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In this study, a very crucial stage of HIV extinction and invisibility stages are considered and a modified mathematical model is
developed to describe the dynamics of infection. Moreover, the basic reproduction number R0 is computed using the next-
generation matrix method whereas the stability of disease-free equilibrium is investigated using the eigenvalue matrix stability
theory. Furthermore, if R0 ≤ 1, the disease-free equilibrium is stable both locally and globally whereas if R0 > 1, based on the
forward bifurcation behavior, the endemic equilibrium is locally and globally asymptotically stable. Particularly, at the critical
point R0 = 1, the model exhibits forward bifurcation behavior. On the other hand, the optimal control problem is constructed
and Pontryagin’s maximum principle is applied to form an optimality system. Further, forward fourth-order Runge–Kutta’s
method is applied to obtain the solution of state variables whereas Runge–Kutta’s fourth-order backward sweep method is
applied to obtain solution of adjoint variables. Finally, three control strategies are considered and a cost-effective analysis is
performed to identify the better strategies for HIV transmission and progression. In advance, prevention control measure is
identified to be the better strategy over treatment control if applied earlier and effectively. Additionally, MATLAB simulations
were performed to describe the population’s dynamic behavior.

1. Introduction

Human immunodeficiency virus (HIV) is a virus causing
HIV infection and results in economic and life devastating
crisis if immediate action is not taken to halt further preva-
lence of the infection [1–11]. Moreover, this infection has no
curing medication, but antiretroviral therapy (ART) or its
combination is used for halting further progression of infec-
tion by inhibiting the virus in human blood, but if left
untreated leads to a sever stage called acquired immunodefi-
ciency syndrome (AIDS) [12–23]. HIV infection progress
through stages as follows: (i) primary stage (asymptomatic
stage): this stage faces human individual where the virus is
in the blood cannot be diagnosed with medical instruments;
(ii) asymptomatic stage: this stage is symptomless stage of
HIV infection but diagnosable with medical test; (iii) symp-
tomatic stage: in this stage, the symptom of HIV infection
like tiredness, loss of weight, and extreme loss of water starts
to manifest in the life of HIV infected individuals; and (iv)
AIDS stage: this is advanced stage of HIV infection where

it is difficult for treatment and leads to death soon if special
care is not taken [24–32]. Modes of HIV transmission are
through unsafe sexual practices with HIV-infected person,
through contacts of normal blood with HIV infected blood,
mother to child through breast or birth time, and any con-
tacts of HIV contains fluids of human’s with HIV-negative
human fluids [33–35]. However, in safe practice, the risk of
HIV transmission can be reduced by using principle of absti-
nence–be faithful–use condom (ABC) [36–38]. Optimal
control intervention through public health education, using
of condom and treatment benefits a lot for continuing
human life in safe [1–3, 7, 11, 15, 19, 25–27, 33, 39–44].

A mathematical model is a crucial scientific representa-
tion of both biological and physical problems in the form
of mathematical equations [45–52]. Moreover, different
mathematical models have been developed to describe the
dynamics of HIV with optimal controls. Particularly, a SICA
mathematical model of HIV with ART effect on HIV
patients is described in [9]. But, a mathematical model of
HIV infection transmission with undetectable behavior of
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individuals has not been studied. Hence, in this study, we are
motivated to highlight the significance of adherence of ART
with optimal control intervention and cost-effectiveness
analysis in a modified HIV model. Further, the effect of early
starting of ART that leads to an undetectable level of viral
load in the blood of humans is considered and the SWIUA
mathematical model of HIV with optimal control is devel-
oped. Organization of the paper is follows: In Section 2, we
formulate the SWIUA model of HIV that describes the
stated assumptions, variables, and parameters and in Section
3, a mathematical analysis of the model without control is
carried out. Moreover, in Section 4, optimal control problem
is discussed. Finally, in Section 5, numerical simulations,
results and discussion, and the conclusion are presented.

2. Model Formulation

In this study, a deterministic mathematical model is formu-
lated to analyze the transmission dynamics of the human
immunodeficiency virus through applying prevention and
treatment control strategies. The current model is a modifi-
cation of the SIA model of HIV discussed in [13]. A base
model has three compartments of human population and
did not explicitly show the effectiveness of ART that reduces
the viral load in the blood to the undetectable level for ART
users. The present work is done to fill the gap observed in
the previous study. The compartments of the current model
are described as follows:

(i) Susceptible compartment: this compartment is
denoted by S and embraces all humans who are free
of HIV but have a chance of being infected in the
infective environment. All humans in this compart-
ment transfer to the HIV compartment at the trans-
mission rate β, provided that effective contact is
done with humans in HIV compartment

(ii) HIV untested compartment: this compartment con-
sists of all individuals who are at pre-AIDS stage
and not test for HIV. They transmits virus to others
at transmission rate β1

(iii) HIV tested compartment: it is denoted by I. This
compartment includes all pre-AIDS humans who
are infected with HIV and tests positive at healthy
center and they transmit virus to susceptible indi-
viduals at transmission rate β2

(iv) Undetectable compartment: it is denoted by U . This
compartment includes all humans who get infected
with human immunodeficiency virus, but with
undetectable viral load, as a result of effective usage
of antiretroviral treatment

(v) AIDS compartment: it is denoted by A. This com-
partment includes all humans who are at advanced
stage of HIV and face loss of life at disease induced
death rate δ

In the formulated mathematical model of HIV, the fol-
lowing assumptions are stated:

(i) The total size of population is assumed to be
nonconstant

(ii) It is assumed that HIV untested individuals get
tested for HIV infection before they develop AIDS
disease

(iii) The total population size at time t is denoted by N
ðtÞ is given by

N tð Þ = S tð Þ +W tð Þ + I tð Þ +U tð Þ + A tð Þ ð1Þ

(iv) Susceptible humans are recruited to the compart-
ment SðtÞ at some constant rate τ

(v) Susceptible humans get HIV and join the HIV
compartment at a constant rate β

(vi) Individuals transfer from HIV compartment to
undetectable compartment at the constant rate θ
and transfer to AIDS compartment at a constant
rate α

(vii) Individuals in undetectable compartment transfer
to the HIV compartment at a constant rate ∅

(viii) All categories of human’s compartments face the
same natural mortality with a rate μ

(ix) All humans in AIDS compartment suffer disease-
induced death at a constant rate δ

(x) u1 is prevention control effort

(xi) u2 is treatment control effort

(xii) All parameters used in the dynamical system are
positive

Moreover, the notations and description of model vari-
ables are given in Table 1, whereas model parameters nota-
tions and descriptions are given in Table 2.

Based on flow diagram given in Figure 1 and assump-
tions considered, without control measures, the dynamics
of the populations are represented by the subsequent
dynamical system:

dS
dt

= λ −
S β1W + β2Ið Þ

N
− μS,

dW
dt

= S β1W + β2Ið Þ
N

− ξ + μð ÞW,

dI
dt = ξW + ϕU − η + μð ÞI,

dU
dt

= − ∅+μð ÞU ,

dA
dt

= ηI − δ + μð ÞA,

ð2Þ
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with nonnegative initial conditions are Sð0Þ > 0,Wð0Þ
≥ 0, Ið0Þ ≥ 0,Uð0Þ ≥ 0, Að0Þ ≥ 0.

3. Mathematical Analysis of the Model

3.1. Invariant Region

Theorem 1. Ω ⊂R5
+ is a region in which all solutions of the

model (2) are bounded provided that initial conditions are
bounded. That is,

Ω = S tð Þ, W tð Þ, I tð Þ, U tð Þ, A tð Þð Þ ∈R5
+ : N tð Þ ≤ λ

μ

� �
:

ð3Þ

Proof. Consider a total population size, NðtÞ, at time t given
by

N tð Þ = S tð Þ +W tð Þ + I tð Þ +U tð Þ + A tð Þ: ð4Þ

Now, differentiating both sides of equation (4) with
respect to time t, we have

dN
dt

= dS
dt

+ dW
dt

+ dI
dt

+ dU
dt

+ dA
dt

ð5Þ

Reduced to,

dN
dt

= λ − μN − δA ≤ λ − μN ⇒ dN
dt

≤ λ − μ⇒ dN
τ − μN

≤ dt:

ð6Þ

Integrating both sides of (6) and using comparison theo-
rem [53], we have,

N tð Þ ≤ λ

μ
−

λ

μ
−N 0ð Þ

� �
e−μt: ð7Þ

Here, from (7) it follows that as t⟶∞,NðtÞ⟶ λ/μ.
That is, for all possibility, the expressions on the right hand
side of the inequality (7) either increase to least upper bound
or decrease to greatest lower bound as time increase. Hence,
NðtÞ ≤ λ/μ.

