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This paper is interested in the Bayesian and non-Bayesian estimation of the stress-strength model and the mean remaining
strength when there is fuzziness for stress and strength random variables having Lindley’s distribution with different
parameters. A fuzzy is defined as a function of the difference between stress and strength variables. In the context of Bayesian
estimation, two approximate algorithms are used importance sampling algorithm and the Monte Carlo Markov chain
algorithm. For non-Bayesian estimation, maximum likelihood estimation and maximum product of spacing method are used.
The Monte Carlo simulation study is performed to compare between different estimators for our proposed models using
statistical criteria. Finally, to show the ability of our proposed models in real life, real medical application is introduced.

1. Introduction

Lindley [1, 2] introduced the Lindley distribution in the con-
text of Bayesian statistics, Ghitany et al. [3] studied the
statistical properties of the Lindley distribution, and they
showed that it is better than the exponential distribution
because it has an increasing hazard rate function. This is
the main reason to perform this study about the Lindley
distribution. Shanker et al. [4] made a comparative study
between the Lindley distribution and exponential distribu-
tion for various lifetime data in many fields such as biomed-
ical science and engineering, and they found that the Lindley
distribution is better than the exponential distribution.

Definition 1. A random variable X is said to have the Lindley
distribution with parameter θ. If its probability density func-
tion is given by

f x ; θ =
θ2

θ + 1
1 + x e−θ x x > 0, θ > 0 1

The cumulative distribution function is given by

F x ; θ = 1 − 1 +
θ

1 + θ
x e−θ x 2

The hazard rate function is given by

h x ; θ =
θ2 1 + x

1 + θ 1 + x
, 3

and the mean residual function is given by

μ x = E X − x X > x =
1
θ
+

1
θ 1 + θ + θ x

4
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Ghitany et al. [3] proved that the Lindley distribution is
unimodal for 0 < θ < 1 as shown in Figure 1, decreasing for
θ ≥ 1 as shown in Figure 2, and μ x is decreasing for X as
shown in Figure 3.

Since most of the engineering processes inherently have
uncertainty that must be dealt with and represented effec-
tively, sometimes, the data cannot be reported precisely
under some unexpected situations that can occur by misde-
tection of failures by a user, by inattentive records or mea-
surements, etc. In addition, the subjective evaluation of the
lifetime data leads to the fuzziness. So, the main aim of this
paper is to study the fuzzy stress-strength model and fuzzy
mean remaining strength when the stress and strength vari-
ables are independent having Lindley’s distribution with dif-
ferent shape parameters θ Now, we introduce an overview
about stress-strength model, mean remaining strength, and
fuzzy function. The fuzzy function is defined as a function
of the difference between stress-strength variables, and it
makes more sensitive analysis, see [5] and Eryilmaz and
Tutuncu [6]. So, it encourages us to make this study to com-
pare the behavior of the stress-strength model and mean
remaining strength in both cases, the existence and nonexis-
tence of fuzziness. The stress-strength models have an
important role in many fields such as engineering, quality
control, medicine, and economic. The reliability parameter
is R = P Y < X , where X is the strength random variable
and Y is the stress random variable. In the reliability analy-
sis, R describes the life of a component that has strength var-
iable X and is subjected to random variable stress Y . The
system fails if and only if the stress is greater than the
strength. The stress-strength models have been studied by
many authors; for references in the past, see Kotz et al. [7].
For the Lindley distribution, see Al-Mutairi et al. [8] and
Hassan [9]. Also, there are many references for other distri-
butions such as the beta Gompertz distribution, see Hassan
[10], and the exponential Pareto distribution, see Al-Omari
et al. [11]. In the context of the mean remaining strength
(MRS) of the component as the expected remaining strength
under the stress, see Gurler [12], Gurler et al. [13],
Bairamove et al. [14], and Kizilaslan [15]. Fuzziness is intro-
duced in reliability by Huang [5]. In recent, Eryilmaz and
Tutuncu [6] introduced the stress-strength reliability in the
presence of fuzziness, Sabry et al. [16] introduced fuzzy reli-
ability for inverse Rayleigh distribution, and Yazgan et al.
[17] introduced the fuzzy stress-strength model for weight
exponential distribution and also introduced the fuzzy mean
remaining strength for the same distribution. This paper is
organized as follows: there is a fuzzy stress-strength model
and a fuzzy mean remaining strength when the stress and
strength are two independent Lindley distributions with
different shape parameters in Section 2; in Section 3, non-
Bayesian estimation of fuzzy stress-strength model and fuzzy
mean remaining strength using maximum likelihood esti-
mation (MLE) method and the maximum product of the
spacing estimation (MPS) method; in Section 4, Bayesian
estimation using importance sampling algorithm (IS) and
Monte Carlo Markov chain algorithm (MCMC). The Monte
Carlo simulation study is constructed to compare between

