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Background. Immune microenvironment implicated in liver cancer development. Nevertheless, previous studies have not fully
investigated the immune microenvironment in liver cancer. Methods. The open-access data used for analysis were obtained
from The Cancer Genome Atlas (TCGA-LIHC) and the International Cancer Genome Consortium databases (ICGC-JP and
ICGC-FR). R program was employed to analyze all the data statistically. Results. First, the TCGA-LIHC, ICGC-FR, and ICGC-
JP cohorts were selected for our analysis, which were merged into a combined cohort. Then, we quantified 53 immune terms
in this combined cohort with large populations using the ssGSEA algorithm. Next, a prognostic approach was established
based on five immune principles (CORE.SERUM.RESPONSE.UP, angiogenesis, CD8.T.cells, Th2.cells, and B.cells) was
established, which showed great prognostic prediction efficiency. Clinical correlation analysis demonstrated that high-risk
patients could reveal higher progressive clinical features. Next, to examine the inherent biological variations in high- and low-
risk patients, pathway enrichment tests were conducted. DNA repair, E2F targets, G2M checkpoints, HEDGEHOG signaling,
mTORC1 signaling, and MYC target were positively correlated with the risk score. Examination of genomic instability revealed
that high-risk patients may exhibit a higher tumor mutation burden score. Meanwhile, the risk score showed a strong positive
correlation with the tumor stemness index. In addition, the Tumor Immune Dysfunction and Exclusion outcome indicated
that high-risk patients could be higher responsive to immunotherapy, whereas low-risk patients may be higher responsive to
Erlotinib. Finally, six characteristic genes DEPDC1, DEPDC1B, NGFR, CALCRL, PRR11, and TRIP13 were identified for risk
group prediction. Conclusions. In summary, our study identified a signature as a useful tool to indicate prognosis and therapy
options for liver cancer patients.

1. Introduction

Every year, around 840, 000 new cases of liver cancer are diag-
nosed and 780, 000 people lose their lives as a result of this dis-
ease. Hepatocellular carcinoma is the most common
pathological subtype among all cases, accounting for 90% of
primary liver cancer [1]. As a multifactorial and multicause
disease, the genesis and progression of liver cancer are linked

to numerous risk variables, such as genetics, lifestyle, and envi-
ronmental aspects [2]. At present, surgery is still the first-line
therapy option for liver cancer patients in the early stage [3].
However, considering its insidious symptoms, a substantial
portion of patients have been in an advanced stage when first
diagnosed, therefore, leading to loss of the appropriate timing
of surgery [4]. Meanwhile, due to the characteristic of rapid
progression and early metastasis, liver cancer patients tend
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to have a poor prognosis [2]. Therefore, it is important to find
novel molecules and directions with implications for liver can-
cer diagnosis and therapy.

The tumor microenvironment (TME) significantly
affects the biological process in cancer progression [5].
Immune cells and status are the essential components in
TME. Different factors, such as cytokines, chemokines, and
others, can help cancer cells shape their microenvironment
to support their growth [6]. Meanwhile, the reprogramming
of other cells surrounding cancer cells plays a decisive role in
tumor survival and progression [7]. An example is that TME
can enhance immunosuppressive M2 monocyte-derived
macrophages by secreting cytokines such as IL-4, which
allows the tumor to grow and progress because monocyte-
derived macrophages can account for 50% of the tumor
mass [8]. Also, through a CXCL13/CXCR5/NFB/p65/miR-
934 positive feedback mechanism, Zhao et al. demonstrated

that tumor-derived exosomal miR-934 might stimulate mac-
rophage M2 polarizing action to increase liver metastasis of
colorectal malignancy [9]. The crosstalk between immune
factors and other systems can make TME more complex
[10]. In TME, cancer cells showed different metabolic modes
from normal cells, like the “Warburg” effect, which has a
broader significance in regulating tumor immunity [10].
This energetic interaction involving tumor and immune cells
results in metabolic conflict in the tumor ecosystem, restricts
the number of nutrients, and causes microenvironmental
acidity, which inhibits the activity of immune cells 10. In
addition, metabolic reprogramming is essential for the
maintenance of immune cell stability and body balance
[11]. Presently, increasing studies have pointed out that met-
abolic reprogramming occurs in the mechanism of immune
cell growth, development, and functional activity, which is

Table 1: Baseline information of the patients in TCGA-LIHC.

