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Background. Pressure injuries (PIs) impose a substantial burden on patients, caregivers, and healthcare systems, affecting an
estimated 3 million Americans and costing nearly $18 billion annually. Accurate pressure injury staging remains clinically
challenging. Over the last decade, object detection and semantic segmentation have evolved quickly with new methods
invented and new application areas emerging. Simultaneous object detection and segmentation paved the way to segment and
classify anatomical structures. In this study, we utilize the Mask-R-CNN algorithm for segmentation and classification of stage
1-4 pressure injuries. Methods. Images from the eKare Inc. pressure injury wound data repository were segmented and
classified manually by two study authors with medical training. The Mask-R-CNN model was implemented using the Keras
deep learning and TensorFlow libraries with Python. We split 969 pressure injury images into training (87.5%) and validation
(12.5%) subsets for Mask-R-CNN training. Results. We included 121 random pressure injury images in our test set. The Mask-
R-CNN model showed overall classification accuracy of 92.6%, and the segmentation demonstrated 93.0% accuracy. Our F1
scores for stages 1-4 were 0.842, 0.947, 0.907, and 0.944, respectively. Our Dice coefficients for stages 1-4 were 0.92, 0.85, 0.93,
and 0.91, respectively. Conclusions. Our Mask-R-CNN model provides levels of accuracy considerably greater than the average
healthcare professional who works with pressure injury patients. This tool can be easily incorporated into the clinician’s
workflow to aid in the hospital setting.

1. Introduction

Pressure injuries (PIs) impose a substantial burden on
patients, caregivers, and healthcare systems, affecting an esti-
mated 3 million Americans and costing nearly $18 billion
annually [1]. Worldwide, pressure injuries affect over 10 per-
cent of hospitalized patients [2, 3]. Often, pressure injuries
develop iatrogenically in older, complex patients and require
care in long-term care facilities after hospital discharge [4,
5]. Although these wounds are prevalent in the elderly,
including nursing home residents, they can affect any patient
with prolonged tissue ischemia. Patients suffering from pres-
sure injury may experience a decreased quality of life, pain,
reduced mobility, disfigurement, and depression, and they
are at an increased risk for developing life-threatening infec-
tions, malignancy, and recurrent wounds.

Pressure injuries occur when sustained pressure to an
area of the body compromises blood supply leading to tissue
damage and breakdown. These injuries range in severity
from stage 1, nonblanchable erythema of intact skin, to stage
4, full-thickness skin and tissue loss with expose fascia, mus-
cle, tendon, or bone. Accurate pressure injury staging
remains clinically challenging; one study found that the non-
expert clinician correctly stages a pressure injury 23% to 58%
of the time, and another study demonstrated low interrater
reliability among nurses staging skin breakdown photo-
graphs with a Cohen’s kappa of 0.33 [6, 7]. A caregiver with
minimal or no formal medical training would likely stage a
pressure injury with even less accuracy. Wound manage-
ment technologies play an important role in chronic wound
treatment, including pressure injury. New computer vision
methods exist to aid in accurate wound healing monitoring
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[8] [9, 10]. However, most caregivers continue to use impre-
cise visual assessment, increasing the likelihood of inaccu-
rate measurements, infection, prolonged treatment, and
discomfort [11, 12].

Object detection and segmentation has been applied to
new areas of application in recent years with the advance
of new techniques. Simultaneous object detection and seg-
mentation allows for the segmentation and classification of
anatomical structures. Current image processing and
machine learning techniques are sufficiently advanced to
develop tools that can accurately stage pressure injury based
on a smartphone or tablet image.

Prior efforts for pressure injury staging measurement,
segmentation, and classification include the development
of a convolutional neural network (CNN) that segments
different tissue types, granulation, necrotic eschar, and
slough, in pressure injury to determine wound severity
[13]. Images required a preprocessing step and consisted
only of stage III and IV pressure injuries. Another study
uses a 3D CNN to first determine the region of interest
of a pressure injury image and then segments tissues in
that region for staging classification [14]. Again, only stage
III and IV pressure injury images were used. Chakraborty
et al. segmented wounds with a high degree of accuracy
using a preprocessing technique followed by fuzzy K-
means clustering [15]. Yee et al. used structure from
motion algorithms to accurately reconstruct digital wounds
from smartphone wound videos as compared to a 3D
industrial camera [16]. Veredas et al. combined neural
networks and Bayesian classifiers to segment an image’s
wound region, extract the region’s color and texture fea-
tures, and classify pressure injury severity [17].

