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Background. Ovarian cancer tends to metastasize to the omentum, which is an organ mainly composed of adipose tissue. Many
studies have found that fatty acid metabolism is related to the occurrence and metastasis of cancers. Therefore, it is possible
that fatty acid metabolism-related genes (FAMRG) affect the prognosis of ovarian cancer patients. Methods. First, profiles of
ovarian cancer and normal ovarian tissue transcriptomes were acquired from The Cancer Genome Atlas (TCGA) and the
Genotype-Tissue Expression (GTEx) databases. A LASSO regression predictive model was developed via the “glmnet” R
package. The nomogram was created via the “regplot.” Gene Set Variation Analysis (GSVA), Kyoto Encyclopedia of Genes and
Genomes (KEGG), and Gene Ontology (GO) analyses were conducted to determine the FAMRGs’ roles. The percentage of
immunocyte infiltration was calculated via CIBERSORT. Using “pRRophetic,” the sensitivity of eight regularly used
medications and immunotherapy was anticipated. Results. 125 genes were determined as different expression genes (DEGs).
Based on RXRA, ECI2, PTGIS, and ACACB, a prognostic model is created and the risk score is calculated. Analyses of
univariate and multivariate regressions revealed that the risk score was a distinct prognostic factor (univariate: HR: 2.855, 95%
CI: 1.756-4.739, P < 0:001; multivariate: HR: 2.943, 95% CI: 1.800-4.812, P < 0:001). The nomogram demonstrated that it
properly predicted the 1-year survival rate. The expression of memory B molecular units, follicular helper T molecular units,
regulatory T molecular units, and M1 macrophages differed remarkably between the groups at high and low risk (P < 0:05).
Adipocytokine signaling pathways, cancer pathways, and degradation of valine, leucine, and isoleucine vary between high- and
low-risk populations. The findings of the GO enrichment revealed that the extracellular matrix and cellular structure were the
two most enriched pathways. PTGIS, which is an important gene in fatty acid metabolism, was identified as the hub gene. This
result was verified in ovarian cancer and ovarian tissues. The connection between the gene and survival was statistically
remarkable (P = 0:015). The pRRophetic algorithm revealed that the low-risk group was more adaptable to cisplatin,
doxorubicin, 5-fluorouracil, and etoposide (P < 0:001). Conclusion. PTGIS may be an indicator of prognosis and a possible
therapeutic target for the therapy of ovarian cancer patients. The fatty acid metabolism of immune cells may be controlled,
which has an indirect effect on cancer cell growth.
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1. Introduction

Among gynecological malignant cancer, ovarian cancer has
the highest death rate. Seventy percent of ovarian cancer
are in an advanced stage at the time of diagnosis. It is esti-
mated that 70% of patients who undergo surgery and che-
motherapy will still develop peritoneal metastases within
two to three years, resulting in intestine blockages and death
[1, 2]. A remarkable public health concern for female
patients is ovarian cancer; on the basis of the current inci-
dence and treatment scenario, ovarian cancer is a remark-
able public health concern for female patients. A
peritoneum consists primarily of fat, and its primary func-
tion is to store lipids that are energy dense [3]. Due to its
anatomical position, peritoneal metastasis is adaptable to
intestinal obstruction as it covers the front of the small intes-
tine and colon [4]. It is theoretically possible to extend the
patients’ survival rate with ovarian cancer if peritoneal
metastasis can be prevented or delayed.

A fatty acid is composed of a carboxyl acid group and a
hydrocarbon chain with a variety of carbon lengths and
degrees of desaturation. A remarkable portion of lipids are
composed of these molecules, such as phospholipids, sphin-
golipids, and triglycerides. Two pathways of fatty acid syn-
thesis are associated with the rapid proliferation of
cancerous cells, exogenous uptake, and de novo lipogenesis.
Due to their functions in synthesizing the cell membrane,
regulating the fluidity of the cell membrane, and acting as
second messengers in multiple signaling pathways, fatty
acids play a vital role in tumor proliferation and drug resis-
tance. As adipocytes decompose in the peritoneum, free fatty
acids, growth factors, and cytokines are produced [5]. More-
over, adipocytes that secrete fatty acids will release a large
number of cytokines, such as tumor necrosis factor-α, inter-
leukin- (IL-) 6, IL-8, vascular endothelial growth factor,
prostaglandins, and leukotrienes, causing continuous
inflammation in the local area [6]. Among the characteristics
of tumor metastasis is metabolic disorder, and fatty acid
metabolism is a key component [7]. Adipose tissue is the
primary source of endogenous fatty acids. Some researchers
have explored the role of fatty acid-related genes (FAMRGs)
in ovarian cancer, hepatocellular carcinoma, and glioma and
have reported some results [8–11]. There was also evidence
that FAMRGs were closely related to the growth of ovarian
cancer both in vivo and in vitro.