Therefore, the feasible solution set of model (2) is the invari-
ant region Ω, defined as

Ω = S tð Þ, W tð Þ, I tð Þ, U tð Þ, A tð Þð Þ ∈R5
+ : N tð Þ ≤ λ

μ

� �
:

ð8Þ

3.2. Positivity of Model Solutions

Theorem 2. Solutions of the model (2) are always nonnega-
tive for all t and will remain in ℝ5

+.

Proof. The proof follows by showing that each solution var-
iable is nonnegative. Considering the first equation of model
(2) we have

dS
dt

= λ −
S β1W + β2Ið Þ

N
− μS: ð9Þ

Table 1: Notations and description of model variables.

Variable Description

S tð Þ Size of susceptible population at time t

W tð Þ Size of HIV untested population at time t

I tð Þ Size of HIV tested pre-AIDS population with transmittable virus at time t.

U tð Þ Size of pre-AIDS population with untransmittable virus at time t

A tð Þ Size of AIDS population at time t

Table 2: Model parameter notations and description.

Parameter Description

β Transmission rate of HIV to susceptible population

λ Recruitment rate of individuals to susceptible class

θ Transferring rate of population from compartment I to U as a result of using ART properly

ϕ Progression rate of population from compartment U to I as a result of faulty using ART.

ξ Progression rate of population from compartment W to I

α Progression rate of I to A

κ Transferring rate of I to A due to treatment

μ Natural death rate of all population

δ Disease induced death rate of AIDS population

3Computational and Mathematical Methods in Medicine



Ignoring the positive term λ from the preceding equa-
tion we get the following inequality.

dS
S

≥ −
β1W + β2I

N

� �
dt: ð10Þ

Solving the forgoing inequality over time interval ½0, t�,
we get the following inequality.

S tð Þ ≥ S 0ð Þe−μt−
Ð tβ1W ξð Þ+β2I ξð Þ/N ξð Þ

0
dξ
: ð11Þ

In the preceding inequality, we know that

e−μt−
Ð t

0
ðβ1WðξÞ+β2IðξÞ/NðξÞÞdξ is nonnegative exponential expres-

sion, and Sð0Þ is positive from initial condition. Therefore,
SðtÞ is nonnegative for all time t. Similarly, the remaining
solution variablesWðtÞ, IðtÞ,UðtÞ and AðtÞ are nonnegative.
Hence, the solutions of model (2) are nonnegative.

Therefore, from the discussions in subsection it can be
concluded that the formulated model is mathematically
well-posed and solutions of the model are biologically
meaningful.

3.3. Existence and Uniqueness of Solutions

Theorem 3. The solutions of model (2) exists and unique.

Proof. Applying Theorem 1, all expressions on the right
hand of equality of model (2) are continuously differentiable
and bounded. Therefore, by Cauchy-Lipchitz theorem we
can conclude that the formulated model has unique solution
for all positive time t.

3.4. Equilibria of Model

3.4.1. Disease-Free Equilibrium (DFE). The disease-free equi-
librium point of model (2) is a steady state point where there
is no HIV infection in the population. Hence, to obtain DFE
the state variables I, A, and U are set to zero ðW = I = A =
U = 0Þ. The computed disease–free equilibrium point E0 of

the model (2) is given by

E0 =
λ

μ
, 0, 0, 0, 0

� �
: ð12Þ

3.4.2. Endemic Equilibrium (EE). An endemic equilibrium
point is steady state point where disease persists in the pop-
ulation. The endemic equilibrium is obtained by setting the
right-hand of model equation to zero and evaluating for S,
W, I,U , and A in terms of model parameters. Moreover,
adding equations (2) and (4), we obtain I in terms of S.
Finally, using equation (4), setting N = S +W + I +U + A,
and expressing all variables in terms of S, we obtain the
desired solution. Thus, the computed endemic equilibrium
E1 = ðS∗,W∗, I∗,U∗,A∗Þ of model (2) is given by

E1 = λ 1 + d + bdð Þ
β1 + β2d + μd + bμd − ξ

, W∗, dW∗,  0,  bI∗
� �

,

ð13Þ

where

W∗ = λ R0 − 1ð Þ
β1 + β2d + μd + bμd − ξ

, b = η

δ + μ
, d = ξ

η + μ
:

ð14Þ

3.5. Basic Reproduction Number. The basic reproduction
number is the average number of cases generated by one
infected person in wholly susceptible population [45–50].
The basic reproductive number R0 can be determined using
the next-generation matrix. In this method, R0 is defined as
the largest eigenvalue of the next-generation matrix [51].
The formulation of this matrix involves classification of all
compartments of the model in to two classes: infected and
noninfected. Let f be a matrix of newly infected cases and
v be a matrix of transition cases in model (2). Consider
model (2).

S W

U

I

A

𝜆

𝜇S

𝜇W

𝜉W

𝛿A 𝜇A

𝜇I

𝜙U

𝜇U

(1 – u1)

(1 – u2)𝜂I

S (𝛽1W+𝛽2I)
N

u2𝜃I

u2𝜅A

Figure 1: Flow diagram of model in the study.
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Now f and v are given, respectively, as,

f =

S β1W + β2Ið Þ
N
0
0
0

2
6666664

3
7777775
, v =

ξ + μð ÞW
−ξW − ϕU + η+μð ÞI

∅+μð ÞU
−ηI + δ + μð ÞA

2
666664

3
777775 ,

ð15Þ

The Jacobian of f and v evaluated at disease-free equilib-
rium point E0 is given by F and V , respectively, as follows,

F =

β1 β2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2
666664

3
777775, V =

ξ + μ 0 0 0
−ξ η+μ −ϕ 0
0 0 ∅+μ 0
0 −η 0 δ + μ

2
666664

3
777775 :

ð16Þ

The next-generation matrix, FV−1, is computed as

FV−1 =

β1 β2 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
6666664

3
7777775

ξ + μ 0 0 0

−ξ η+μð Þ −ϕ 0

0 0 ∅+μ 0

0 −η 0 δ + μ

2
6666664

3
7777775

−1

=

β1
ξ + μ

+ β2ξ

ξ + μð Þ η + μð Þ
β2

η + μ

β2ϕ

ϕ + μð Þ η + μð Þ 0

0 0 0 0

0 0 0 0

0 0 0 0

2
666666664

3
777777775
:

ð17Þ

The eigenvalues of next-generation matrix are computed
and given by

λ1 =
β1

ξ + μ
+ β2ξ

ξ + μð Þ η + μð Þ , λ2 = 0, λ3 = 0, λ4 = 0:

ð18Þ

Here, λ1 is the largest eigenvalue of next-generation
matrix. Therefore, the reproduction number, R0, is given by

R0 =
β1

ξ + μ
+ β2ξ

ξ + μð Þ η + μð Þ : ð19Þ

3.6. Bifurcation Analysis. The Hopf bifurcation is studied in
[5], and it describes the behavior of the system as system
changes its steady state. In this subsection, we verify the pos-
sibility of backward and forward bifurcation using the center
manifold theory stated in reference [28]. Now, model (2) can
be written in the vector form, by renaming the variables as

S = x1,W = x2, I = x3,U = x4, A = x5. That is,

dX
dt

= F Xð Þ, ð20Þ

where, X = x1, x2x3, x4x5,ð ÞT , FðXÞ = f1 f2, f3, f4, f5ð ÞT .
Then, model (2) becomes

dx1
dt

= λ −
β1x1x2 + β2x1x3ð Þ

N
− μx1 = f1,

dx2
dt

= β1x1x2 + β2x1x3ð Þ
N

− ξ + μð Þx2 = f2,

dx3
dt

= ξx2 + ϕx4 − η + μð Þx3 = f3,

dx4
dt

= − ∅+μð Þx4 = f4,

dx5
dt

= ηx3 − δ + μð Þx5 = f5:

ð21Þ

Here, from preceding system of nonlinear equation,
choosing β1 as a bifurcation parameter and setting R0 = 1,
we have