In this study, we use the Mask-R-CNN algorithm, a deep
learning algorithm from the region-based convolutional
neural network (R-CNN) family, to segment and classify
pressure injury stage 1-4 images [18]. Unlike previous stud-
ies which require multiple steps to stage a pressure injury—-
such as first segmenting the wound or classifying the wound
into granulation, slough, and eschar—the proposed method
simultaneously performs wound segmentation and staging.
Mask-R-CNN is the newest addition to the R-CNN algo-
rithms; Mask-R-CNN localizes, classifies, and segments in
less time than its predecessors took to analyze images. Man-
ually labeled pressure injury images were used to train the
model. Algorithm performance is assessed by accurate
detection of pressure injury stage and region. Manual feature
extraction is not required for the proposed CNN model.
Results from testing on images collected under a variety of
conditions show that the proposed hybrid model of pressure
injury staging and segmentation can feasibly integrate into
and support daily clinic routine. This pressure injury
Mask-R-CNN implementation is unique and has not been
previously applied. The chief contributions of this study
are as follows: (i) the application of Mask-R-CNN to deter-
mine if an image contains pressure injury and, if so, to seg-
ment the image to delineate its borders; (ii) the classification
of the segmented area with a high level of accuracy; and (iii)
the verification of more accurate results with this method
than current classification by pressure injury caregivers.

2. Methods

The deep learning-based region detection with CNN feature
(R-CNN) family is a common model for object detection
and currently consists of R-CNN, Fast-R-CNN, Faster-R-
CNN, and Mask-R-CNN [19, 20].

R-CNN starts with a selective search which suggests
approximately 2000 regions of interest (RoI) [20]. These
RoIs are demarcated by bounding boxes which are then ana-
lyzed by the CNN for various features. Then, class-specific
linear support vector machines (SVMs) classify each RoI.
This is a time-intensive process which requires high com-
puting power because the ConvNet forward-pass is executed
independently for each RoI [21].

For each image, Fast-R-CNN creates a convolutional fea-
ture map, generates a feature vector for each corresponding
RoI, and inputs it into a fully connected (FC) layer with the
softmax probability (classification) and real-value position
(class bounding box) as outputs.

Faster-R-CNN employs region proposal networks (RPNs)
as an attention mechanism that merges with Fast-R-CNN, uti-
lizing shared computation [21, 22]. This dual structure com-
bines a deep fully convolutional network (FCN) for region
proposal with the Fast-R-CNN for detection. Each of these
R-CNN iterations decreases the computation time.

Mask-R-CNN segments images using a new, additional
third branch that applies fine pixel-to-pixel alignment [23].
An object mask is generated by altering the Faster-R-
CNN’s framework region of interest align (RoIAlign) layers
that alter RoI pooling layers to overlay the extracted features
on the input image [23–25]. Segmentation masks are created
by inputting RoIs into a FCN [26]. Mask-R-CNN generates
localization, segmentation, and classification tasks.

In general, Mask-R-CNN’s two-step process comprises a
region proposal network and three RoIAlign-derived networks
(Figure 1). Specifically, Mask-R-CNN uses a feature pyramid
network (FPN) for the feature extraction process and
ResNet101 to support the initial stage; it has four layers for con-
volution and one for deconvolution [23]. Its RoIAlign layer pre-
serves the feature map size, and by avoiding quantization, it
evades misalignment. Region proposals use preassigned
anchors, and if there is an object inside the anchor, the model
moves to each feature map pixel; this is the same approach as
He et al. [25]. Once anchor coordinates are updated, bounding
boxes are returned as object proposals. The bounding box loss
(Lbox), classification loss (Lcls), mask loss (Lmask), and multitask
loss (L) are the same as prior works [22–25, 27].

These features are input into three networks. Pressure
injury masks are generated after undergoing four convolutions,
one deconvolution, and ReLU filtering. Masks are downscaled
to a size of 28×28. This allows for faster instance segmentation
but may allow for the introduction of artifacts after scaling up.
Then, the bounding box and classification branches are both
sent through a common fully connected layer so that the model
only classifies the bounding box interior.