Prostaglandin I2 synthase (PTGIS) is also referred to as
PGIS. PTGIS is one of FAMRG’s encoded human prosta-
glandin I synthases. It can catalyze many reactions involved
in drug metabolism and the synthesis of cholesterol, steroids,
and other lipids. This endoplasmic reticulum membrane
protein catalyzes the conversion of prostaglandin H2 to
prostacyclin (prostaglandin I2), a potent vasodilator and
inhibitor of platelet aggregation. The clear and definite func-
tion of upregulated PTGIS is protecting patients with cardio-
vascular diseases, such as pulmonary hypertension, heart
failure, and hyperlipidemia. An imbalance of prostacyclin
and its physiological antagonist thromboxane A2 contrib-
utes to the development of myocardial infarction, stroke,
and atherosclerosis [12–14]. The development of cancer

has been linked to PTGIS in recent years, in accordance with
a few studies [15]. However, the role and mechanism of
PTGIS in ovarian cancer are still unclear, and few studies
have been conducted.

In present study, a prognostic model and nomogram
have been constructed to obtain reliable prognostic informa-
tion tailored to individual patients [16]. Through the predic-
tion of drug sensitivity, patients’ survival times can be
extended and drug resistance can be reduced. The informa-
tion is of great importance to the clinical decision-making of
oncologists as well as to the survival time of patients. The
screened hub genes were further analyzed by the Gene Set
Variation Analysis (GSVA) analysis. It is more appropriate
for evaluating path variation in large heterogeneous popula-
tions with complex phenotypic characteristics, such as those
found in The Cancer Genome Atlas (TCGA) database [17].
It is effective to apply these methods in order to determine
whether the hub genes related to fatty acid metabolism are
a prognostic factor for ovarian cancer and insights into
how fatty acids contribute to prognosis were provided.

2. Materials and Methods

2.1. The Sources of the Data. A total of 379 transcriptome
profiles from ovarian tumor tissues were retrieved from
TCGA database (https://portal.gdc.cancer.gov/) on February
24, 2022, and 88 normal ovarian tissue variations from
TCGA database and the Genotype-Tissue Expression
(GTEx) database (https://gtexportal.org/home/). It was dis-
covered that 130 instances of severe serous ovarian carci-
noma with omental metastases were in the Gene
Expression Omnibus (GEO) database GSE138866 (https://
www.ncbi.nlm.nih.gov/geo/). The clinical data, which
included age, gender, grade, overall survival, and survival
status, were also obtained from TCGA database.

2.2. Comparison of Fatty Acid-Related Gene Expression
between Normal Ovarian and Ovarian Tumor Tissues. The
keyword “fatty acid” was searched in the GeneCards data-
base (https://www.genecards.org/), and genes with scores of
more than 18 were screened. The relevant research literature
was searched to supply the above fatty acid-related genes.
Finally, 309 FAMRGs were obtained as candidate genes for
the study. The “limma” package of the R software was uti-
lized to determine the levels of expression of potential genes
in tumor and regular tissue samples. In both regular and
cancer tissues, these genes were determined as deferentially
expressed genes (DEGs).