different estimators for our proposed models in Section 5.
Real application is introduced to show the validity of our
proposed model in real life in Section 6. Finally, in Section
7, we conclude the results of our paper.
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Figure 1: Probability density function of the Lindley distribution
when 0 < θ < 1
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Figure 2: Probability density function of the Lindley distribution
when θ ≥ 1
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Figure 3: The mean residual function of the Lindley distribution.
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2. Fuzzy Stress-Strength Model (FSS) and Fuzzy
Mean Remaining Strength (FMRS)

In this section, we introduce the FSS model and FMRS when
the stress and strength variables are independent and have
Lindley’s distribution with different shape parameters.

2.1. FSS Model for Lindley Distribution. Al-Mutairi et al. [8]
introduced a classical stress-strength model when the stress
(Y)and strength (Y)variables are independent and have
Lindley’s distribution with different shape parameters θ2
and θ1, respectively, as follows:

R = P Y < X =∬∞
y<xdFX x dFY y

=
θ22 2θ1 + 1 + 2θ1 θ1 + θ2 + 1 + θ1 θ1 + θ2

2

1 + θ1 1 + θ2 θ1 + θ2
3

5

Eryilmaz and Yutuncu [6] defined the FSS model as

FSS = P Y < X =∬∞
y<xμA y x dFX x dFY y , 6

where

μA y x =
0 &y ≥ x

1 − e−k x−y y < x
7

Hence, in the case of the Lindley distribution, we defined
FSS as
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Figure 4: The classical stress-strength model based on the Lindley distribution and different values of θ1 and θ2

FSS =∬∞
y<x 1 − e−k x−y θ21

1 + θ1
1 + x e−θ1x

θ22
1 + θ2

1 + y e−θ2y dxdy, 8

FSS =
kθ22 θ1 3k + θ1 4 + 3k + θ1 4 + k + θ1 + k + 2θ1 1 + 2k + θ1 3 + k + θ1 θ2 + k + θ1 2 + k + θ1 θ22

1 + θ1 k + θ1
2 1 + θ2 θ1 + θ2

3 9
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We note that the classical stress-strength model is
greater than the fuzzy stress-strength model, but for large k
, the fuzzy model approximately equals the classical model.

Figure 4 shows the classical stress-strength model for dif-
ferent values of θ1 and θ2. Also, Figure 5 shows fuzzy stress-
strength model for different values of k, θ1 and θ2.

2.2. FMRS for Lindley Distribution. Gurler [12] defined the
mean remaining strength (MRS)as

MRS = E X − Y Y < X =
∞

0

∞
0

∞
x+ydFX x dFy y

P Y < X
dx

10

Then, we use this definition to get MRS for the Lindley

distribution as

MRS =
θ1 2 + θ1

2 + 2 1 + θ1 3 + θ1 θ2 + 2 + θ1 θ22
θ1 2θ1 + 1 + 2θ1 θ1 + θ2 + 1 + θ1 θ1 + θ2

2

11

Yazgan et al. [17] defined fuzzy mean remaining
strength as

FMSR =
∞

0

∞
0

∞
x+yμA y x dFX x dFy y

FSS
dx 12

Then, we can get FMRS for the Lindley distribution as
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Figure 5: The fuzzy stress-strength model based on the Lindley distribution and different values of k, θ1 and θ2