Images have one ground truth classification assigned dur-
ing initial hand-labeling but can be predicted as one of the four
possible classes. The performance metrics are defined as preci-
sion (fraction of predicted instances of a class that match their
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ground truth classification), recall (fraction of ground truth
images of a class predicted as that class), accuracy (fraction
of images correctly predicted as their ground truth class out
of all images), and F1-score (see Figure 2).

Due to the binary nature of the classification, each pixel
will be considered either “skin” indicating no wound or
“pressure injury” for a wound. Each image pixel can be
defined as true positive (wound pixel correctly classified as
wound pixel), false positive (skin pixel incorrectly classified
as wound pixel), true negative (skin pixel correctly classified
as skin pixel), and false negative (wound pixel incorrectly
classified as skin pixel). The performance metric used to
quantify accuracy between predicted and ground truth seg-
mentation is the Dice coefficient (Figure 3).

Our model starts with the pretrained weights for MS
COCO and Matterport’s code and utilizes the TensorFlow
and Keras deep learning libraries with Python 3.6 [23, 28].
Training occurred for 50 epochs on an Intel(R) Xeon(R)
CPU E5-2630 v3 at 2.40GHz that has 128GB memory and
an NVIDIA Quadro K4200 that has a dedicated 4GB and
a shared 64GB memory. This took roughly 24 hours. We
used the same hyperparameters as those in the original
Mask-R-CNN paper except we decreased our learning rate
to 0.001 because the original value of 0.02 led to problematic
increased TensorFlow weights [25].

2.1. Data Collection, Preprocessing, Simulation Environment,
and Model Validation. The pressure injury wound data
repository is provided by eKare Inc. (Fairfax, VA), which
provides professional wound imaging and analysis services.
Images are taken with a commercially available camera
(eKare inSight) by users with no special training during the
wound assessment process in clinic or their hospital stay.
The pressure injury dataset, which includes stage 1, stage 2,

stage 3, and stage 4 cases, was manually labeled for training
and testing purposes. The applicability of the algorithm is
improved by the variety of cases.

Selected images are 1024 × 1024 pixels. Pressure injury
images are hand-labeled at the pixel level where pixels in
the wound region have a value of one; the rest of the pixel
values in the image have a value of zero. Gauss (eKare
Inc.) was used for image labeling. In total, 969 images con-
tain pressure injury. Image examples are shown in Results
(Figures 4 and 5). Areas detected and segmented as pressure
injury are marked with red overlay.

Images were segmented and classified manually by two
study authors with medical training; images that resulted
in disagreements were discussed until a unifying conclu-
sion was reached. Data augmentation via flipping was
employed. The number of publicly available pressure
injury images is limited and insufficient for the creation
of a training dataset of deep learning-based wound border
segmentation and tissue classification tasks. Further, find-
ing pressure injury images with ground truths is either
challenging or not possible. Moreover, image quality can
be questionable. The Medetec wound database (Cardiff,
UK) is a publicly available dataset that suffers degraded
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Figure 1: Framework of the proposed method.

F1 =
2 . Precision . Recall
Precision + Recall

Figure 2: F1-score formula.

Figure 3: Dice-Sorensen coefficient formula.
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image quality because of the presence of mold growth on
the original 35mm transparencies. This further decreases
the image resolution. In contrast, the unique eKare Inc.
pressure injury image repository provides a sufficient
number of high-quality images with ground truth data
which enables high-quality training.

3. Results

We split 969 pressure injury images into training (87.5%) and
validation (12.5%) subsets for Mask-R-CNN training. This

proportion was chosen because the data-hungry Mask-R-
CNN model requires a large number of images for adequate
training. The bounding box of the region of interest, classifica-
tion, and instance segmentation is trained simultaneously and
predicted by the Mask-R-CNN networks.

3.1. Overall Accuracy. We included 121 random pressure
injury images in our test set. Accuracy is the measurement
of correctly classified instances. Based on our testing sample
results, the Mask-R-CNN model showed overall classifica-
tion accuracy of 92.6%, and the segmentation demonstrated

(a)

Segmentation

(b)

Ground truth

(c)

Intersection

(d)

Figure 4: Pressure injury image with segmentation. (a) Pressure injury image with segmented area filled in red. (b) Segmented area shown in
white. (c) Hand-labeled ground truth area in white. (d) Segmented area of disagreement corresponding to a Dice coefficient of 0.96.