β∗
1 ≡ β1 = ξ + μ −

β2ξ

η + μ
: ð22Þ

So that the disease-free equilibrium, E0, is locally stable
when β1 < β∗

1 and is unstable when β1 > β∗
1 . The linearized

matrix of the system around the disease-free equilibrium
E0 and evaluated at β∗

1 is given by

J E0, β∗
1ð Þ =

−μ − ξ + μð Þ + β2ξ

η + μ
−β2 0 0

0 −
β2ξ

η + μ
β2 0 0

0 ξ − η+μð Þ ϕ 0
0 0 0 − ∅+μð Þ 0
0 0 η 0 − δ + μð Þ

2
6666666666664

3
7777777777775
: ð23Þ

The eigenvalues of matrix J E0, β∗
1ð Þ are λ1 = 0, λ2 = −μ

, λ3 = −δ − μ. The sign of remaining eigenvalues are deter-
mined from characteristic polynomial:

f λð Þ = a0λ
2 + a1λ + a2, ð24Þ

where

a0 = 1,

a1 =
ϕ2η + ϕ2μ + ϕη2 + 4ϕημ + 3ϕμ2 + β2ξϕ + η2μ + 3ημ2 + 2μ3 + β2ξμ

ϕη + ϕμ + ημ + μ2
,

a2 =
ϕ2η2 + β2ξϕ

2 + 2ϕμ ϕη + η2 + 2ημ + μ2 + β2ξ
À Á

+ ϕ2 + η2 + 2ημ + μ2 + β2ξ
À Á

μ2

ϕη + ϕμ + ημ + μ2
:

ð25Þ

We observe that coefficients, a0, a1, and a2, are positive,
and all eigenvalues of Jacobian matrix are negative while
one eigenvalue is zero. Moreover, let w =
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w1,w2,w3,w4,w5ð ÞT be the right eigenvector, associated
with simple zero eigenvalue and can be obtained by solving
equation J E0, β∗ð Þw = 0. Thus, we have

w1 = − ξ + μð Þ η + μð Þ ϕ + μð Þ + θμ

ξμ ϕ + μð Þ w3,w2 =
η + μ

ξ
w3,w3 =w3,w4 =

θw3
ϕ + μ

,w5 =
ηw3
δ + μ

:

ð26Þ

Also, let v = v1, v2, v3, v4, v5ð Þ be the left eigenvector cor-
responding to simple zero eigenvalue, obtained by setting
and solving vJ E0, β∗ð Þ = 0. This gives, v1 = 0, v2 = ðη + μÞ/
β2v3, v3 = v3, v4 = ϕv3/ðϕ + μÞ, v5 = 0. In order that the
required conditions v:w = 1, the product gives,

v1w1 + v2w2 + v3w3 + v4w4 + v5w5 = 1: ð27Þ

Again substituting the corresponding components in the
preceding equation, we have

v3w3
η + μð Þ2 + β2ξ

β2ξ
= 1: ð28Þ

Thus, the preceding equality is satisfied if we choose

v3 = β2ξ, w3 =
1

η + μð Þ2 + β2ξ
: ð29Þ

Next, we compute all second-order partial derivatives of
functions on the right hand of (∗) as given in the appendix.

Next, we compute bifurcation coefficients a and b:

a = 〠
4

k,i,j=1
vkwiwj

∂2 f k
∂xi∂xj

E0, β∗ð Þ = 〠
4

i,j=1
v2wiwj

∂2 f2
∂xi∂xj

E0, β∗ð Þ

= −
2β1
x1

−
β1
x1

−
β2
x1

−
β1
x1

−
2β2
x1

−
β2
x1

< 0,

b = 〠
4

k,i=1
vkwi

∂2 f k
∂xi∂β

∗ E0, β∗ð Þ = v2w2 =
η + μð Þ2

η + μð Þ2 + β2ρ
> 0:

ð30Þ

Since a < 0 and b > 0, the model exhibits forward bifur-
cation at R0 = 1.

Next, the following procedures given in (Biswas et al.,
2020), we compute the bifurcation coefficients a and b, to
identify the direction of bifurcation at R0 = 1. Thus, we have

a = 〠
4

k,i, j=1
vkwiwj

∂2 f k
∂xi∂xj

E0, β∗ð Þ = −
2v2μ3w2

2β
∗

τ3
+ 2v2w2μβ

∗

τ ϕ + μð Þ2À Á
 !

,

b = 〠
4

k,i=1
vkwi

∂2 f k
∂xi∂β

∗ E0, β∗ð Þ = v2w2:

ð31Þ

Since all parameters in model (2) are nonnegative and
additionally v2 and w2 are positive, we conclude a < 0 and

b > 0. Thus, according to [5], model (2) exhibits a supercrit-
ical (forward) bifurcation, when R0 crosses the threshold
R0 = 1. That is, there exist locally asymptotically stable
endemic equilibrium point E1 = S∗,W∗, I∗,U∗,A∗ð Þ for
R0 > 1. Based on the results of the above discussion and
[7], the following theorem is stated.

Theorem 4. The trans-critical bifurcation of model (2) that
occurs at R0 = 1 is a supercritical (forward) bifurcation. That
is, there exists locally asymptotically stable endemic equilib-
rium point E1 = S∗,W∗, I∗,U∗, A∗ð Þ for R0 > 1.

Remark 5. Theorem 4 shows that if R0 > 1, then a few inflow
of infectious individuals in fully susceptible population can
result in persistence of the HIV in the population.

3.7. Stability Analysis of Equilibrium Points. In absence of
the infectious disease, model (2) has a unique disease-free
steady-state E0, and in the presence of disease, model (2)
has unique endemic equilibrium E1.

3.7.1. Local Stability of Disease-Free Equilibrium

Theorem 6. The DFE E0 of the model (2) is locally asymptot-
ically stable if R0 < 1 and unstable if R0 > 1.

Proof. Consider model (2), so that the Jacobian matrix of the
system at DFE is given by

J =

−μ −β1 −β2 0 0
0 β1 − ξ + μð Þ β2 0 0
0 ξ − η+μð Þ ϕ 0
0 0 0 − ∅+μð Þ 0
0 0 η 0 − δ + μð Þ

2
666666664

3
777777775
:

ð32Þ

The eigenvalues of a preceding Jacobian matrix J is com-
puted and given by

λ1 = −μ, λ2 = − δ + μð Þ, λ3 = − ∅+μð Þ,

λ4 =
β1 − ξ − η − 2μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1 − ξð Þ2 + 2ηβ1 − 2ξη + 4β2ξ + η2

q
2 ,

λ5 =
β1 − ξ − η − 2μ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1 − ξð Þ2 + 2ηβ1 − 2ξη + 4β2ξ + η2

q
2 :

ð33Þ

Clearly, the first three eigenvalues are negative whereas
the fourth and fifth eigenvalues are negative if R0 < 1.

Further, by a stability analysis of a point using Jacobian
matrix, we conclude that the disease-free equilibrium point
is locally asymptotically stable if R0 < 1 and unstable
otherwise.

3.7.2. Local Stability of Endemic Equilibrium Point
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Theorem 7. The EE E1 of the model (2) is locally asymptoti-
cally stable if R0 > 1 and unstable if R0 < 1. (Proof. Behavior
of forward bifurcation.)

3.7.3. Global Stability of Disease–Free Equilibrium Point. To
show global stability of disease-free equilibrium E0, we use
the technique employed in [4]. Accordingly, let X ∈ℝ1

denote individuals in uninfected compartment ðSÞ and Y ∈
ℝ4 denotes individuals in infected compartments
W, I,U , Að Þ . Hence, we write model (2) in the form:

dX
dt

=H X, Yð Þ,
dY
dt

= G X, Yð Þ,G X, 0ð Þ = 0:
ð34Þ

Also, the disease-free equilibrium is given by

E1
0 = X0, 0
À Á

: ð35Þ

Here, X0 is the disease-free equilibrium of the foregoing
system.

To guarantee global asymptotic stability of the disease-
free equilibrium point, the technique we employed must
met the following two conditions H1 and H2.

H1: for dX/dt =HðX, 0Þ, X0 is globally asymptotically
stable

H2: GðX, YÞ = PY − ĜðX, YÞ, ĜðX, YÞ ≥ 0 for ðX, YÞ ∈Ω
Here, P =DYGðX, 0Þ is a Metzler matrix and Ω is a

region where solutions of the model are biologically feasible.

Theorem 8. The disease-free equilibrium point E0 of model
(2) is globally asymptotically stable in a region Ω if R0 < 1
as the fourth and fifth eigenvalues are negative if R0 < 1 and
unstable whenever R0 > 1 provided that the above two condi-
tions H1 and H2 are satisfied, where Ω is a feasible solution
region of model (2) in ℝ5

+.