FMSR =
θ1 4k2 + θ1 4k 3 + k + θ1 10 + k 12 + k + θ1 10 + 3k + 2θ1 + 2 k2 + θ1 3k 1 + k + θ1 3 + k 9 + k + θ1 8 + 3k + 2θ1 θ2 + 2k2 + θ1 k + θ1 6 + k + 2θ1 θ22

θ1 k + θ1 θ1 3k + θ1 4 + 3k + θ1 4 + k + θ1 + k + 2θ1 1 + 2k + θ1 3 + k + θ1 θ2 + k + θ1 2 + k + θ1 θ22

13

4 Computational and Mathematical Methods in Medicine



3. Non-Bayesian Estimation of FSS and FMRS

In this section, we discuss the maximum likelihood estima-
tion method (MLE) and the maximum product of the spac-
ing estimation (MPS) for R, MRS, FSS, and FMRS

3.1. MLE of FSS and FMRS. Let X1 ⋯ Xn be a random sam-
ple of size n from the Lindley distribution with shape param-
eter θ1 and Y1 ⋯ Yn be a random sample of size m from the
Lindley distribution with parameter θ2. Then, the maximum
likelihood estimators of θ1 and θ2 are given by

θ1 =
− x − 1 + x − 1 2 + 8x

2 x
, x =

1
n
〠
n

i=1
xi,

θ2 =
− y − 1 + y − 1 2 + 8y

2 y
, y =

1
m
〠
m

j=1
yj

14

For more details, see Ghitany et al. [3]. Use the invari-

ance property of MLE to get the estimators of R, MRS, FSS,
and FMRS by replacing θ1 and θ2 by its maximum likelihood

estimators θ1andθ2in equations (5), ((8)), ((11)), and ((13))

and denoted byR̂, MRS, FSS,andFMRS .

3.2. MPS Estimation of FSS and FFMRS. First, we introduce
an overview for MPS estimation as follows: let X1 ⋯ Xn be a
random sample of size n from a population with distribution
parameter θ. Then, the spacing is defined as the gap between
two distinct distribution functions as follows:

Di θ = F xi ; θ − F xi−1 ; θ  i = 1⋯ n + 1, 15

where ∑n
i=1Di θ = 1 and Di θ are defined as for

x1 n ⋯ xn n

Di θ =

D1 θ = F x1 n ; θ

Di θ = F xi n ; θ − F xi−1 n ; θ

Dn+1 θ = 1 − F xn n ; θ

16

Table 1: Bias and MSE for maximum likelihood estimates and maximum product of spacing estimates of reliability parameter.

Sample size
MLE MPS

R̂ Bias MSE MRE Bias MSE RMPS Bias MSE MREMPS Bias MSE

θ1 = 0 5, θ2 = 0 5, Rtrue = 0 5, MRSTrue = 2 8889
(5) 0.4406 -0.0059 0.0003 1.4230 -0.1465 0.2147 0.5591 0.0059 0.0003 3.7414 0.0852 0.0727

(10) 0.9201 0.0210 0.0088 2.3974 -0.0245 0.0121 0.4898 -0.0005 5 1 × 10−6 2.4788 -0.0204 0.0084

(30, 30) 0.9460 0.0071 0.0030 0.7930 -0.0349 0.0732 0.4726 -0.0004 0 1 × 10−3 2.7755 -0.0018 0.0002

(50, 50) 0.5259 0.0002 6 7 × 10−6 2.7242 -0.0016 0.0003 0.5744 0.0007 0 5 × 10−4 3.4208 0.0053 0.0028

(100, 100) 0.4542 -0.0002 0 1 × 10−6 2.3597 -0.0002 0.0001 0.4895 -0 5 × 10−4 5 4 × 10−7 2.9282 0.0001 7 7 × 10−6

θ1 = 0 5, θ2 = 1 5, Rtrue = 0 825, MRSTrue = 3 0909
(5) 0.7143 -0.0110 0.0012 1.4744 -0.1616 0.2612 0.9688 0.00143 0.0020 5.1230 0.2033 0.4733