Features Numbers Percentage (%)

Age

≤65 235 62.3

>65 141 37.4

Unknown 1 0.3

Gender

Female 122 32.4

Male 255 67.6

Grade

G1 55 14.6

G2 180 47.7

G3 124 32.9

G4 13 3.4

Unknown 5 1.3

Stage

Stage I 175 46.4

Stage II 87 23.1

Stage III 86 22.8

Stage IV 5 1.3

Unknown 24 6.4

T-stage

T1 185 49.1

T2 95 25.2

T3 81 21.5

T4 13 3.4

Unknown 3 0.8

N-stage

N0 257 68.2

N1 4 1.1

Unknown 116 30.1

M-stage

M0 272 72.1

M1 4 1.1

Unknown 101 26.8

Table 2: Baseline information of the patients in ICGC-FR.

Features Numbers Percentage (%)

Age

≤65 205 55.6

>65 164 44.4

Gender

Female 76 20.6

Male 293 79.4

T-stage

T1 54 14.6

T2 65 17.6

T3 40 10.8

T4 1 0.3

Unknown 209 56.6

N-stage

N0 160 43.4

Unknown 209 56.6

M-stage

M0 159 43.1

M1 1 0.3

Unknown 209 56.6

Table 3: Baseline information of the patients in ICGC-JP.

Features Numbers Percentage (%)

Age

≤65 98 37.7

>65 162 62.3

Gender

Female 68 26.2

Male 192 73.8

Stage

Stage I 40 15.4

Stage II 117 45.0

Stage III 80 30.8

Stage IV 23 8.8
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crucial for immune reaction [12]. Nowadays, immunother-
apy presents promising therapeutic effects in specific cancer
populations. Cancer immune status can also influence the
intensity and time of the anticancer reaction of immuno-
therapy [13]. Therefore, it is meaningful to explore the
immune microenvironment in liver cancer.

Here, we firstly quantified 53 immune terms in a com-
bined cohort with large populations using the ssGSEA algo-
rithm. Then, a prognostic modeling was created based on
five immunological elements (CORE.SERUM.RESPON-
SE.UP, angiogenesis, CD8.T.cells, Th2.T.cells, and B.cells),
which showed great prognosis prediction efficiency. Analysis
of clinical correlations revealed that high-risk patients may
exhibit higher clinical characteristics progression. Subse-
quently, a pathway enrichment analysis was conducted to
investigate intrinsic biological variations between high- and
low-risk patients. Assessment of genomic instability revealed
that high-risk individuals could possess a greater TMB score.
The risk score showed a high positive correlation with tumor
stemness index. In addition, the Tumor Immune Dysfunc-

tion and Exclusion (TIDE) outcome indicated that high-
risk patients may show higher responsiveness to immuno-
therapy, whereas low-risk patients may show higher respon-
siveness to Erlotinib. Finally, six characteristic genes
DEPDC1, DEPDC1B, NGFR, CALCRL, PRR11, and TRIP13
were identified for risk group prediction.

2. Methods

2.1. Data Acquisition. Open access data retrieval was carried
out based on The Cancer Genome Atlas (TCGA; https://
portal.gdc.cancer.gov/), Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/gds), and International Can-
cer Genome Consortium (ICGC; https://dcc.icgc.org/) data-
bases (Access time: 2022/06/19). For the TCGA database,
the expression profile information was obtained in a manner
of “STAR-Counts” and then collated using the author’s code.
Clinical information was obtained in the “xml” form. For the
GEO database, GSE14520 and GSE76427 were first included
in the study for complete prognosis and transcriptional

TCGA

ICGC-JP

ICGC-FR

Sva package

Combined cohort

ssGSEA
53 immune terms

Machine learning

Random forest

Model construction

Clinical correlation
Pathway

enrichment

Genomic instability analysis

Immunotherapy analysis

Drug sensitivity analysis

Feature genes

Figure 1: The flowchart of the whole study.