Proof. From model (2), we have

H X, 0ð Þ = λ − μS =H S, 0ð Þ: ð36Þ

Putting HðX, 0Þ = 0 and solving, we obtain S = λ/μ.
Hence, X0 = ðλ/μ, 0Þ. Clearly, X0 is globally asymptotically
stable equilibrium point of equation:

dX
dt

=H X, 0ð Þ: ð37Þ

From infected compartments of model (2), we have

G X, Yð Þ =

β1S
N

− ξ + μð Þ β2S
N

0 0

ξ − η+μð Þ ϕ 0

0 0 − ∅+μð Þ 0

0 η 0 − δ + μð Þ

2
666666664

3
777777775

W

I

U

A

2
6666664

3
7777775

=

β1S
N

β2S
N

0 0

ξ − η+μð Þ ϕ 0

0 0 − ∅+μð Þ 0

0 η 0 − δ + μð Þ

2
666666664

3
777777775

W

I

U

A

2
6666664

3
7777775

−

ξ + μð Þ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
6666664

3
7777775

W

I

U

A

2
6666664

3
7777775
:

ð38Þ

In the preceding computation, let

P =

β1S
N

β2S
N

0 0

ξ − η+μð Þ ϕ 0
0 0 − ∅+μð Þ 0
0 η 0 − δ + μð Þ

2
6666664

3
7777775
, ð39Þ

so that at disease-free equilibrium it reduces to

P =

β1 − ξ + μð Þ β2 0 0
ξ − η+μð Þ ϕ 0
0 0 − ∅+μð Þ 0
0 η 0 − δ + μð Þ

2
666664

3
777775:

ð40Þ

Again, PY gives

PY =

β1 − ξ + μð Þ β2 0 0
ξ − η+μð Þ ϕ 0
0 0 − ∅+μð Þ 0
0 η 0 − δ + μð Þ

2
666664

3
777775

W

I

U

A

2
666664

3
777775:

ð41Þ
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Let

Ĝ X, Yð Þ = PY − G =

β1 − ξ + μð Þ β2 0 0

ξ − η+μð Þ ϕ 0

0 0 − ∅+μð Þ 0

0 η 0 − δ + μð Þ

2
6666664

3
7777775

W

I

U

A

2
6666664

3
7777775

−

β1S
N

− ξ + μð Þ β2S
N

0 0

ξ − η+μð Þ ϕ 0

0 0 − ∅+μð Þ 0

0 η 0 − δ + μð Þ

2
666666664

3
777777775

W

I

U

A

2
6666664

3
7777775
:

ð42Þ

Therefore,

Ĝ X, Yð Þ = PY −G =

β1W + β2I −
S β1W + β2Ið Þ

N
0
0
0

2
6666664

3
7777775
:

ð43Þ

This implies that

Ĝ X, Yð Þ =

β1W + β2Ið Þ 1 − S
S +W + I +U + A

� �
0
0
0

2
66666664

3
77777775
:

ð44Þ

Since S ≤ S +W + I +U + A, we have ðβ1W + β2IÞð1 − S
/ðS +W + I +U + AÞÞ ≥ 0; the preceding matrix is a nonneg-
ative matrix. Therefore, it can be written as

Ĝ X, Yð Þ =

β1W + β2Ið Þ 1 − S
S +W + I +U + A

� �
0
0
0

2
66666664

3
77777775
≥ 0:

ð45Þ

Clearly, the second condition is satisfied as GðX, YÞ = P
Y − ĜðX, YÞ, where, ĜðX, YÞ ≥ 0, ∀X, Y in the invariant

region. Comparing the computations, we have

P =

β1 − ξ + μð Þ β2 0 0
ξ − η+μð Þ ϕ 0
0 0 − ∅+μð Þ 0
0 η 0 − δ + μð Þ

2
666664

3
777775 =DYG X, 0ð Þ,

ð46Þ

which is a Metzler matrix as all off diagonal elements of a
matrix are nonnegative.

Therefore, the disease-free equilibrium E0 is globally
asymptotically stable if R0 < 1 as the fourth and fifth eigen-
values are negative if R0 < 1.

3.8. Sensitivity Analysis. Sensitivity analysis is used to deter-
mine the sensitivity of the variable with respect to the
parameters involved in it [8, 13, 28]. The normalized for-
ward sensitivity index of a particular variable, R, with respect
to a parameter, p, is defined as

YR
p =

∂R
∂p

× p
R
: ð47Þ

It is already shown that the explicit expression of R0 is
given by

R0 =
β1

ξ + μ
+ β2ξ

ξ + μð Þ η + μð Þ : ð48Þ

The normalized forward sensitivity indices of R0 with
respect to parameters in it are given by

YR0
β1
= ∂R0
∂β1

β1
R0

= 1
ξ + μ

β1
R0

,

YR0
β2
= ∂R0
∂β2

β2
R0

= ξ

ξ + μð Þ η + μð Þ
β2
R0

,

YR0
ξ = ∂R0

∂ξ
× ξ

R0
= −β1

ξ + μð Þ2
+ β2μ

ξ + μð Þ2 η + μð Þ

 !
ξ

R0
,

YR0
μ = ∂R0

∂μ
× μ

R0
= −β1

ξ + μð Þ2
+ −β2ξ η + ξ + 2μð Þ

ξ + μð Þ2 η + μð Þ2
 !

μ

R0
,

YR0
η = ∂R0

∂η
× η

R0
= −β2ξ

ξ + μð Þ η + μð Þ2
η

R0
,

ð49Þ

where, based on parametric values given in Table 3, we
obtain

R0 = 8:23: ð50Þ

From Table 3, it can be observed that parameters β1 and
β2 have positive sensitivity indices and the values of the
remaining two parameters ξ, η, and μ get negative sensitivity
indices. Further, these parameters affect the value of a
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reproduction number that helps in the analysis of virus
extinction or persistence of the disease in the population.
On the other hand, an increase of positive parameter value
will increase the value of R0; this implies that disease trans-
mission increase with significant amount. Also, an increase
in the magnitude of negative parameter value will cause a
value of reproduction number to decrease in some amount,

which means the disease transmission significantly decreases
in some amount.

4. Optimal Control Problem

In this section, we extend SWIUA model by considering
control strategies. The optimal control analysis assists to
identify the best control strategies to eradicate or control
the disease in the community at a specified period of time
[3, 15, 19]. In the optimal control problem, the following
three control measures are used.

(i) Preventive control measure u1 that protects suscepti-
ble population from getting the disease

(ii) Treatment control measure u2 that is used by
patients to reduce viral load in the body and slow/
stop the progression of the virus

Now, including these control measures u1 and u2 in
model (2), we get the following optimal control model:

dS
dt

= λ − 1 − u1ð Þ S β1W + β2Ið Þ
N

− μS,

dW
dt

= 1 − u1ð Þ S β1W + β2Ið Þ
N

− ξ + μð ÞW,

dI
dt

= ξW + u2κA + ϕU − 1 − u2ð Þη + u2θ + μð ÞI,
dU
dt

= u2θI− ∅+μð ÞU ,

dA
dt

= 1 − u2ð ÞηI − u2kA + δ + μð ÞA,

ð51Þ

with nonnegative initial conditions

Table 3: Sensitivity index value of R0 with respect parameter.

Parameter Value Sensitivity index value Description

β1 0.9815 +0.145 β1 ~ R0

β2 0.866 +0.854 β2 ~ R0

ξ 0.8 -0.121 ξ ~ 1
R0

μ 0.02 -0.004 μ ~ 1
R0

η 0.1 -0.701 η ~ 1
R0

Table 4: Value and source of parameters used in the simulation.

Parameter Value Source

λ 200/year Assumed

β1 0.9815/year Assumed

β2 0.866/year [9]

μ 0.02/year [36]

ξ 0.8/year Assumed

η 0.1 /year [7]

ϕ 0.1/year [7]

θ 0.5/year Assumed

κ 0.1/year [30]

δ 1/year [30]

10
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Figure 2: Forward bifurcation diagram of model (2).
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Figure 3: Comparison of susceptible population without and with
control.
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To study optimal levels of the controls, we define the
Lebesgue measurable control set U as follows:

U = u1 tð Þ, u2 tð Þð Þ: 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, 0 ≤ t ≤ t f
È É

: ð52Þ

Our goal is to find the optimal controls u∗1 , and u∗2 opti-
mal solutions S∗,W∗, I∗,U∗, and A∗ by fixing the terminal
time t f that minimize the objective functional J given by

J u1, u2, u3ð Þ = min
u1,u2ð Þ

ðt f
0
c1W + c2I + c3A + 1

2 w1u
2
1 +w2u

2
2

À Á
dt,

ð53Þ

where c1, c2,w1, and w2 are constants. The expressions
0:5w1u

2
1, 0:5w2u

2
2, and 0:5w3u

2
3 are costs associated with

controls. The form of cost is quadratic because we assumed

it to be nonlinear in nature [3]. Our goal is to minimize
the population size ofWðtÞ, IðtÞ, and AðtÞ through interven-
tion with control measures u1ðtÞ, and u2ðtÞ along with the
costs associated with them. For two optimal controls u∗1 ,
and u∗2 , we have

J u∗1 , u∗2 , u∗3ð Þ =min J u1, u2ð Þ: u1, u2 ∈Uf g, ð54Þ

where U = fðu1, u2Þ: 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1g, u1, u2, and u3
are measurable controls.