(10) 0.7308 -0.0047 0.0044 2.2582 -0.0402 0.0324 0.8123 -0.0006 7 9 × 10−6 3.9000 0.0404 0.0327

(30, 30) 0.4872 -0.0056 0.0019 0.7609 -0.0388 0.0904 0.7420 -0.0013 0.0001 2.6626 -0.0071 0.0030

(50, 50) 0.8556 0.0006 0 1 × 10−3 2.9229 -0.0016 0.0002 0.7882 -0.0003 1 × 10−4 3.0208 0.0007 0 4 × 10−4

(100, 100) 0.7871 -0.0001 7 1 × 10−6 2.5054 -0.0029 0.0017 0.8503 0.0001 3 2 × 10−6 3.6667 0.0028 0 1 × 10−6

θ1 = 2, θ2 = 0 5, Rtrue = 0 1253, MRSTrue = 0 6241

(5) 0.2895 0.0164 0.0027 0.8192 0.0195 0.0038 0.1455 0.0020 0 4 × 10−4 0.9277 0.0303 0.0092

(10) 0.7701 0.0322 0.0207 0.8790 0.0127 0.0034 0.1150 -0.0005 5 2 × 10−6 0.4629 -0.0081 0.0012

(30, 30) 0.9114 0.0131 0.0103 0.6784 .0009 0 4 × 10−4 0.0977 -0.0004 0 1 × 10−4 0.6643 0.0007 0 2 × 10−4

(50, 50) 0.1645 0.0003 1 × 10−5 0.6877 0.0006 0 4 × 10−4 0.1604 0.0003 0 1 × 10−4 0.7097 0.0008 0 7 × 10−4

(100, 100) 0.1362 0.0001 5 9 × 10−7 0.6287 0 2 × 10−4 1 09 × 10−7 0.1385 0 6 × 10−4 8 7 × 10−7 0.7260 0.0005 0 5 × 10−4

θ1 = 1 5, θ2 = 1 5, Rtrue = 0 5, MRSTrue = 2 8889
(5) 0.6397 0.0139 0.0019 1.0792 -0.1780 0.3171 0.5648 0.0064 0.0004 0.8432 -0.2045 0.4184

(10) 0.5711 0.0036 0.0003 1.2828 -0.0802 0.1289 0.6128 0.0056 0.0006 1.0218 -0.0933 0.1742

(30, 30) 0.5526 0.0008 4 × 10−5 0.9547 -0.0322 0.0623 0.0977 -0.0067 0.0026 0.6643 -0.0371 0.0824

(50, 50) 0.6207 0.0012 0.0001 1.0397 -0.0184 0.0341 0.5813 0.0008 0.6×10−4 0.9131 -0.0197 0.0390

(100, 100) 0.5308 0.0001 4 7 × 10−6 0.9516 -0.0096 0.0187 0.5093 0 4 × 10−4 4 3 × 10−7 0.8747 -0.0100 0.0202
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The maximum spacing estimator of the parameter θ
is defined as the value that maximizes the logarithm of
the geometric mean of a sampling spacing, see [18].

θ = arg max Sn θ , 17

where Sn θ = Ln n
i=1Di θ

1/n+1.
Now, we use the MPS estimation method to get the esti-

mators of R, MRS, FSS, and FMRS as follows: let X1 ⋯ Xn be
a random sample of size n from the Lindley distribution with
shape parameter θ1 and Y1 ⋯ Yn be a random sample of size
m from the Lindley distribution with parameter θ2. Then,

Sn,m θ1, θ2 = Ln
n

i=1
Di θ1

1/n+1 m

j=1
Dj θ2

1/m+1

=
1

n + 1
Ln D1 θ1 + Ln Dn+1 θ1 + 〠

n

i=2
Ln Di θ1

+
1

m + 1
Ln D1 θ2 + Ln Dm+1 θ2 + 〠

m

j=2
Ln Dj θ2

18

To get the maximum spacing estimators for θ1 and θ2
denoted by θMPS

1 and θMPS
2 , respectively, maximize Sn,m θ1,

θ2 using an optimization algorithm and using the invari-
ance property of MLE to get the estimators ofR, MRS, FSS,
and FMRS by replacing θ1 and θ2 by its maximum likelihood
estimators θMPS

1 and θMPS
2 in equations (8), ((11)), ((13)), and

((18)) which are denoted by RMPS, MRSMPS, FSSMPS, and
FMRSMPS.