3Computational and Mathematical Methods in Medicine

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/gds
https://dcc.icgc.org/


profiling data. After data quality evaluation, the GSE14520
was eliminated for the reason that the number of probes is
less than 20,000; the GSE76427 was eliminated for a large
number of missing values (NaN). For the ICGC, the
ICGC-JP and ICGC-FR projects were included in the study.
Sva package was applied for the data combination with batch

effect reduction. First, by taking the logarithm, the order of
magnitude of the data (TCGA and ICGC) reached the same
range. Then, the combat function in sva package was used to
detect and reduce the batch effect between different cohorts.
Baseline information of the included patients was shown in
Tables 1–3.

–100

–50

0

50

C
om

p 
2:

 8
.6

%
 v

ar
ia

nc
e

–200 –150 –100 –50 0
Comp 1: 31.8% variance

50 100

Raw PCA for combined expression profile

ICGC_FR
ICGC_JP
TCGA

(a)

–200

–100

–50

0

50

–150 –100 –50 0
Comp 1: 14.6% variance

C
om

p 
2:

 6
%

 v
ar

ia
nc

e

50 100 150

Combat PCA for combined expression profile

(b)

Type_I_IFN_response

Combined samples (n=760)

IFN_score
Interferon
Tem.cells
Angiogenesis
Lymph.vessels
NK.cells
Mast.cells
Macrophages
iDC
DC
Neutrophils
IL8_score
IL13_score
Tgd.cells
Type_II_IFN_response
Tcm.cells
Eosinophils
MHC.I
APC_co_stimulation
aDC
Parainflammation
IFNG_score
IL4_score
Th1.cells
Treg
IL2_score
B.cells
Bcell_receptors_score
TIL
LCK
HER2_Immune_PCA
T.cell
T.cel_receptors_score
IL12_score
APC_co_inhibition
pDC
TcClassII_score

MHC.II
CSF1_response
IR7_score
NK.CD56dim.cells
Cytotoxic.cells
Inflammation.promoting
CD8.T.cells
Lymphs_PCA
Tfh.cells
NK.CD56bright.cells
Th2.cells
Core_serum_response_UF
T.helper.cells
CSR_artivated

High infiltration Low infiltration

HLA

Immune infiltration
Status

Age
Gender
Source

Immune infiltration
High infiltration
Low infiltration

Status Age Gender Source
ICGC_FR
ICGC_JP
TCGA

Female
Male

≤65
>65

Alive
Dead

Combined ssGSEA

5

–5

0

(c)

Figure 2: Quantification of 53 immune terms based on the ssGSEA algorithm. Notes: (a) three LIHC cohorts were selected for our analysis,
including TCGA-LIHC, ICGC-FR, and ICGC-JP cohorts; (b) the combat function in sva package was utilized for data integration and batch
difference reduction; and (c) 53 immune elements were measured using ssGSEA.
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Figure 3: Continued.
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2.2. Immune Term Quantification. Immune elements were
quantified using the single sample gene set enrichment anal-
ysis (ssGSEA) technique, which is an in-built algorithm of
Gene Set Variation Analysis (GSVA) [14]. The reference
immune terms set was obtained from the previous study,
which was used to quantify the enrichment score of 53
immune terms [15]. The advantage of ssGSEA algorithm is
the high freedom, in which you can quantify the enrichment
score according to the given gene set. However, considering
that gene sets can be freely defined, potential quality bias is
inevitable.