4.1. Existence of the Optimal Control. To show the existence
of optimal control, we use the approach used in [3]. We have
already proved that the HIV model (2) is bounded, so this
result can be used to prove the existence of optimal control
over finite time interval as applied in [3, 52]. To ensure the
existence of optimal control, we need to check if the follow-
ing conditions are satisfied:

(i) The set of controls and state variables be nonempty

(ii) The control set U is convex and closed

(iii) The right hand side of the state system is bounded
by a linear function in the state and control
variables

(iv) The integrand of objective functional is convex on
U

(v) The integrand of objective functional is bounded

below by k2 − k1ðju1j2 + ju2j2Þ
k/2
:k1, k2 > 0 and k >

1

An existence of the state system with bounded coeffi-
cients used to give condition (i). The control set is convex
and closed by definition. The right hand side of the state sys-
tem satisfies (iii). The state solutions are already bounded
(iv). The integrand in the objective functional c1W + c2I +

W
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Figure 4: Comparison of asymptomatic population without and
with control.
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Figure 5: Comparison of symptomatic HIV population without
and with control.
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Figure 6: Comparison of susceptible population without and with
control.
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c3A + ð1/2Þðw1u
2
1 +w2u

2
2Þ is clearly convex on U . (v) Fur-

ther, from restriction on control measures, we have

1
2wiu

2
i ≤

1
2wi, ui ∈ 0, 1½ �: ð55Þ

Also, considering the preceding inequality, the integrand
can be written as

c1W + c2I + c3A + 1
2 w1u

2
1 +w2u

2
2

À Á
≥ k1 u1j j2 + u2j j2À Ák/2 − k2:

ð56Þ

where k1 = min ðw1/2,w2/2Þ, k2 =w2/2, k = 2.
Therefore, there exists optimal control measures u1 and

u2 that minimize the objective functional J u1, u2,ð Þ.

4.2. The Hamiltonian and Optimality System. The Pontrya-
gin maximum principle stated the necessary conditions
which are satisfied by optimal pair. Hence, by this principle,
we obtained the Hamiltonian function ðHÞ defined as

H S,W , I,U , A,ð Þ = c1W + c2I + c3A + 1
2 w1u

2
1 +w2u

2
2

À Á
+ λ1

dS
dt

+ λ2
dW
dt

+ λ3
dI
dt

+ λ4
dU
dt

+ λ5
dA
dt

,
ð57Þ

where, λi, i = 1, 2, 3, 4, 5 are the adjoint variables corre-
sponding to state variables S,W, I,U , and A, respectively,
and to be determined using Pontryagin’s maximal principle
for the existence of optimal pairs.

Theorem 9. Let S,W, I,U , and A are optimal state solutions
with associated optimal control variables u1, u2, and u3 for
the optimal control model, there exist co-state variables λ1,
λ2, λ3, λ4, and λ5 that satisfy

dλ1
dt

= −
∂H
∂S

, dλ2
dt

= −
∂H
∂W

, dλ3
dt

= −
∂H
∂I

, dλ4
dt

= −
∂H
∂U

, dλ5
dt

= −
∂H
∂A

:

ð58Þ

With transversality or final time conditions, λ1ðt f Þ = λ2ð
t f Þ = λ3ðt f Þ = λ4ðt f Þ = λ5ðt f Þ = 0 and where H is Hamilto-
nian function given in (∗). Furthermore, the optimal controls
u∗1 , u∗2 , and u∗3 are

u∗1 =min 1, max βSI λ2 − λ1ð Þ
w1N

, 0
� �� �

,

u∗2 =min 1, max ηI λ5 − λ3ð Þ + kA λ5 − λ3ð Þ + θI λ3 − λ4ð Þ
w2

, 0
� �� �

:

ð59Þ
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Figure 7: Comparison of AIDS population without and with
control.
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Over the constraints,

0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1: ð60Þ

Proof. Pontryagin’s maximum principle gives the standard
form of adjoint equation with transversality conditions
[40]. Now, differentiating the Hamiltonian function with
respect to state variables S,W, I,U and A , respectively, the
adjoint equations can be written as

dλ1
dt

= −
∂H
∂S

= 1 − u1ð Þ β1W + β2Ið ÞN − S β1W + β2Ið Þ
N2 λ1 − λ2ð Þ + μλ1,

dλ2
dt

= −
∂H
∂W

= −c1 + 1 − u1ð Þβ1SN − S β1W + β2Ið Þ
N2

λ1 − λ2ð Þ + ξ λ2 − λ3ð Þ + μλ2,

dλ3
dt

= −
∂H
∂I

= −c2 + 1 − u1ð Þβ2SN − S β1W + β2Ið Þ
N2

λ1 − λ2ð Þ + 1 − u2ð Þη λ3 − λ5ð Þ + u2θ λ3 − λ4ð Þ + μλ3,

dλ4
dt

= −
∂H
∂U

= ϕ λ4 − λ3ð Þ + μλ4,

dλ5
dt

= −
∂H
∂A

= −c3 + u2κ λ5 − λ3ð Þ + δ + μð Þλ5: ð61Þ

Further, the characterization of optimal controls u∗1 , and
u∗2 shows that

∂H
∂u1

= ∂H
∂u2

= 0: ð62Þ

It follows that the optimal solution subject to constraints
0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1 is

u∗1 = u1 =
S β1W + β2Ið Þ

w1N
λ2 − λ1ð Þ,

u∗2 = u2 =
ηI λ5 − λ3ð Þ + kA λ5 − λ3ð Þ + θI λ3 − λ4ð Þ

w2
:

ð63Þ

Therefore, considering the bounds of the control, the
optimal control variables are given by
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Figure 10: Comparison of HIV population without treatment.
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In compact form, the optimal controls can be written as

u∗1 = min 1, max S β1W + β2Ið Þ
w1N

λ2 − λ1ð Þ, 0
� �� �

,

u∗2 = min 1, max ηI λ5 − λ3ð Þ + kA λ5 − λ3ð Þ + θI λ3 − λ4ð Þ
w2

, 0
� �� �

:

ð65Þ

Next, we write the optimality system using a state vari-
ables system of equations with initial conditions, a costate
variables system of equations with final time conditions
and optimal control solution.

dS
dt

= λ − 1 − u1ð Þ S β1W + β2Ið Þ
N

− μS,

dW
dt

= 1 − u1ð Þ S β1W + β2Ið Þ
N

− ξ + μð ÞW ,

dI
dt

= ξW + u2κA + ϕU − 1 − u2ð Þη + u2θ + μð ÞI,
dU
dt

= u2θI− ∅+μð ÞU ,

dA
dt

= 1 − u2ð ÞηI − u2kA + δ + μð ÞA,
dλ1
dt

= −
∂H
∂S

= 1 − u1ð Þ β1W + β2Ið ÞN − S β1W + β2Ið Þ
N2

λ1 − λ2ð Þ + μλ1,
dλ2
dt

= −
∂H
∂W

= −c1 + 1 − u1ð Þβ1SN − S β1W + β2Ið Þ
N2

λ1 − λ2ð Þ + ξ λ2 − λ3ð Þ + μλ2,
dλ3
dt

= −
∂H
∂I

= −c2 + 1 − u1ð Þ
β2SN − S β1W + β2Ið Þ

N2 λ1 − λ2ð Þ + 1 − u2ð Þη λ3 − λ5ð Þ + θ λ3 − λ4ð Þ

+ μλ3,
dλ4
dt

= −
∂H
∂U

= ϕ λ4 − λ3ð Þ + μλ4,
dλ5
dt

= −
∂H
∂A

= −c3

+ u3κ λ5 − λ3ð Þ + δ + μð Þλ5, ð66Þ

with conditions λ1ðt f Þ = λ2ðt f Þ = λ3ðt f Þ = λ4ðt f Þ = λ5ðt f
Þ = 0, Sð0Þ = S0,Wð0Þ =W0, Ið0Þ = I0,Uð0Þ =U0, andAð0Þ
= A0.