4. Bayesian Estimation of FSS and FMRS

In this section, we obtain the Bayesian estimators of R,
MRS, FSS, and FMRS based on the Lindley distribution.
Let θ1 and θ2 be two independent random variables with
gamma prior distribution where θ1 ≈Gamma a1, b1 and
θ2 ≈Gamma a2, b2 [19–21]. Then, the joint prior distribu-
tion of θ1 and θ2 is

L X, Y θ1, θ2 ∝
θ2n1 θ2m2

1 + θ1
n 1 + θ2

m e

−θ1 〠
n

i=1
xi−θ2 〠

m

j=1
yj

19

Table 2: Bias and MSE for Bayesian estimates of reliability parameter R = P Y < X and mean remaining strength.

Sample size
MCMC IS

R̂ Bias MSE MRE Bias MSE RMPS Bias MSE MREMPS Bias MSE

θ1 = 0 5, θ2 = 0 5, Rtrue = 0 5, MRSTrue = 2 8889, a1 = 3, b1 = 4, a2 = 2, b2 = 3

(5) 0.4989 -0.0001 1 1 × 10−7 1.3736 -0.1515 0.2295 0.5012 0.0001 1 48 × 10−7 1.3961 -0.1492 0.2227

(10) 0.4993 −0 3 × 10−4 1 9 × 10−8 1.3768 -0.0755 0.1142 0.5008 4 × 10−4 4 × 10−8 1.3846 -0.0752 0.1131

(30, 30) 0.5002 3 4 × 10−6 7 8 × 10−10 1.3751 -0.02252 0.0381 0.4985 −0 2 × 10−4 3 3 × 10−8 1.3761 -0.0252 0.0381

(50, 50) 0.4983 −0 1 × 10−4 2 7 × 10−8 1.3732 -0.0151 0.0229 0.4986 −0 1 × 10−4 1 8 × 10−8 1.3737 -0.0151 0.0229

(100, 100) .4986 −6 8 × 10−4 9 4 × 10−9 1.3722 -0.0075 0.0114 0.4983 −8 4 × 10−8 1 4 × 10−8 1.3717 -0.0075 0.0115

θ1 = 0 5, θ2 = 1 5, Rtrue = 0 825, MRSTrue = 3 0909a1 = 3, b1 = 4, a2 = 2, b2 = 3
(5) 0.4987 -0.0326 0.0106 1.37414 -0.1719 0.2956 0.5067 -0.0318 0.0101 1.400 -0.1690 0.2859

(10) 0.5012 -0.0160 0.0052 1.3736 -0.0858 0.0474 0.5013 -0.0161 0.0052 1.3844 -0.0853 0.1456

(30, 30) 0.4991 -0.0054 0.0017 1.3720 -0.0286 0.0049 0.5012 -0.0053 0.0017 1.3810 -0.0284 0.0487

(50, 50) 0.5002 -0.0032 0.0010 1.3762 -0.0171 0.0294 0.5007 -0.0032 0.0010 1.3804 -0.0171 0.0292

(100, 100) 0.5003 -0.0016 0.0005 1.3776 -0.0085 0.0146 0.5006 -0.0016 0.0005 1.3767 -0.0085 0.0146

θ1 = 2, θ2 = 0 5, Rtrue = 0 1253, MRSTrue = 0 6241a1 = 3, b1 = 4, a2 = 2, b2 = 3
(5) 0.5004 0.0375 0.0140 1.3755 0.0751 0.0564 0.4978 0.0372 0.0139 1.3797 0.0755 0.0571