2.3. Prognosis Analysis and Model Construction. Based on the
assessment of 53 immunological elements from the ssGSEA

algorithm, a univariate Cox regression analysis was conducted
to discover the prognosis-related terms (P < 0:05). Afterward,
the random survival forest variable hunting (RSFVH) method
was processed to reduce the number of dimensions and filter
genes. Finally, a multivariate Cox regression analysis was con-
ducted for the development of a prognostic model. Kaplan-
Meier (KM) analysis was employed to detect the best gene
combination or final signature by analyzing log-rank P values.
Each enrolled patient with complete prognosis and expression
profile data was assigned a risk score with the formula of
“Risk score = TermsA ∗ Coef A + Terms B ∗ Coef B +⋯+
TermsN ∗ Coef N” [15]. If the risk score was greater than the
median value, the patients were classified into the high-risk or
low-risk group, accordingly. ROC and KM survival curves
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Figure 3: Prognosis model construction. Notes: (a) univariate Cox regression analysis was utilized to find prognosis-related elements with a
significance level of P < 0:05; (b, c) the random forest technique was used for dimensionality reduction; (d) five elements, including
CORE.SERUM.RESPONSE.UP, angiogenesis, CD8.T.cells, Th2.cells, and B.cells, were selected for model creation; (e) the summary of
our model in the training cohort; (f) the KM curves indicated that high-risk patients may have a poorer outcome (training cohort); (g–i)
ROC curves for one, three, and five years (training cohort); (j) the summary of our model in the validation cohorts; (k) the KM curves
indicated that high-risk patients may have a poorer outcome (validation cohort); and (l–n) ROC curves for one, three, and five years
(validation cohort).
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were utilized to assess the accuracy of our model’s prognostic
projections. Univariate and multivariate Cox regression were
also employed to validate the independence of the prediction
model. The 1-, 3-, and 5-year survival can reflect the short-,
medium-, and long-term prognosis of patients, and therefore,
were selected as the time node in prognosis analysis.

2.4. Pathway Enrichment and Genomic Analysis. The GSVA
and GSEA algorithms were utilized for pathway enrichment
analysis [16]. Hallmark was used as the standard gene set for
the GSVA algorithms, whereas metabolism-related gene sets
(41 metabolism terms) were acquired from the website
https://www.gsea-msigdb.org/. Standard gene sets for the
GSEA algorithm were c2.cp.kegg.v7.5.1.symbols.gmt and
c5.go.v7.5.1.symbols.gmt. The TCGA database was accessed
using genomic mutation information, including the tumor
mutation burden (TMB) and microsatellite instability
(MSI) score. Based on the expression profile and utilizing

the one-class logistic regression machine learning (OCLR)
machine-learning technique, the tumor stemness index was
computed [17].

2.5. Immunotherapy and Drug Sensitivity Analysis. Using the
TIDE methodology [18], patients were evaluated for immu-
notherapy sensitivity. The parameter of “Cancer type” was
set as “Other.” The parameter of “Previous immunotherapy”
was set as “No.” The analysis of drug responsiveness was
conducted using the database of Genomics of Drug Respon-
siveness in Cancer [19].

2.6. Feature Gene Identification. To identify the feature genes
for the risk group, the LASSO regression and SVM-RFE
(support vector machine recursive feature elimination) algo-
rithm were applied to find the best variable [20].

2.7. Western Blot. Total proteins were extracted using a total
protein extraction kit (Beyotime, China). Western blot was
conducted based on the standardized process (10% SDS-
PAGE gel). The primary antibody of CALCRL (1 : 2000)
and GAPDH (1 : 50000) was purchased from Proteintech.

2.8. Statistical Analysis. This research was analyzed using R
software version 4.2.1. Two-sided P values < 0.05 were con-
sidered statistically significant. For continuous variables with
normal distributions, an independent t-test was applied, and
for continuous variables with skewed distributions, a Wil-
coxon rank-sum test was conducted. The study of differen-
tially expressed genes (DEGs) was conducted using the
limma program with the criteria jlogFCj > 1 and P < 0:05.

3. Results

3.1. Immune Term Quantification. Figure 1 displays the
flowchart of the entire investigation. Three distinct liver can-
cer cohorts, TCGA-LIHC, ICGC-JP, and ICGC-FR, were
chosen for our research (Figure 2(a)). The sva package was
employed to combine data and decrease the batch effect.
Then, a significant batch impact decline was noted
(Figure 2(b)). The ssGSEA method was employed in the
pooled cohorts to quantify 53 immunological elements
(Figure 2(c)).