2.3. Development of FAMRG Prognostic Models. In order to
identify genes associated with prognosis in the cross DEGs
between TCGA and geo datasets, both “survival” and “surv-
miner” R modules were utilized for Cox regression. The least
absolute shrinkage and selection operator (LASSO) Cox
regression analysis was utilized to narrow down the genes
associated with prognosis, and the GLMNET package was
utilized to develop a model of prognosis. TCGA data served
as the training set, whereas the GEO data served as the test
set. Via the formula Risk score =∑n

i=1ðcoef i × expriÞ, the
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average value of risk was utilized as the dividing line between
high-risk and low-risk categories for each sample. The sta-
bility of the prognostic model was validated using principal
component analysis (PCA) and receiver operating character-
istic (ROC) analysis. The R packages “ggplot2” and “time-
ROC” were used to generate PCA pictures and ROC
curves, respectively [18]. Both the training set and the testing
set use PCA. If the area under curve (AUC) value is greater
than 0.6, the ROC curve indicates that the model is typically
correct. The survival analysis in the training set was con-
ducted via the “survival” R package, and a P less than 0.05
indicated a remarkable difference in survival rate between
the groups at high and low risks. Values of risk and clinical
features were evaluated using univariate and multivariate
independent prognostic analyses via the “survival” R soft-
ware package; P less than 0.05 indicated statistical
significance.

2.4. Creating and Validating the Overall Survival (OS)
Nomogram. To verify the precision of the prediction model,
a nomogram prognosis model was developed and each sam-
ple’s score of risk in nomogram was determined. The con-
struction was conducted via the “rms” R package, and the
visualization was conducted with “regplot.” Clinical features
and the nomogram score of risks were included during
model development. The ROC curve is used to determine
the model’s sensitivity and specificity. An AUC greater than
0.60 was established as the believability threshold for
models. Clinical variables and nomogram scores of risks
were subjected to univariate and multivariate independent
prognostic analyses using the Cox regression.

2.5. Immune Cells That Infiltrate Cancer Are Defined. A
CIBERSORT analysis was utilized to determine the propor-
tion of 21 distinct types of immunocyte infiltration in each
sample [19]. To calculate the scores of immune cell infiltra-
tion and immune-related biological function for the groups
at high and low risks, the R packages “limma” and
“reshape2” were used. “ggpubr” was utilized to illustrate
the preceding findings.

2.6. A Comparison of High-Risk and Low-Risk DEGs in terms
of Their Biological Function. The symbols for c2.cp.kegg.v7.4
were obtained from the Molecular Signatures Database
(MSigDB, https://www.gsea-msigdb.org/gsea/index.jsp). To
investigate the deferentially expressed pathways between
high- and low-risk groups, the “GSVA” R software was uti-
lized. “GOplot” and “enrichplot” R programs were used to
visualize the findings of the Gene Ontology (GO) analysis,
which was conducted via the R package “org.Hs.eg.db”
[20]. An analysis of the protein-protein interaction (PPI)
network was published on the Search Instrument for the
Recovery of Interacting Genes (STRING) v11.0 website
(https://cn.string-db.org/). A protein-protein interaction
(PPI) analysis was conducted via the Cytoscape v3.7.2 soft-
ware, and hub genes were screened via the “cytohubba”
application. In order to assess these genes, twelve factors will
be considered. The genes with the greatest degree of value
were determined as hub genes. A survival analysis and a sin-

gle sample gene set enrichment analysis (ssGSEA) were con-
ducted on the gene with the highest frequency. As part of the
Human Protein Atlas (HPA), immunohistochemistry was
utilized to confirm the hub gene signature’s expression of
proteins (https://www.proteinatlas.org).

2.7. Prediction of Anticancer Medication Sensitivity. Via the
R package “pRRophetic,” the sensitivity of eight commonly
used drugs in the therapy of ovarian cancer was assessed,
and the risk groups were compared to the sensitivity of each
drug. The threshold for statistical significance was set at P
< 0:001. Via the “ggplot2” R tool, box plots were used to
illustrate the predicted sensitivity of each medication. The
TIDE website (http://tide.dfci.harvard.edu/) was utilized to
predict the immunotherapy response of patients using tran-
scriptomic biomarkers. The higher the score, the more effec-
tive the immunotherapy. Via the “limma” package in R, the
scores of the groups at high and low risks were contrasted,
and the results were displayed via the “ggpubr” package in R.

2.8. Statistical Data Analysis. In this study, the gene expres-
sion levels of normal tissue and ovarian cancer tissue were
compared via the Wilcoxon test. An evaluation of immuno-
logical infiltration between subgroups was also conducted
via the Wilcoxon test. Overall survival (OS) was compared
between subgroups via the log-rank test. A univariate regres-
sion analysis was conducted first in order to evaluate the
prognostic variables, followed by a multivariate Cox analysis
on the statistically remarkable components in order to assess
the independent prognostic value of the risk model. All sta-
tistical analyses were conducted using R (version 4.1.1).