(10) 0.4992 0.0186 0.0069 1.3695 0.0372 0.0277 0.4989 0.0186 0.0069 1.3805 0.0378 0.0286

(30, 30) 0.5000 0.0062 0.0023 1.3768 0.0125 0.0094 0.5001 0.0062 0.0023 1.3815 0.0126 0.0095

(50, 50) 0.5003 0.0037 0.0014 1.37792 0.0075 0.0057 0.4991 0.0037 0.0013 1.3744 0.0075 0.0056

(100, 100) 0.4996 0.0018 0.0007 1.3737 0.0037 0.0028 0.5011 0.0018 0.0007 1.3800 0.0037 0.0028

θ1 = 1 5, θ2 = 1 5, Rtrue = 0 5, MRSTrue = 2 8889a1 = 3, b1 = 4, a2 = 2, b2 = 3

(5) 0.5012 0.0001 1 6 × 10−7 1.3795 -0.1509 0.2277 0.4986 -0.0001 1 7 × 10−7 1.3796 -0.1508 0.2275

(10) 0.5008 0 4 × 10−4 3 3 × 10−8 1.3757 -0.0756 0.1144 0.4996 −0 1 × 10−4 4 8 × 10−9 1.3806 -0.0755 0.1136

(30, 30) 0.5000 1 14 × 10−6 7 9 × 10−8 1.3784 -0.0251 0.0380 0.4997 −3 4 × 10−6 7 1 × 10−10 1.3777 -0.0251 0.0380

(50, 50) 0.4996 −3 7 × 10−6 1 4 × 10−8 1.3783 -0.0151 0.0229 0.4984 0 4 × 10−4 2 9 × 10−10 1.3752 -0.0151 0.0028

(100, 100) 0.4982 −8 6 × 10−6 1 4 × 10−9 1.3730 -0.0075 0.0114 0.4997 −1 2 × 10−6 2 5 × 10−10 1.3779 -0.0075 0.0114
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And the posterior density function of θ1 and θ2 is
given by

L θ1, θ2 X, Y =
c

1 + θ1
n 1 + θ2

m Γ θ1 ; a1 + 2 n − 1, b1 + 〠
n

i=1
xi ,

Γ θ2 ; a2 + 2m − 1, b2 + 〠
m

j=1
yj ,

20

where C is the normalizing constant. Now, the Bayes esti-
mator for any function Ψ of θ1 and θ2 is given by

ΨBayes θ1, θ2 =
∞
0

∞
0 Ψ θ1, θ2 L θ1, θ2 X, Y dθ1dθ2
∞
0

∞
0 L θ1, θ2 X, Y dθ1dθ2

21

But we cannot compute the analytic form of ΨBayes.
Then, we must consider some approximations such as
the Lindley approximation, importance sampling (IS) tech-
niques, and the Monte Carlo Markov chain (MCMC)
algorithm. In this study, we are interested in IS algorithm
and MCMC algorithm.

4.1. IS Algorithm. IS algorithm is introduced by Kloek and
Dijk [22]. To use this algorithm, get the Bayesian estimators
of R, MRS, FSS, and FMRS as follows:

(1) Suppose that θ1 ≈Gamma a1, b1 and θ2 ≈Gamma
a2, b2 be independent random variables

(2) Generate θ11 ≈ Γ θ1 ; a1 + 2 n − 1, b1 +∑n
i=1xi and

θ21 ≈ Γ θ2 ; a2 + 2m − 1, b2 +∑m
j=1yj

(3) Repeat step 2 N-times to obtain θ11, θ21 ⋯ θ1N ,
θ2N

(4) The Bayesian estimator of any function Ψ θ1, θ2 is
given by

ΨIS
Bayes θ1, θ2 = 〠

N

i=1
Wi Ψi θ1, θ2 , 22

where Wi = h θ1i, θ2i /∑
N
i=1h θ1i, θ2i and h θ1i, θ2i =

1/ 1 + θ1i
n 1 + θ2i

m.