(a)
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(c)
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Figure 5: Pressure injury image with segmentation. (a) Pressure injury image with segmented area filled in red. (b) Segmented area shown in
white. (c) Hand-labeled ground truth area in white. (d) Segmented area of disagreement corresponding to a Dice coefficient of 0.97.
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93.0% accuracy. We regulated model weights to minimize
the loss function.

3.2. Classification. We used precision, recall, F1 score, and a
confusion matrix as metrics to determine our accuracy. Pre-
cision is defined as the fraction of returned predicted
instances of a class that correctly match their ground truth
value of that class. Recall is defined as the fraction of ground
truth images of a class that match their predicted returned
value. The F1 score is the harmonic mean of the precision
and recall and calculated according to the formula seen in
Figure 2. The confusion matrix is a 4 × 4 matrix that repre-
sents the ground truth class as rows and the predicted class
as columns; each value represents the number of images
with a ground truth of that row returned as a predicted class
of that column (e.g., 5 stage 4 images returned as predicted
stage 3). Our results are listed in Tables 1 and 2.

3.3. Segmentation. Misclassification and segmentation accu-
racies are not correlated—incorrect classification does not
imply segmentation error nor is the converse true. Addition-
ally, in this hybrid approach, segmentation and classification
form one output so they must be analyzed together. We con-
tinue the analysis of segmentation accuracy in instances with
successful classification. We compare the predicted wound
segmentation to the labeled ground truth segmentation
using the Dice coefficient. We calculate the individual Dice
indices according to the formula seen in Figure 3. A value
of one represents perfect agreement between the predicted
wound segmentation and ground truth segmentation, while
a value of zero represents complete disagreement. The values
of all Dice coefficients from a class were averaged into a sin-
gle value to represent that class. Our Dice coefficients for
stages one through four are 0.92, 0.85, 0.93, and 0.91, respec-
tively. See Table 3.

Figures 4 and 5 show pressure injury segmentation and
original images. The red region is predicted as pressure
injury by the Mask-R-CNN. Overall, the model captures
the wound boundaries with a high degree of accuracy.

4. Discussion

Pressure injuries affect millions of patients and cost our
healthcare system billions of dollars each year [1]. Proper
wound treatment depends on accurate identification of the
injury stage. Prior studies have shown that accuracy among
nonexpert clinicians treating pressure injuries is low. Addi-
tionally, the Centers for Medicare & Medicaid (CMS) does
not provide reimbursement if the patient developed a pres-
sure injury during the hospital stay [29]. Thus, prevention
and accurate early detection of pressure injury represent an
important challenge, especially in the hospital setting.

Our Mask-R-CNN provides levels of accuracy consider-
ably greater than many healthcare professionals who work
with patients with pressure injuries. Whereas the literature
demonstrates the nonexpert clinician correctly staging pres-
sure injuries 23%-58% of the time, the Mask-R-CNN has an
overall accuracy of 92.6% [6, 7]. This tool will also be of great
benefit to home caregivers who are untrained in pressure

injury management. Given the ubiquity of smartphones
and tablets and their increasing utilization in healthcare, this
tool can easily be incorporated into the clinician’s workflow
to aid in the hospital setting.

There are important benefits of both our pressure injury
detection method and image database. The Mask-R-CNN
predicts both classification and segmentation simulta-
neously. Other CNNs either do only one or one after the
other [13–17]. Our technique achieves high accuracy with
decreased computation time.

We trained our CNN with images from a database where
all images are taken with the same camera from approxi-
mately the same distance (40-65 cm) from the wound. This
gives our database a high quality of images because most
wound databases do not meet either of these features. Fur-
ther, this scheme represents a considerable improvement
over collecting random images pulled off online search
engines which would also not meet these criteria.