5. Numerical Simulations

Next, we investigate qualitatively the effect of optimal con-
trol strategies on the spread of HIV in a population. Hence,
we categorized strategies as follows:

(i) Strategy 1: only prevention control effort ðu1Þ
(ii) Strategy 2: only treatment control effort ðu2Þ
(iii) Strategy 3: both treatment and prevention control

efforts ðu1 and u2Þ
Solving the optimality system yields the better control.

For solving the optimality system, an iterative scheme is
used. We begin by using the fourth order Runge–Kutta
scheme to solve the state equations with a guess for the con-
trols over simulated time. The adjoint equations are solved
using the current iterations solutions of the state equation
using the backward fourth-order Runge–Kutta scheme
because of the transversality conditions. The controls are
then updated by combining the previous controls with the
value from the characterizations. In this section, numerical
simulations are done to illustrate the analytical results
obtained in the above analysis. The initial values for vari-
ables of model (2) are Sð0Þ = 6000,Wð0Þ = 200, Ið0Þ = 1000
,Uð0Þ = 300, Að0Þ = 100, c1 = 20, c2 = 15, c3 = 25,w1 = 1, and
w2 = 1. Moreover, the value and the source of parameters
used in the simulations are given in the Table 4.

In Figure 2, the endemic equilibrium changes its stability
from unstable to stable and disease-free equilibrium changes
its stability from stable to unstable at the bifurcation point
R0 = 1. Moreover, the point R0 = 1 is the critical point where
forward bifurcation behavior of model is exhibited.

u∗1 =
S β1W + β2Ið Þ

w1N
λ2 − λ1ð Þ, if 

�

0 < S β1W + β2Ið Þ
w1N

λ2 − λ1ð Þ < 1,0,if  S β1W + β2Ið Þ
w1N

λ2 − λ1ð Þ

≤ 0, 1, if 1 ≤ S β1W + β2Ið Þ
w1N

λ2 − λ1ð Þ,

u∗2 =

ηI λ5 − λ3ð Þ + kA λ5 − λ3ð Þ + θI λ3 − λ4ð Þ
w2

, if 0 < ηI λ5 − λ3ð Þ + kA λ5 − λ3ð Þ + θI λ3 − λ4ð Þ
w2

< 1,

0, if  ηI λ5 − λ3ð Þ + kA λ5 − λ3ð Þ + θI λ3 − λ4ð Þ
w2

≤ 0,

1, if 1 ≤ ηI λ5 − λ3ð Þ + kA λ5 − λ3ð Þ + θI λ3 − λ4ð Þ
w2

:

8>>>>>>>><
>>>>>>>>:

ð64Þ
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Epidemiologically, interpretation gives the disease persists in
the population if R0 > 1 and extinct if R0 ≤ 1

In Figure 3, the susceptible population dynamics is sim-
ulated considering the prevention and treatment control
interventions. The susceptible population size increases due
to intervention with prevention control. However, without
control, more people get infected and the size of the suscep-
tible population decreases.

In Figure 4, the asymptomatic population dynamics is
simulated considering the prevention and treatment control
interventions. The asymptomatic population size decrease
due to intervention with prevention control. However, with-
out control, more people get infected and the size of the
asymptomatic population increases with time.

In Figure 5, the symptomatic HIV population dynamics
is simulated considering the prevention and treatment con-

trol interventions. The symptomatic HIV population size
decreases due to intervention with control measures. How-
ever, without control, more people get infected and the size
of the HIV population increases with time.

In Figure 6, the undetectable population dynamics is
simulated considering the prevention and treatment control
interventions. The undetectable population size decreases
without intervention with controls due to replication of virus
without control. However, with effective adherence to con-
trols, the size of the undetectable population increases with
time.

In Figure 7, the AIDS population dynamics is simulated
considering the prevention and treatment control interven-
tions. The AIDS population size decreases due to interven-
tion with controls. However, without controls, more people
severely attacked with HIV and progress to advanced stage
so that the size of the AIDS population increases.

In Figure 8, the susceptible population dynamics is sim-
ulated considering only the prevention control. The suscep-
tible population size increase due to intervention with
prevention control. However, without prevention control,
people get infected and the size of the susceptible population
decreases with time.

In Figure 9, the asymptomatic population dynamics is
simulated considering the prevention control intervention.
The asymptomatic population size decreases due to inter-
vention with prevention control as less number of individ-
uals get infected in the presence of prevention control.
However, without control, more people get infected and
the size of the asymptomatic population increases with time.

In Figure 10, the symptomatic HIV population dynamics
is simulated considering the prevention control intervention.
The symptomatic HIV population size increases without
intervention with prevention control. However, the preven-
tion control reduces the number of individuals infected
whose impact reduces the number of symptomatic HIV
population.
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Figure 13: Comparison of susceptible population without
prevention control.
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Figure 14: Comparison of asymptomatic population without
prevention control.
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Figure 15: Comparison of HIV population without prevention
control.
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In Figure 11, the undetectable population dynamics is
simulated considering the only prevention control interven-
tion. The undetectable population size remains the same
without or with presence of prevention control due to
absence of treatment control intervention.

In Figure 12, the AIDS population dynamics is simulated
considering the prevention control intervention. The AIDS
population size increases without treatment control inter-
vention control. However, with control, less people progress
to the advanced stage of HIV and the size of the AIDS pop-
ulation decreases with time.

In Figure 13, the susceptible population dynamics is sim-
ulated considering only treatment control intervention. The
HIV population size increases with treatment control inter-
vention control. However, without treatment control, more
people get infected and the size of susceptible population
decreases.

Figure 14 shows that the absence of the prevention con-
trol measure increases the number of HIV-infected individ-
uals in the asymptomatic stage whereas the intervention
with only treatment reduces the number HIV-infected indi-
viduals in the asymptomatic stage.

In Figure 15, the symptomatic HIV-infected individuals
increase the HIV population without control measures, but
the early intervention with treatment reduces the number
of individuals that get serious with virus.

In Figure 16, the dynamics of undetectable stage HIV-
infected individuals are described. The simulation shows
that the number of undetectable individuals increases con-
tinuously with continuous using of treatment, but in the
absence or stopping the medicine causes the number of indi-
viduals at the undetectable individuals to become detectable.

Figure 17 shows that the number of individuals at AIDS
stage increases with time in the absence of the medicine that
inhibits the replication of the viruses in the body and pre-
vention control measures. However, early intervention with
treatment reduces the number of individuals at the AIDS
stage effectively.

In Figure 18, the prevention and the treatment control
profiles are simulated. The simulation results indicate that
early and continuous application of the prevention and
treatment control measures is effective in the controlling
the HIV infection.

In Figure 19, the simulation of adjoint variables are per-
formed to show the conditions required in the analysis of
optimal control problems. Moreover, at the final time, the
adjoint variables yield zero values.

In Figure 20, the simulation of SðtÞ versus WðtÞ is per-
formed; the size of SðtÞ decreases to 2000 as the size of Wð
tÞ increases to 1600. However, for size of SðtÞ ≤ 2000 and
WðtÞ ≤ 1600, both population sizes increase (decrease)
together.

In Figure 21, the simulation of SðtÞ versus IðtÞ is per-
formed. Initially, the size of SðtÞ decrease approximately to
300 as the size of WðtÞ increase to 4700; however, for size
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Figure 16: Comparison of undetectable population without
prevention control.
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Figure 17: Comparison of AIDS population without prevention
control.
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Figure 18: Simulation of prevention and treatment control profiles.
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of SðtÞ ≤ 300 and WðtÞ ≤ 4700, both population sizes
increase (decrease) together.

In Figure 22, the simulation of SðtÞ versus AðtÞ is per-
formed. Initially, the size of SðtÞ decrease approximately to
300 as the size of AðtÞ increase to 430; however, for size of
SðtÞ ≤ 300 and AðtÞ ≤ 430 both population sizes increase
(decrease) together.

In Figure 23, the phase portrait of SðtÞ,WðtÞ, and IðtÞ is
performed. The simulation shows the initial occurrence of
HIV prevalence increases. However, as time increases, less
number of individuals becomes susceptible with the pres-
ence of HIV-infected individuals.