4.2. MCMC Algorithm. In this subsection, we use the
MCMC algorithm to get the Bayesian estimators of R, MRS
, FSS, and FMRS based on the Lindley distribution; the
MCMC algorithm using the Gibbs simpler; and the
Metropolis-Hastings algorithm (MH); for more details about
MH algorithm, see [23]. Now, to get the Bayesian estimators
of R, MRE, FSS, and FMRS using the following algorithm,

(1) Let the noninformative prior of θ1 and θ2 as i θi
∝ θ−1i i = 1, 2 For more details about the noninfor-
mative, see [24, 25]

(2) The joint posterior distribution θ1 and θ2 is

L θ1, θ2 X, Y = k
θ2n−11 θ2m−1

2
1 + θ1

n 1 + θ2
m e

−θ1 〠
n

i=1
xi−θ2 〠

m

j=1
yj n

i=1
1 + xi

m

j=1
1 + yj

23

(3) Let the start values θ 0
1 and θ 0

2 for θ1 and θ2,
respectively

(4) Generate θ k
1 from π θ1 X ∝ θ 2 n−1

1 / 1 + θ1
n

e−θ1∑
n
i=1xi n

i=1 1 + xi

(5) Generate θ k
2 from π θ2 Y ∝ θ 2m−1

2 / 1 + θ2
m

e−θ2∑
m
j=1y j m

j=1 1 + yj

(6) Repeat steps 4 and 5 M-times

(7) Compute the Bayes estimator for any function
Ψ θ1, θ2 which is given by

ΨMCMC
Bayes θ1, θ2 =

1
M −M0

〠
M

k=M0+1
Ψ θ

k
1 , θ k

2 24

where M0 is the burn-in period of the generated
Markov chain.

5. Monte Carlo Simulation Study

In this section, we construct a Monte Carlo simulation study
to investigate the behavior of different estimates for R,
MRS, FSS, and FMRS. All calculations for this study are
performed using R-program using different packages (nlme,
likelihood, LindleyR, MASS, STAT4, EstimatomTools, BMT,

Table 7: Cancer of benign endocrine dataset.

Data set I (X) 6 6 7 3 3 4 1 50 7 9 13 14 16 31 28 59 13 13 11 9 12 9 5

Data set II (Y) 1 1 1 3 3 1 1 18 4 5 6 6 4 5 5 9 15 24 4 2 5 5 7 1

Table 8: The result of goodness of fit tests.

Data set Test Statistic p value

Data set I
Anderson-Daring 1.0397 0.1050

Cramer-Von Mises 0.1834 0.0874

Data set II
Anderson-Daring 1.1327 0.0814

Cramer-Von Mises 0.1556 0.1332
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MCMC, and fitdistplus). Also, we compare the different esti-
mates of R, MRS, FSS, and FMRS for different values of k,
sample size, and different values of distribution parameters
using bias and mean square error (MSE). First, we generate
sample sizes from X ≈ Lindley θ1 and Y ≈ Lindley θ2
such as n,m = 5, 5 , 10, 10 , 30, 30 , 50, 50 , 100,100
using different values of distribution parameters X and Y
as θ1, θ2 = 0 5,0 5 , 0 5,1 5 , 2,0 5 , 1 5,1 5 For the
Bayesian estimator, using noninformative prior and infor-
mative prior with parameters a1 = 3, b1 = 4, a2 = 2, b2 = 3,
the results of this simulation study are shown in Tables 1–6

Table 1 shows that for both MLE and MPS for R and
MRS, the MSE is decreasing when the sample size increases.
In the context of comparison between estimates in almost all
cases in Table 1, the MSE for MPS is smaller than MSE for
MLE. Table 2 shows that in the Bayesian estimates using
MCMC and IS for R and MRS, the MSE is decreasing when
the sample size increases. In the context of comparison
between estimates in almost all cases in Table 2, the MSE
for IS smaller than MSE for MCMC. Also, in the context
of comparison between Bayesian and non-Bayesian esti-
mates for R and MRS, in almost all cases, we get that the
MSE in Bayesian estimates is smaller than MSE in non-
Bayesian estimates. Tables 3–6 show the Bayesian and
non-Bayesian estimators of FSS and FMRS for different
values of parameters, sample sizes, and k. Table 3 shows
the results of MLE and MPS for FSS and FMRS when θ1 =
θ2 = 0 5 and k = 1, 5, 10, 20. In general, the MSE decreases
when the sample size increases. Also, the MSE for MPS
estimator is smaller than the MSE for MLE. The MSE when
k = 1 is smaller than MSE for another value of k In Table 1
and Table 3, we get that the MSEs for R andMRS are smaller
than the MSEs for FSS and FMRS. Table 4 shows the results