3.2. Prognosis Model Construction. First, the patients were ran-
domly divided into training and validation cohorts according
to the 1 : 1 ratio. Based on the 53 immunological elements, a
univariate Cox regression analysis was conducted to find the
prognosis-related variables with P < 0:05 (Figure 3(a) and
Table 4). The random forest approach was then used to reduce
the dimensionality, and the top ten important terms were COR-
E.SERUM.RESPONSE.UP, angiogenesis, CD8.T.cells, Cytotox-
ic.cells, CSR.activated, Th2.cells, IL13.score, TcClassII.score,
B.cells, and T.cells.receptors.score (Figures 3(b) and 3(c)).
Through multivariate Cox regression analysis and permuta-
tions, the five immune terms were used for prognosis model
construction, including CORE.SERUM.RESPONSE.UP, angio-
genesis, CD8.T.cells, Th2.cells, and B.cells (Figure 3(d)). The
risk score was calculated with the formula of “Risk score =
CORE.SERUM.RESPONSE.UP ∗ 0.281 + angiogenesis ∗

Table 4: The terms significantly related to prognosis based on the
univariate Cox regression.

Gene HR P value Lower Upper

CORE.SERUM.RESPONSE.UP 1.733 <0.001 1.496 2.007

Th2.cells 1.478 <0.001 1.274 1.714

CD8.T.cells 0.676 <0.001 0.572 0.800

Cytotoxic.cells 0.687 <0.001 0.583 0.809

Angiogenesis 0.724 <0.001 0.629 0.834

CSR.Activated 1.347 <0.001 1.158 1.567

IL13.score 0.759 0.001 0.648 0.891

B.cells 0.767 0.001 0.656 0.896

T.cell 0.783 0.003 0.667 0.920

Type.I.IFN.Reponse 0.804 0.005 0.691 0.935

TcClassII.score 0.797 0.005 0.680 0.933

TIL 0.795 0.006 0.676 0.936

LCK 0.803 0.007 0.684 0.942

NK.cells 0.815 0.009 0.698 0.951

Type.II.IFN.Reponse 0.828 0.009 0.718 0.955

MHC.I 0.829 0.011 0.717 0.959

Neutrophils 0.823 0.014 0.704 0.961

T.cell.receptors.score 0.834 0.018 0.718 0.969

DC 0.832 0.018 0.715 0.970

MHC.II 0.833 0.019 0.716 0.971

Tcm.cells 0.837 0.019 0.720 0.972

IFN.score 0.835 0.021 0.717 0.974

HLA 0.840 0.027 0.720 0.980

Inflammation.promoting 0.838 0.029 0.715 0.983

Interferon 0.845 0.031 0.726 0.985

Eosinophils 0.851 0.033 0.733 0.987

IL12.score 0.844 0.038 0.719 0.990

Tem.cells 0.852 0.040 0.731 0.992

pDC 0.853 0.043 0.731 0.995

HER2.Immune.PCA 0.849 0.045 0.724 0.997

IL4.score 0.857 0.049 0.735 0.999
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Figure 4: Continued.
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-0.214 + CD8.T.cells ∗ -0.071 + Th2.cells ∗ 0.031 + B.cells ∗

-0.027”. The overview of our model (training group) was shown
in Figure 3(e), whereas a greater number of fatalities were seen
in the high-risk group. The KM survival curve revealed that
high-risk individuals tend to have a poorer outcome
(Figure 3(f), HR = 5:20, P < 0:001, and concordance index =
0:893). ROC curves for 1-, 3-, and 5-year patients demonstrated
a high predictive accuracy (Figures 3(g)–3(i), 1-year: AUC =
0:795, 3-year: AUC = 0:809, and 5-year: AUC = 0:801). Also,
in the validation group, the same trend was observed
(Figure 3(j)). KM survival curves indicated that the high-risk
patients might have a worse prognosis performance
(Figure 3(k), HR = 4:39, P < 0:001, and concordance index =
0:714). Meanwhile, the performances of ROC curves for 1-, 3-
, and 5-year-old patients are still satisfactory (Figures 3(l)–
3(n), 1-year: AUC = 0:777, 3-year: AUC = 0:763, and 5-year:
AUC = 0:783).