5.1. Cost-Effectiveness Analysis. Incremental cost-
effectiveness ratio (ICER) used to compare the differences
between the costs and health outcomes of two alternative
intervention strategies that compete for the same resources
and is generally described as the additional cost per addi-

tional health outcome [54, 55].

ICER = Differences between the costs
Difference between health outcomes : ð67Þ

In ICER, when comparing two competing intervention
strategies incrementally, one intervention should be com-
pared with the next less effective alternative.

The ICER is computed as follows:

ICER 2ð Þ = 32187
115950 = 0:2776,

ICER 1ð Þ = 6437:4 − 32187
274020 − 115950 = −0:1629:

ð68Þ

Comparing the computations, the ICER ð1Þ < ICER ð2Þ.
This implies to discard strategy 2 and construct a table to
compare strategies 1 and 3.

The ICER is computed as follows:

ICER 1ð Þ = 6437:4
274020 = 0:0235,

ICER 3ð Þ = 38624 − 6437:4
281350 − 274020 = 4:3911:

ð69Þ

Comparing the computations, the ICER ð1Þ < ICER ð3Þ.
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Figure 19: Simulation of adjoint variables for the given time
interval.
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Figure 20: Simulation of SðtÞ and WðtÞ dynamics.

0 1000 2000 3000 4000 5000 6000

S (t)

1000

2000

3000

4000

5000

I (
t)

Figure 21: Simulation of SðtÞ and IðtÞ dynamics.

0 1000 2000 3000 4000 5000 6000
100

200

300

400

500

Figure 22: Simulation of SðtÞ and IðtÞ dynamics.
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This implies that strategy (2) is more effective and econom-
ical over strategy (6). Therefore, discard strategy 3 and select
strategy 1 as a better intervention for optimal control of HIV
transmission dynamics. Therefore, based on the results
obtained from Tables 5–7, the prevention control strategy
is more cost-effective strategy than other control strategies
to overcome the burden of HIV on human life.

5.2. Result and Discussion. In this section, we present the
result and discuss the results obtained from analytical anal-
ysis and numerical simulations of model (2). Particularly,
we discuss the impact of ART on HIV transmission as a
result of varying the value of transfer rate parameter. In

Figure 1, the dynamics of population is described by sche-
matic diagram and the model is developed using it. In
Figure 2, we observe that the endemic equilibrium exhibits
unstable state behavior if R0 < 1. But, it exhibits global
asymptotic stable state behavior if R0 > 1. On the other hand,
DFE is stable for R0 < 1 and unstable if R0 > 1. Moreover, it
can be observed that the system shifts from the stable DFE
to unstable at the bifurcation point R0 = 1. That is, there is
forward bifurcation at the critical point. Further, in
Figures 3–17, the impact of optimal controls is described
clearly. Moreover, the presence of optimal control measures
increases the number of susceptible individuals. However,
the presence of optimal control measures decreases the
number of individuals in the W, I, and A classes. In
Figure 18, the prevention and the treatment control profiles
are simulated. The simulations results indicate early and
continuous application of the prevention and treatment con-
trol measures are effective in the controlling the HIV infec-
tion, whereas in Figure 19 the simulation of adjoint
variables are performed to show the conditions required in
the analysis of optimal control problems. Moreover, at the
final time, the adjoint variables yield zero values.

Further, in Figure 20, the simulation of SðtÞ versus WðtÞ
is performed; the size of SðtÞ decreases to 2000 as the size of
WðtÞ increases to 1600. However, for size of SðtÞ ≤ 2000 and
WðtÞ ≤ 1600, both population sizes increase (decrease)
together, and in Figure 21, the simulation of SðtÞ versus Iðt
Þ is performed. Initially, the size of SðtÞ decreases approxi-
mately to 300 as the size ofWðtÞ increases to 4700; however,
for size of SðtÞ ≤ 300 andWðtÞ ≤ 4700, both population sizes
increase (decrease) together; in Figure 22, the simulation of
SðtÞ versus AðtÞ is performed. Initially, the size of SðtÞ
decreases approximately to 300 as the size of AðtÞ increases
to 430; however, for size of SðtÞ ≤ 300 and AðtÞ ≤ 430, both
population sizes increase (decrease) together. In Figure 23,
the phase portrait of SðtÞ,WðtÞ, and IðtÞ is performed. The
simulation shows the initial occurrence of HIV prevalence
increases. However, as time increases, less number of indi-
viduals becomes susceptible with presence of HIV-infected
individuals.

Also, the investigation of cost-effectiveness analysis with
possible combination with prevention and treatment control
measures for HIV infection shows that early applying of pre-
vention control measures is a better strategy than applying
only ART or combined strategy with prevention and treat-
ment control measures.

5.3. Conclusion. In this study, we have modified the HIV
model by including an undetectable compartment that
emphasizes the impact of using ART properly and continu-
ously in the entire period of HIV infection. Also, the study
identified the impact of faulty using ART by varying the
parameter values that control right and faulty of using
ART. From sensitivity analysis, it is concluded that increas-
ing proper and continuous use of ART help significantly to
reduce the number of reproduction number. Moreover, the
analytical and numerical simulation results show that the
disease-free equilibrium is both locally and globally stable
for R0 ≤ 1: But, the endemic equilibrium is both locally and
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Figure 23: Simulation of SðtÞ and IðtÞ dynamics.

Table 5: Rank of strategies based on the number of the infections
averted.

Strategies
Total infections

averted
Total
costs

ICER

No strategy 0 0 —

Strategy 1 (prevention) 274020 32187 0
Strategy 2 (treatment) 115950 6437.4 0
Strategy 3 (prevention and
treatment)

281350 2574.9 0

Table 6: Comparison between strategies 2 and 1.

Strategies Total averted Total costs ICER

No strategy 0 0 —

Strategy 2 (treatment) 115950 32187 0:2776
Strategy 1 (prevention) 274020 6437.4 −0:1629

Table 7: Comparison between strategies 1 and 3.

Strategies
Total
averted

Total
costs

ICER

No strategy 0 0 —

Strategy 1 (prevention) 274020 6437.4 0:0235
Strategy 3 (prevention and
treatment)

281350 38624 4:3911
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globally stable for R0 > 1. Furthermore, at the threshold
point R0 = 1, the system experiences a forward branch. Anal-
ysis results show that HIV infection can be controlled with
proper administration and use of ART. Particularly, with
prevention and treatment as the optimal control measures,
it reduces the number of individuals living with HIV and
the progression of the HIV patient to the AIDS stage. Also,
examining cost-benefit analyses of possible combinations
of preventive and therapeutic management measures for
HIV infection shows that preventive control measure is a
better strategy if applied earlier effectively than using ART
alone or combined.