of Bayesian estimators for FSS and FMRS; in general, the
MSE decreases when the sample size increases, but the
MSE for IS method is smaller than the MSE for MCMC
method; but the MSE for large k is smaller than the MSE
for small k. In Table 2 and Table 4, we get that the MSEs
for R and MRS are smaller than the MSEs for FSS and
FMRS. Table 5 and Table 6 show the non-Bayesian and
Bayesian estimators for FSS and FMRS for other values of
distribution parameters.

6. Medical Application (Cancer of
Benign Endocrine)

The National Cancer Registration and Analysis Service
(NCRAS) presents the numbers and percentages of tumors
diagnosed in England in 2013-2018 recorded as receiving
radiotherapy, chemotherapy, or tumor resection. In this
study, we are more interested in the effectiveness of radio-
therapy in diagnosing the benign endocrine cancer than che-
motherapy. To investigate this aim, we use the data from
NCRAS, as follows: the first data set X is the number of
benign endocrine tumors which are diagnosed by radiother-
apy, and the second data set Y is the number of benign
endocrine tumors which are diagnosed by chemotherapy.
The first and second data sets are defined in Table 7.

First, we must prove that the Lindley distribution is a
good fit for two data sets; for this aim, we use the
Anderson-Daring test, Cramer-Von Mises test, and Q-Q
plot. Table 8 and Figure 6 show that the Lindley distribution
is a good fit for two data sets. In Table 8, we get the p value
for two goodness of fit tests for two data sets more than 0.05,
so the Lindley distribution is a good fit for two data sets.

0
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60

10 20 30 405 10
Data set I Data set II

15

Figure 6: Q-Q plot for two data sets.

Table 9: The results of our proposed estimators for two data sets.

Estimation method R MRS
FSS FMRS

k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20
MLE 0.8544 5.3576 0.7999 0.8339 0.8444 0.8494 5.9686 5.4840 5.4205 5.3889

MPS 0.7848 12.9964 0.7454 0.7772 0.7811 0.7830 13.6294 13.1221 13.0591 13.0276

MCMC 0.4994 1.3758 0.2966 0.4422 0.4695 0.4841 1.8956 1.5302 1.4573 1.4176

IS 0.5015 1.3784 0.2981 0.4422 0.4715 0.4862 1.8985 1.5328 1.4599 1.4202
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In Table 9, we get that the classical estimators are greater
than the fuzzy estimators. Also, for a large value of k, the
fuzzy estimators are approximately equal to the classical
estimators.

7. Conclusion

This study considers the stress-strength model and mean
remaining strength using classical and fuzzy approaches when
the stress and strength random variables are independent and
have the Lindley distribution with different shape parameters.
For non-Bayesian estimators, two estimation methods are
used maximum likelihood and maximum product of spacing
method. For Bayesian estimators, two algorithms are used
Monte Carlo Markov Chain algorithm and the importance
sampling algorithm. To compare between different estimators,
simulation studies are performed. In general, the mean square
error is decreasing when the sample size is increasing. To show
the validity of our proposed models in real life, we apply our
proposed model in the medical field. In the future, we want
to use more recent data, get interval estimation, and also use
more reliable models.
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IS: Importance sampling
MH: Metropolis-Hastings
MPS: Maximum product of spacing
MLE: Maximum likelihood estimation
MRS: Mean remaining strength
MCMC: Monte Carlo Markov chain
FSS: Fuzzy stress-strength model
FMRS: Fuzzy mean remaining strength
MSE: Mean square error.
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