3. Results

3.1. Four FAMRGs That Construct Prognostic Models Were
Screened. Graphical abstract of the study is shown as
Figure 1. To screen the model genes, 376 transcriptome data
with matching clinical information were included; 3 tran-
scriptomics without corresponding clinical data are
excluded. The clinical characteristics are shown in Table 1.
Data in TCGA, GEO, and GTEx databases has been stan-
dardized, and batch discrepancies have been resolved. In
normal samples, 125 DEGs were determined, of which 59
were downregulated and 66 were upregulated, as indicated
in Figures 2(a) and 2(b) and Supplementary Table 1. A total
of 100 DEG genes were determined in both TCGA and GEO
datasets. Four prognostically associated DEGs were deter-
mined using the Cox regression, including RXRA, ECI2,
PTGIS, and ACACB, which were also used to develop the
prognosis model.

3.2. Construction and Verification of Prognosis-Related
Model of FAMRGs. While developing the prognostic model,
TCGA data were designated as the training set and GEO
data as the testing set. Using LASSO regression, the coeffi-
cients of the model genes were determined. LASSO regres-
sion was utilized to narrow down the model gene
coefficients to 0, and cross validation was utilized to identify
0.01 as the minimal and suitable lambda value, as demon-
strated in Figures 3(a) and 3(b) and Table 2.
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The value of the risks of the training set and testing set
samples was obtained by the model. Riskscores = 0:14 ×
RXRA − 0:28 × ECI2 + 0:06 × PTGIS + 0:24 × ACACB. A
PCA was conducted to validate the reliability of the model
for risk grouping in the training and testing sets. Figures 3(c)
and 3(d) show that the high-risk group and the low-risk group
are two separate clusters with obvious decomposition.
Although there was confusion at the boundary, the number
of samples was mere. The validation results showed that the
prognostic model was stable and that the value of risk was reli-
able. The AUC of the risk score was 0.625, as indicated in
Figure 3(e). The ROC curve showed that the risk score has a
certain accuracy in predicting prognosis, but age and grade
cannot be used to predict prognosis. Univariate and multivar-

iate independent prognostic analyses showed that the risk
score was an independent prognostic factor (univariate: HR:
2.855, 95% CI: 1.756-4.739, P < 0:001; multivariate: HR:
2.943, 95% CI: 1.800-4.812, P < 0:001).

3.3. Construction and Validation of Prognostic Nomogram.
To further explain and validate the model’s stability and
explore the clinical significance, a nomogram model with
the risk scores was built. As seen in Figure 4(a), the likeli-
hood of surviving one year, three years, and five years dimin-
ishes steadily as the overall score increases. The total points
may be obtained by adding the points of each variable, and
the total points are associated with the likelihood of patients’
survival at 1, 3, and 5 years. This result measured the

Download Data

TCGA

GSE138855

Infltration of immune cells

Sensitivity of common medication

Hub gene

Nomogram

Risk
Scores

Function analysis

Construction of prognostic model based on FAMRGs

GTex

Screening of DEGs

Figure 1: Graphical abstract of the construction of a prognostic index associated with fatty acid metabolism in ovarian cancer.
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association between the risk scores derived from the progno-
sis model and survival and may be taken as an additional
result of the prognostic model. Moreover, a calibration curve
validated the accuracy of the nomogram, as demonstrated in
Figure 4(b). The nomogram predicted the 1-year survival
rate with the most accuracy, the 3-year survival rate with less
accuracy, and the 5-year survival rate with the least accuracy.

3.4. Differential Infiltration of Immune Cells in the High-Risk
and Low-Risk Groups. The potential function of FAM-related
subtypes in ovarian cancer was further analyzed. As indicated
in Figure 4(c), CIBERSORT reveals a statistically remarkable
difference between the high- and low-risk groups in the
expression of 22 immune cells. The proportion of naive B cells,
regulatory T cells, and resting mast cells was greater in the

Table 1: Clinicopathological characteristics of OV samples from TCGA and GEO databases.

