platform. After that, leuko-
cyte segmentation is performed on the processed image
using the U-net convolutional neural network. The perfor-
mance and accuracy of leukocyte segmentation are increased
to some extent when compared to the unprocessed original
blood cell image, and the number of data samples needed
is lowered as well. MIoU grew by 22.09%, MPA grew by
15.53%, and accuracy grew by 15.24%.

Compared with the method of converting RGB to CIE,
the adaptive retinex correction proposed in this study is
more suitable for blood cell images, effectively distinguishing
leukocytes from other cells and impurities, and enhancing
the detailed characteristics of leukocytes, laying a foundation
for subsequent segmentation. This study also compares the
proposed U-net network with the DeepLabV3+ and PSPNet
networks, achieving over 94% accuracy on both the Cellavi-
sion and BCCD datasets.

Compared with the method in [20, 21], the method pro-
posed in this study has better performance on multiple data-
sets, and the performance of segmentation is even better. An
automated method for leukocyte segmentation is provided.

To further increase the practicality of the method of this
study, the count of leukocytes was added, and currently only
independent leukocytes were counted. There are still great
challenges for the counting of adherent or coincident cells,
but it can be considered to use the proportion of the area
occupied by leukocytes in the whole blood cell image to
achieve the count, which can be extended to the problem
of quantifying cells or colonies. This is also a future research
direction of this study.

Data Availability

Previously reported [LISC] data were used to support this
study and are available at http://users.cecs.anu.edu.au/
~hrezatofighi/Data/Leukocyte%20Data.htm/. These prior
studies (and datasets) are cited at relevant places within the
text as references [15]. Previously reported [Cellavision] data
were used to support this study and are available at https://
data.mendeley.com/datasets/w7cvnmn4c5/1. These prior
studies (and datasets) are cited at relevant places within the
text as references [16]. Previously reported [BCCD] data
were used to support this study and are available at https://
public.roboflow.com/object-detection/bccd.
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