3.3. Clinical Correlation Analysis. Furthermore, we explore the
clinical correlation of our model. Univariate Cox regression
and multivariate Cox regression analysis revealed because
our model is not related to other clinical characteristics
(Figures 4(a) and 4(b), univariate:HR = 3:06, P < 0:01; multi-
variate: HR = 2:55, P < 0:01). Clinical correlation analysis
showed that high-risk patients could possess more aggressive
clinical characteristics, such as clinical stage, grade, and T clas-
sification (Figure 4(c)). Interestingly, we found that the

patients with mild adjacent hepatic tissue inflammation might
have a higher risk score compared to the severe group
(Figure 4(d)). Moreover, the patients with AFP > 400 ng/ml
had a higher risk score than those with AFP < 400 ng/ml
(Figure 4(e)). No significant difference was found in different
gender patients. Asian populations might have a higher risk
score than White populations (Figure 4(f)). A negative corre-
lation was found between height, weight, and BMI
(Figures 4(h)–4(j), weight, R = −0:196, P < 0:001, height, R =
−0:130, P = 0:021, BMI, R = −0:157, P = 0:005).

3.4. Pathway Enrichment Analysis.We investigated the biologi-
cal differences between high-and low-risk patients. For Hall-
mark pathways, we found that risk score was positively
correlated with DNA repair, E2F targets, G2M checkpoints,
HEDGEHOG signaling, mTORC1 signaling, and MYC targets
(Figure 5(a)). For metabolism-related pathways, we observed
that riskscore was positively correlated with purine and pyrim-
idine metabolism (Figure 5(a)). The GSEA method illustrated
that in the high-risk group, the terms of DNA-dependent
DNA replication, chromosome, cell-cell junction assembly,
nuclear chromosome, leukocyte transendothelial migration,
ubiquitin-mediated proteolysis, tight junction, actin cytoskele-
ton regulation, and MAPK signaling were upregulated
(Figures 5(b) and 5(c)). Also, based on the DEGs discovered
between high- and low-risk patients, a network of protein-
protein linkages was developed (Figure 5(d)). ClueGO analysis
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Figure 4: Clinical correlation of the riskscore. (a) Univariate Cox analysis of the riskscore as well as other clinical variables; (b) multivariate
Cox analysis of riskscore and other clinical characteristics; (c) variations in clinical findings between high and low risk patients; (d–g) the
riskscore difference in specific patients; and (h–j) the correlation of riskscore with patients height, weight, and BMI.
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revealed that these nodes were mainly enriched in fat-soluble
vitamin catabolic process, proximal/distal pattern formation,
regulation of neuronal synaptic plasticity, andmembrane depo-
larization (Figure 5(e)).

3.5. Genomic Instability Analysis. The genomic feature can
also affect the tumor biological process. Genetic variations
are between high- and low-risk patients. Mutation informa-
tion was obtained from the TCGA database (Figure 6(a)).
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Figure 5: Pathway enrichment analysis. (a) GSVA analysis indicated that the correlation between riskscore and Hallmark and metabolism
pathways; (b, c) GSEA analysis of GO and KEGG pathways; (d) the PPI network of the DEGs between high- and low-risk group; and (e)
ClueGO analysis of the nodes.
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Figure 6: Continued.
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The outcome indicated that high-risk patients may possess a
greater TMB score (Figure 6(b)). Meanwhile, we found that
all mutant counts, synonymous mutation counts, and non-
synonymous mutation counts were elevated in patients at
high risk (Figure 6(c)). No significant variation in the MSI
score was observed between high- and low-risk patients
(Figure 6(d)). Moreover, we discovered that TP53 was the
gene greatest substantially mutated across patients at high
and low risk (Figure 6(e)). The KM curve indicated that
patients with TP53 mutations may suffer a poorer outcome
(Figure 6(f)). In addition, a positive significant correlation
was identified between risk score and tumor stemness index
(Figures 6(g) and 6(h), mDNAsi, R = 0:150, P = 0:004;
mRNAsi, R = 0:71, P < 0:001).