Characteristics TCGA-OV cohort, N = 376 GSE138866 cohort, N = 130
Age

≤65 259 (68.88%) 73 (56.15%)

>65 117 (31.12%) 57 (43.85%)

Gender

Female 376 (100.00%) 130 (100%)

Stage

II-III 0 100 (76.92%)

IV 0 21 (16.15%)

Unknown 376 (100.00%) 9 (6.92%)

Grade

G1 1 (0.27%) 0

G2 44 (11.70%) 0

G3 322 (85.64%) 123 (94.62%)

G4 1 (0.27%) 0

Unknown 8 (2.13%) 7 (5.38%)

Survival status

Alive 146 (38.52%) 19 (14.62%)

Dead 230 (60.69%) 111 (85.38%)

Unknown 0 0

The median follow-up time (year) 2.81 2.81
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Figure 2: The difference in DEGs between normal ovary tissue and ovarian tumor tissue. (a) Heatmap showing the expression of DEGs.
Genes in blue are downregulated. The color red indicates genes that have been upregulated. The volcano plot of DEGs is shown in (b).
Green dots represent P < 0:05 and FDR < −1:5; red dots represent P < 0:05 and FDR > 1:5; grey dots represent P < 0:05 and jFDRj < 1:5.
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high-risk group than in the low-risk group (P < 0:05). There
was a greater proportion of memory B cells, follicular helper
T cells, activated dendritic cells, and M1 macrophages in the
low-risk group than that in the high-risk group when P <
0:05 was considered. As indicated in Figure 4(d), the scores
of chemokine receptor (CCR), parainflammation, and

responses to type II IFN were greater in the high-risk group
compared to the low-risk group (P < 0:05).

3.5. DEGs Are Closely Related to the Extracellular Matrix in
terms of Their Main Functions. For better studying the
potential function of the FAMRG prognosis-related model,
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Figure 3: The plot of cross validation and analysis of LASSO regression. (a) The trajectory of the coefficients in the LASSO regression
model. (b) The concept behind cross validation. (c) Plot of PCA for FAMRGs in the TCGA database. (d) PCA diagram for FAMRGs in
the GEO database. (e) The ROC curve for ovarian tumor risk and clinical characteristics.
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the score of each KEGG pathway and GO in ovarian cancer
patients was calculated. As indicated in Figure 5(a), the
expression of several pathways and gene sets, including adi-
pocytokine signaling pathway, pathways in cancer, and
valine leucine and isoleucine degradation, differed between
the high- and low-risk groups. In accordance with the GSVA
findings, these pathways may be the way via which FAMRGs
predicted survival. As depicted in Figure 5(b), extracellular
structure organization, cell-substrate adhesion, external
encapsulating structure organization, and collagen-
containing extracellular matrix were the most abundantly
enriched functions in the GO enrichment analysis, which
may be the immune mechanism influencing the prognosis
of fatty acid genes. PPI network is to reveal the interaction
between proteins. As illustrated in Figure 5(c), the PPI net-
work had a total of 86 nodes, 316 edges, and 4 clusters. Four
genes (UGT2B17, SST, CRYGB, and THRSP) were down-
regulated in tumor samples, whereas eighty genes were
increased (Supplementary Table 2).

3.6. The Difference of Sensitivity of Common Medication in
the High- and Low-Risk Groups. In order to mine the predic-
tive value of the model for drug sensitivity, we conducted
pRRophetic algorithm and TIDE evaluation. In accordance
with Figures 6(a)–6(d), the pRRophetic algorithm revealed
that cisplatin, doxorubicin, 5-fluorouracil, and etoposide
were more sensitive in the low-risk group than in the high-
risk group. In accordance with Figure 6(e), since the TIDE
score increased in the high-risk cohort compared to the
low-risk cohort, immunotherapy may be more effective for
patients in the high-risk group.

3.7. PTGIS Performed Crucial Functions in Fatty Acid
Metabolism. According to the network of PPI, gene PTGIS
has been maintained as a hub gene. PTGIS is deferentially
expressed between cancer and normal tissues, and it is an
upregulated gene in accordance with logFC > 1. PTGIS pos-
sesses a centrality score of 0.026, a degree score of 2, a neigh-
borhood connectivity score of 1.5, and a radiality score of
0.602. As indicated in Figure 7(a), survival analysis of TCGA
database data revealed that the expression of two genes was
positively connected with survival, and the difference was
statistically remarkable (PTGIS was the hub gene and played
an essential role in fatty acid metabolism; P = 0:015). The
fatty acid metabolism hallmark was enriched in both high
expression and low expression of PTGIS, as shown in
Figure 7(b). In accordance with the HPA database,
Figure 7(c) illustrates the protein expression of PTGIS. The
expression of PTGIS was greater in ovarian tumorous tissue
as compared to healthy ovarian tissues.