While our classification results did have some errors,
only a single image was classified in a stage not adjacent to
the ground truth. This was a ground truth stage 1 image,
the least serious stage of pressure injury and easiest to
determine for the average person. No stage 2 images were
misclassified. Of the four stage 3 images that were misclassi-
fied, two were predicted as stage 2 and two were predicted as
stage 4, and none were predicted as stage 1 images. Only two
stage 4 images were misclassified and both as stage 3.
Although we continue to work to eliminate error from our
system, even with an error, the classification is always adja-
cent to the ground truth for stages 2-4. It will be especially

Table 1: Accuracy metrics.

Accuracy metrics Stage 1 Stage 2 Stage 3 Stage 4

Precision 1.000 0.900 0.919 0.944

Recall 0.727 1.000 0.895 0.944

F1 score 0.842 0.947 0.907 0.944

Table 2: Confusion matrix.

Confusion matrix
Predicted

Stage 1 Stage 2 Stage 3 Stage 4

Ground truth

Stage 1 8 2 1 0

Stage 2 0 36 0 0

Stage 3 0 2 34 2

Stage 4 0 0 2 34

Table 3: Dice-Sorenson coefficients.

Dice-Sorenson coefficients Dice coefficient

Stage 1 0.92

Stage 2 0.85

Stage 3 0.93

Stage 4 0.91
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important for our system to maintain a high degree of accu-
racy with stage 3 images as the difference between treatment
for stage 2 and stage 4 injuries is substantial; however, the
difference between a stage 2 and stage 4 injury should be
somewhat obvious even from the untrained layperson [30].

A limitation of our Mask-R-CNN accuracy metric is the
relatively few stage 1 pressure injury images included in our
test set. Although important to detect early for prevention of
further tissue damage, primary treatment for a stage 1 injury
is to remove pressure from the area. Imaging may not be
necessary, and this is likely why our dataset has a smaller
proportion of this class. Importantly, for stage 2-4 injuries
which require more intensive treatment and are more likely
to be imaged, we demonstrate a high accuracy, as evidenced
by F1 scores greater than 0.900.

Additionally, we did not include wounds smaller than
2×2 cm in our training or testing sets. Thus, we cannot speak
to the Mask-R-CNN accuracy for small wounds. Lastly, our
wounds are limited by anatomical distribution. Pressure
injury can occur anywhere on the body where there is unre-
lieved pressure, especially in places where skin covers bony
areas. Most commonly, this includes the sacrum, coccyx,
hips, and heels but can also include elbows, knees, ankles,
shoulder, and posterior skull. Our dataset skews largely to
images of the sacrum and coccyx. Although we do not
expect the anatomic wound location to play a large role in
the results of our classifier, we are unable to confirm any
changes in accuracy.

Traditionally, we would compare other CNNs on our
image set and report a comparison of results. However, we
are unaware of other CNNs that simultaneously predict clas-
sification and segmentation. Thus, we are unable to test our
method against other methods for concurrent pressure
injury classification and segmentation and report compara-
tive results.

Future work includes continuing to eliminate error from
our classification and segmentation models and making sure
this tool is equitable for patients of all skin tones. Although
our dataset has images of all skin tones, we do not have data
to classify this. We will also work to add pressure injury
images from more locations on the body.

5. Conclusion

We present an adaptation of the innovative classification
and instance segmentation algorithm, Mask-R-CNN,
applied to an image dataset consisting of pressure injury
images in various stages. The model detects pressure injury
in these images and delineates its boundaries using instance
segmentation. The proposed model achieves 92.6% and
93.0% accuracy for pressure injury detection and segmenta-
tion tasks, respectively. The loss function graphs of the three
encapsulated networks, classification, bounding box detec-
tion, and segmentation mask networks, display efficient
training of the model.

Mask-R-CNN segments rescaled (smaller-28 × 28) ver-
sions of the original image (1024 × 1024). This makes the
segmentation pixel resolution coarse. Reconfiguring the
Mask-R-CNN internal network structure to analyze images

similar in size to the original image would improve resolution.
However, increased image resolution would require an even
larger image dataset to cause the learning to converge because
the number of parameters would increase exponentially.
Although the current segmentation is coarse, it performs seg-
mentation with a high degree of accuracy, as evidenced by our
Dice coefficient scores. Thus, we believe that the tradeoff of
performing segmentation on downsampled images is justified.

Data Availability

The pressure injury wound data repository is provided by
eKare Inc. Data is available on request.
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