3.6. Immunotherapy and Drug Sensitivity Analysis. Immune
checkpoint modules contribute substantially to the course of
cancer; hence, we analyzed the correlation between the risk
score and numerous checkpoint modules. Correlation analy-
sis indicated significant variations between the high- and
low-risk groups for various immune checkpoint modules,
such as PD-L1 and CTLA-4 (Figures 7(a)–7(e)). TIDE
research revealed that high-risk patients may show a lower
TIDE score and a greater probability of immunotherapy
responses (Figures 7(f) and 7(g)). The submap algorithm
suggested that high-risk patients could be highly responsive
to PD-1 and CTLA-4 therapy (Figure 7(h)). Analysis of drug
responsiveness revealed that low-risk patients could be
higher responsive to Erlotinib (Figure 7(i)).

3.7. Identification of the Characteristic Genes of the Risk
Group. Considering the prognosis and therapy sensitivity
difference between high- and low-risk patients, we try to
identify the characteristic gene that could robustly indicate
the risk group. Utilizing LASSO regression and the SVM-
RFE technique, distinctive genes were identified
(Figures 8(a) and 8(b)). The intersection of these two algo-
rithms identified six genes, including DEPDC1, DEPDC1B,
NGFR, CALCRL, PRR11, and TRIP13 (Figure 8(c) LASSO
logistic regression: DEPDC1, DEPDC1B, NGFR, CALCRL,

PRR11, and TRIP13; SVM-RFE: CALCRL, MCM10,
SCN4A, NGFR, DEPDC1, PRR11, DEPDC1B, RAD51,
ANLN, PYGM, CD5L, DCN, IYD, GLI2, TRIP13, TNMD,
and SLC12A1). Among these genes, DEPDC1, DEPDC1B,
PRR11, and TRIP13 were increased in the high-risk group,
while NGFR and CALCRL were decreased (Figure 8(d)).
All these characteristic genes showed great prediction effi-
ciency in the patients’ risk group (Figure 8(e), training
cohort, DEPDC1, AUC = 0:792; DEPDC1B, AUC = 0:782;
TRIP13, AUC = 0:814; CALCRL, AUC = 0:760; PRR11,
AUC = 0:804; NGFR, AUC = 0:754). Logistic regression
was performed to combine these genes with the formula
of “0:3245 + 0:3252 ∗DEPDC1 + 0:3248 ∗DEPDC1B + −
0:8162 ∗NGFR+−1:388 ∗ CALCRL + 0:3101 ∗ PRR11 +
1:8485 ∗ TRIP13”, which showed extremely great predic-
tion efficiency in patients risk group (Figure 8(f), AUC =
0:932). In the validation cohort, these characteristic genes
also showed great prediction efficiency in the patients’ risk
group (Figure S1A–F, DEPDC1, AUC = 0:816; DEPDC1B,
AUC = 0:766; TRIP13, AUC = 0:833; CALCRL, AUC =
0:711; PRR11, AUC = 0:820; NGFR, AUC = 0:716), as
well as the logistic regression model (Figure S1G, AUC =
0:896). Among these characteristic genes, DEPDC1,
DEPDC1B, PRR11, and TRIP13 were risk factors for liver
cancer patients (Figure 8(g)). Meanwhile, DEPDC1,
DEPDC1B, CALCRL, PRR11, and TRIP13 were
significantly upregulated in liver cancer tissue, yet NGFR
was downregulated (Figure 8(h)). In liver cancer, the
genes DEPDC1, DEPDC1B, PRR11, and TRIP13 have
been explored in previous studies [21–24]. Therefore, we
selected CALCRL for further validation. Western blot
indicated that the protein level of CALCRL was
upregulated in liver cancer tumor tissue (Figure S2).