4. Discussion

In the study, FAMRGs were found to be deferentially
expressed in ovarian cancer and normal ovaries. A prognos-
tic prediction model was constructed and validated based on
RXRA, ECI2, PTGIS, and ACACB. The results of PCA and
ROC curves indicated that the model was accurate and sta-
ble. A nomogram model was developed to quantify the con-
nection between the risk scores obtained by the prognostic
model and survival. In terms of predicting 1-year survival,
the nomogram was more accurate. It was found that there
was a greater difference in humoral immune-related cells
in the low-risk and high-risk groups in the analysis of
immune infiltration. It was mainly the structure of the extra-
cellular matrix and biological processes within the extracel-
lular matrix that were functionally annotated for these
genes. PTGIS, as a hub gene in the network of genes, played
a central role in the process. Sorafenib and immunotherapy
were more effective in treating patients in the high-risk
group, in accordance with a sensitivity analysis of immuno-
therapeutic drugs commonly used in the therapy of ovarian
cancer.

In accordance with previous studies, fatty acid-related
genes are linked with a bad prognosis and high levels of
expression in ovarian cancer [8, 10]. Several studies have
demonstrated antitumor effects when fatty acid synthase is
inhibited [21, 22]. The similar findings were showed in other
tumors. The poor prognosis of glioma patients was associ-
ated with genetic changes in lipid metabolism [9, 23]. These
results were consistent with those reported in the study.

PTGIS as one of fatty acid-related genes, patients whose
breast cancer tissues express high levels of PGIS have a lower
10-year survival rate. PTGIS transiently transfected into
MCF-7 cells increased cell viability by 50% [24]. High expres-
sion of PTGIS could promote the infiltration of tumor-
associated macrophages and Tregs in the tumor microenviron-
ment and deteriorate outcomes of patients with lung, ovarian,
and gastric cancers [25]. These findings suggest that PTGIS
could be taken as a potential biomarker of prognosis and
tumor-infiltrating immune cells. The PTGIS enzyme works in
conjunction with the inducible cyclooxygenase-2 enzyme
(COX-2) as an upstream enzyme to produce PGI2 [26]. PGI2,
as a PPAR ligand, activated the PPAR signaling pathway. The
PPAR gene is primarily expressed in adipose tissue. Through
direct activation of PPAR genes, it regulates adipocyte differen-
tiation, lipid metabolism, and secretion [27]. In this GSEA, we
found that PTGIS was not enriched at the high expression site
as expected, but there were two enrichment peaks, respectively,
at the high expression site and the low expression site. Thismay
be due to the different roles of the gene in different diseases;
many scholars have found its different roles in different dis-
eases [28–35]. PTGIS plays a positive role in cardiovascular dis-
eases by regulating fatty acid metabolism [29, 33, 35, 36], while
it is the opposite in cancer [25, 37–42]. This phenomenon
should be related to the metabolic disorder of cancer cells,
but the specific mechanism is still unclear.

In immune cells, it also regulates the differentiation and
polarization of macrophages and controls lipid metabolism
through the regulation of genes such as CD36, FABP4, LXRA

Table 2: Prognostic model based on four genes.

Gene name Coef

RXRA 0.14

ECI2 -0.28

PTGIS 0.06

ACACB 0.24
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and PGAR in monocytes, macrophages, and dendritic cells.
By activating PPAR, macrophages were transformed into
alternative M2 macrophages [43]. The phenomenon was
likewise validated by the findings. In the research, CIBER-
SORT revealed substantial differences between the high-
and low-risk groups in terms of cells of naive memory B, fol-
licular helper, regulatory T, M1 macrophages, activated den-
dritic, and resting mast cells. The low-risk group had more
infiltration of M1 macrophages, B cells, T cells, and dendritic
cells than the high-risk group. Through the traditional
PPAR transactivation, PTGIS may affect the lipid transport,
metabolism, and presentation of immune cells.