Appendix

A. Partial Derivatives of Functions Used in the
Bifurcation Analysis

∂2 f1
∂x21

= 2 β1x2 + β2x3ð Þ
x1 + x2 + x3 + x4 + x5ð Þ2 −

2 β1x1x2 + β2x1x3ð Þ
x1 + x2 + x3 + x4 + x5ð Þ3 ,

∂2 f1
∂x1∂x2

= −
β1

x1 + x2 + x3 + x4 + x5
+ β1x1

x1 + x2 + x3 + x4 + x5ð Þ2 +

β1x2 + β2x3
x1 + x2 + x3 + x4 + x5ð Þ2 −

2 β1x1x2 + β2x1x3ð Þ
x1 + x2 + x3 + x4 + x5ð Þ3

= ∂2 f1
∂x2∂x1

, ∂
2 f1
∂x22

= 2β1x1
x1 + x2 + x3 + x4 + x5ð Þ2 −

2 β1x1x2 + β2x1x3ð Þ
x1 + x2 + x3 + x4 + x5ð Þ3 ,

∂2 f1
∂x3∂x2

= β1x1
x1 + x2 + x3 + x4 + x5ð Þ2 + β2x1

x1 + x2 + x3 + x4 + x5ð Þ2

−
2 β1x1x2 + β2x1x3ð Þ

x1 + x2 + x3 + x4 + x5ð Þ3 = ∂2 f1
∂x2∂x3

, ∂2 f1
∂x4∂x2

= β1x1
x1 + x2 + x3 + x4 + x5ð Þ2 −

2 β1x1x2 + β2x1x3ð Þ
x1 + x2 + x3 + x4 + x5ð Þ3 = ∂2 f1

∂x2∂x4
, ∂

2 f1
∂x23

= 2β2x1
x1 + x2 + x3 + x4 + x5ð Þ2

−
2 β1x1x2 + β2x1x3ð Þ

x1 + x2 + x3 + x4 + x5ð Þ3 ,
∂2 f1

∂x1∂x3
= −

β2
x1 + x2 + x3 + x4 + x5

+

β2x1
x1 + x2 + x3 + x4 + x5ð Þ2 + β1x2 + β2x3

x1 + x2 + x3 + x4 + x5ð Þ2 −

2 β1x1x2 + β2x1x3ð Þ
x1 + x2 + x3 + x4 + x5ð Þ3 = ∂2 f1

∂x3∂x1
, ∂2 f1
∂x4∂x3

= β2x1
x1 + x2 + x3 + x4ð Þ2

−
2 β1x1x2 + β2x1x3ð Þ
x1 + x2 + x3 + x4ð Þ3 = ∂2 f1

∂x3∂x4
, ∂

2 f1
∂x24

= −
2 β1x1x2 + β2x1x3ð Þ
x1 + x2 + x3 + x4ð Þ3 ,

∂2 f1
∂x1∂x4

= β1x2 + β2x3
x1 + x2 + x3 + x4ð Þ2 −

2 β1x1x2 + β2x1x3ð Þ
x1 + x2 + x3 + x4ð Þ3 = ∂2 f2

∂x4∂x1
, ∂

2 f2
∂x21

=

−
2 β1x2 + β2x3ð Þ
x1 + x2 + x3 + x4ð Þ2 + 2 β1x1x2 + β2x1x3ð Þ

x1 + x2 + x3 + x4ð Þ3 ,
∂2 f2

∂x1∂x2
= β1
x1 + x2 + x3 + x4

−
β1x1

x1 + x2 + x3 + x4ð Þ2 −
β1x2 + β2x3

x1 + x2 + x3 + x4ð Þ2 + 2 β1x1x2 + β2x1x3ð Þ
x1 + x2 + x3 + x4ð Þ3

= ∂2 f2
∂x2∂x1

, ∂
2 f2
∂x22

= −
2β1x1

x1 + x2 + x3 + x4ð Þ2 + 2 β1x1x2 + β2x1x3ð Þ
x1 + x2 + x3 + x4ð Þ3 ,

∂2 f2
∂x3∂x2

= −
β1x1

x1 + x2 + x3 + x4ð Þ2 −
β2x1

x1 + x2 + x3 + x4ð Þ2 + 2 β1x1x2 + β2x1x3ð Þ
x1 + x2 + x3 + x4ð Þ3

= ∂2 f2
∂x2∂x3

, ∂2 f2
∂x4∂x2

= −
β1x1

x1 + x2 + x3 + x4ð Þ2 + 2 β1x1x2 + β2x1x3ð Þ
x1 + x2 + x3 + x4ð Þ3

= ∂2 f2
∂x2∂x4

, ∂
2 f2
∂x23

= −
2β2x1

x1 + x2 + x3 + x4ð Þ2 + 2 β1x1x2 + β2x1x3ð Þ
x1 + x2 + x3 + x4ð Þ3

, ∂2 f2
∂x1∂x3

= β2
x1 + x2 + x3 + x4

−
β2x1

x1 + x2 + x3 + x4ð Þ2 −
β1x2 + β2x3

x1 + x2 + x3 + x4ð Þ2

+ 2 β1x1x2 + β2x1x3ð Þ
x1 + x2 + x3 + x4ð Þ3 = ∂2 f2

∂x3∂x1
, ∂2 f2
∂x4∂x3

= −
β2x1

x1 + x2 + x3 + x4ð Þ2

+ 2 β1x1x2 + β2x1x3ð Þ
x1 + x2 + x3 + x4ð Þ3 = ∂2 f2

∂x3∂x4
, ∂

2 f2
∂x24

= 2 β1x1x2 + β2x1x3ð Þ
x1 + x2 + x3 + x4ð Þ3 ,

∂2 f2
∂x1∂x4

= −
β1x2 + β2x3

x1 + x2 + x3 + x4ð Þ2 + 2 β1x1x2 + β2x1x3ð Þ
x1 + x2 + x3 + x4ð Þ3

= ∂2 f2
∂x4∂x1

, ∂
2 f3
∂x21

= 0, ∂2 f3
∂x1∂x2

= 0, ∂
2 f3
∂x22

= 0, ∂23
∂x3∂x2

= 0, ∂2 f3
∂x4∂x2

= 0, ∂
2 f3
∂x23

= 0, ∂2 f3
∂x1∂x3

= 0, ∂2 f3
∂x4∂x3

= 0, ∂
2 f3
∂x24

= 0, ∂2 f3
∂x1∂x4

= 0, ∂
2 f4
∂x21

= 0, ∂2 f4
∂x1∂x2

= 0, ∂
2 f4
∂x22

= 0, ∂2 f4
∂x3∂x2

= 0, ∂2 f4
∂x4∂x2

= 0, ∂
2 f4
∂x23

= 0, ∂2 f4
∂x1∂x3

= 0, ∂2 f4
∂x4∂x3

= 0, ∂
2 f4
∂x24

= 0, ∂2 f4
∂x1∂x4

= 0, ∂
2 f5
∂x21

= 0, ∂2 f5
∂x1∂x2

= 0, ∂
2 f5
∂x22

= 0, ∂2 f5
∂x3∂x2

= 0, ∂2 f5
∂x4∂x2

= 0, ∂
2 f5
∂x23

= 0, ∂2 f5
∂x1∂x3

= 0, ∂2 f5
∂x4∂x3

= 0, ∂
2 f5
∂x24

= 0, ∂2 f5
∂x1∂x4

= 0: ðA:1Þ

Next, evaluating all computed second-order partial
derivatives at a point ðE0, β∗

1 Þ, we obtain
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∂2 f1
∂x22

= 2β1
x1

, ∂2 f1
∂x3∂x2

= β1
x1

+ β2
x1

, ∂2 f1
∂x4∂x2

= β1
x1

, ∂
2 f1
∂x23

= 2β2
x1

, ∂2 f1
∂x4∂x3

= β2
x1

, ∂
2 f2
∂x22

= −
2β1
x1

, ∂2 f2
∂x3∂x2

= −
β1
x1

−
β2
x1

, ∂2 f2
∂x4∂x2

= −
β1
x1

, ∂
2 f2
∂x23

= −
2β2
x1

, ∂2 f2
∂x4∂x3

= −
β2
x1

, ∂2 f2
∂x1∂x3

= 0, ∂
2 f1
∂x21

= 0, ∂2 f1
∂x1∂x2

= 0, ∂2 f1
∂x1∂x3

= 0, ∂
2 f1
∂x24

= 0, ∂2 f1
∂x1∂x4

= 0, ∂
2 f2
∂x21

= 0, ∂2 f2
∂x1∂x2

= 0, ∂
2 f2
∂x24

= 0, ∂2 f2
∂x1∂x4

= 0, ∂
2 f3
∂x21

= 0, ∂2 f3
∂x1∂x2

= 0, ∂
2 f3
∂x22

= 0, ∂23
∂x3∂x2

= 0, ∂2 f3
∂x4∂x2

= 0, ∂
2 f3
∂x23

= 0, ∂2 f3
∂x1∂x3

= 0, ∂2 f3
∂x4∂x3

= 0, ∂
2 f3
∂x24

= 0, ∂2 f3
∂x1∂x4

= 0, ∂
2 f4
∂x21

= 0, ∂2 f4
∂x1∂x2

= 0, ∂
2 f4
∂x22

= 0, ∂2 f4
∂x3∂x2

= 0, ∂2 f4
∂x4∂x2

= 0, ∂
2 f4
∂x23

= 0, ∂2 f4
∂x1∂x3

= 0, ∂2 f4
∂x4∂x3

= 0, ∂
2 f4
∂x24

= 0, ∂2 f4
∂x1∂x4

= 0, ∂
2 f5
∂x21

= 0, ∂2 f5
∂x1∂x2

= 0, ∂
2 f5
∂x22

= 0, ∂2 f5
∂x3∂x2

= 0, ∂2 f5
∂x4∂x2

= 0, ∂
2 f5
∂x23

= 0, ∂2 f5
∂x1∂x3

= 0, ∂2 f5
∂x4∂x3

= 0, ∂
2 f5
∂x24

= 0, ∂2 f5
∂x1∂x4

= 0:

ðA:2Þ

Also,

∂2 f2
∂x2∂β

∗ E0, β∗ð Þ = 1, ∂2 f1
∂x2∂β

∗ E0, β∗ð Þ = −1, ∂2 f k
∂xi∂β

∗ E0, β∗ð Þ = 0, i ≠ 2:

ðA:3Þ
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