In the examination of medication sensitivity, the samples
from the low-risk category showed greater sensitivity to the

most widely used chemotherapy. This result has been exten-
sively documented in in vivo and in vitro research. In 2800
women with breast cancer, the benefit of getting docetaxel
was reduced for obese patients than for normal-weight people
[44]. Adipocyte-mediated metabolism decreases the concen-
tration of active daunorubicin [45]. Fatty acids are essential
components of the cell membrane and serve an essential func-
tion in maintaining its fluidity. The greater the membrane flu-
idity, the simpler it is for malignant cells to spread. The
majority of adipogenesis in malignant cells involves the pro-
duction of saturated and monounsaturated fatty acids that
are more stable. These fatty acids are not adaptable to the oxi-
dative stress generated by chemotherapy medications (such as
Adriamycin) and protect cancer cells from death [46]. The
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Figure 4: Nomogram prediction model development process. (a) Nomogram of the value of risks and clinical features. (b) Calibration curve
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development of multidrug-resistant cancers may be connected
to the rise in membrane rigidity. Thus, the permeability of
anticancer medications is poor [47]. The effectiveness of
checkpoint inhibitors seems to be greater in individuals with
fatty acid metabolic abnormalities. As compared to patients
with a normal BMI, obesity is associated with improved
progression-free survival and overall survival in male patients
receiving targeted treatment or immunotherapy [48].
Research demonstrated that a high BMI was associated with
better outcomes with targeted treatments, and changes in fatty
acid metabolism were associated with better outcomes with
checkpoint inhibitors [49, 50].

Some preclinical investigations suggest that fatty acid
metabolism might be a viable therapeutic target. A mouse
model of human cavity carcinoma in situ is shown to inhibit
tumor growth and spread [51]. Engineering fatty acid Pt

(IV) prodrugs demonstrate fatty acid consumption as well
as the development of cisplatin-resistant ovarian cancer
[52]. BMS309403, a competitive inhibitor of endogenous
fatty acid binding, greatly reduced adipocyte-mediated
omental metastasis in ovarian tumor cells [5, 53]. These
findings show fatty acid metabolism is a potential treatment
alternative for ovarian cancer that warrants further
investigation.

It has been shown in numerous studies that cancers
other than ovarian cancer are associated with genes involved
in fatty acid metabolism. But there is no doubt that the prog-
nosis of patients with ovarian cancer is more frequently
associated with fatty acid metabolism (most ovarian tumor
metastases are located in the omentum, which consists
mainly of adipose tissue). Research has demonstrated that
FARMGs can be used to predict the prognosis of ovarian
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cancer. Unlike previous studies, this study examines the
potential influence of fatty acid metabolism on ovarian can-
cer as well as its effect on the immune system. A metabolic
imbalance of fatty acids may affect prognosis not only by
promoting cancer cell proliferation but also by modulating
the immunological microenvironment.

Little research has investigated the possible involvement
of PTGIS in ovarian cancer, which is one of the study’s
strengths. This work may provide fresh insight into the

search for prognostic indicators and the investigation of
therapeutic strategies for ovarian cancer. Another feature is
the research design. Based on FAMRGs, a prognosis model
and nomogram were built; risk, clinical features, and prog-
nosis were quantified; and clinical decision-making evidence
was presented. The model has undergone exhaustive internal
and external validation to assure its legitimacy.

There are a few limitations to the study. In vivo and
in vitro confirmation of the results is required. Insufficient
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investigation has been conducted regarding downstream
access. This is also the direction in which the work will be
directed in the future.

5. Conclusion

It may be advantageous to offer more aggressive treat-
ment to patients at high risk, to combine chemotherapy
with checkpoint inhibitors whenever possible, and to
avoid prescribing chemotherapy solely based on study
results. The future study will examine the relationship
between PTGIS and lipid metabolism molecules such as
PPAR, FABP4, FASN, and CD36, as well as the effect
of fatty acid metabolism on the growth and invasion
of ovarian tumorous cells.

Finally, PTGIS may serve as a prognostic indicator and
therapeutic target for patients with ovarian cancer. By mod-
ulating the breakdown of fatty acids in cancerous cells and
immune cells, PTGIS inhibits the multiplication of malig-
nant cells in both a direct and indirect manner.
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