4. Discussion

Liver cancer is still a serious public health concern world-
wide [25]. Recently, researchers have focused on the
immune microenvironment in liver cancer, which can sig-
nificantly affect the progression of the disease. Thus, a
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Figure 6: Genomic instability analysis. (a) A summary of the distribution of TMB in TCGA pan-cancer; (b) comparison of TMB between
high-risk and low-risk patients; (c) the disparity between high-risk and low-risk patients’ mutant count, nonsynonymous mutation count,
and synonymous mutation count; (d) the MSI distinction between patients at high and low risk; (e) TP53 and MUC16 were the most
frequently mutated genes comparing patients at high and low risk; (f) KM survival curve of the TP53 wild and mut patients; and (g, h)
the correlation of riskscore with tumor stemness index.
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comprehensive investigation of the liver cancer immune
microenvironment can contribute to its diagnosis and ther-
apy options.

In our study, we firstly quantified 53 immune terms in a
combined cohort with large populations using the ssGSEA
algorithm. Afterward, a prognostic model based on five
immune elements (CORE.SERUM.RESPONSE.UP, angio-
genesis, CD8.T.cells, Th2.cells, and B.cells) was established,
which showed great prognosis prediction efficiency in both
training and validation cohorts. Analysis of clinical correla-
tions revealed that high-risk patients could possess higher
clinical progression characteristics. Angiogenesis plays an
important role in tumor metastasis and progression. From
the comprehensive review conducted by Morse et al., abnor-
mal angiogenesis in liver cancer often leads to poor progno-
sis and facilitated progression [26]. Wolf et al. found that the
cross-talk between intrahepatic CD8+ T cells and NKT cells
contributes to nonalcoholic steatohepatitis and liver cancer
[27]. Xu et al. found that the Th2 response could affect liver
fibrosis, which is a risk factor for liver cancer [28]. Garnelo
et al. indicated that the interaction between tumor-
infiltrating B cells and T cells significantly affects the pro-
gression of liver cancer [29].

Next, a pathway enrichment analysis was conducted to
investigate the intrinsic biological variations between high-
and low-risk patients. Analysis of genomic instability
revealed that high-risk patients could possess a higher
TMB score. The risk score showed a high positive correla-
tion with the tumor stemness index. In addition, the TIDE
outcome indicated that high-risk patients could be better
responsive to immunotherapy, whereas low-risk patients
could be better responsive to Erlotinib. Finally, six character-
istic genes DEPDC1, DEPDC1B, NGFR, CALCRL, PRR11,
and TRIP13 were identified for risk group prediction.

Pathway enrichment analysis showed that in high-risk
patients, the Hallmark pathway of DNA repair, E2F targets,
G2M checkpoints, Hedgehog signaling, mTORC1 signaling,

and MYC targets were elevated. Malignant tumor cells have
higher genomic damage compared to normal cells. Mean-
while, abnormal DNA repair procedures are difficult to meet
the needs of DNA damage, therefore, leading to a more
aggressive phenotype [30]. G2/M checkpoint is a critical
phase in the cell cycle, which might directly affect cell prolif-
eration [31]. Hedgehog signaling has been reported and
extensively included in liver cancer progression. For
instance, Gu et al. revealed that circular RNA circIPO11
could drive self-renewal and cancer progression of liver can-
cer through Hedgehog signaling, which might be an under-
lying therapeutic target [32]. In addition, Wu et al.
discovered that CK2 might enhance stemness and chemo-
therapy resistance via the Hedgehog signaling pathway in
liver cancer [33]. These findings suggested that patients in
the high-risk category may have a higher level of activity in
the aforementioned pathways, thus resulting in a poor
prognosis.

Genomic analysis revealed that high-risk patients might
have a greater level of genomic instability. In cancer, geno-
mic instability is a prominent feature, which is also a key
marker for separating cancerous cells from normal ones
[34]. Genomic instability is defined as the increase in muta-
tion frequency in the genome and its potential source is the
sum of defects in the DNA damage and repair pathway,
which could lead to uncontrolled proliferation of cancer cells
[34]. In the pathway enrichment analysis, we have found the
abnormal activity of DNA repair in high-risk patients.
Therefore, higher genomic instability in high-risk patients
seems to be reasonable. Moreover, a strong correlation was
observed between the risk score and tumor stemness. Liver
cancer has a high recurrence rate, making it one of the most
highly deadly malignant tumors, partly due to the existence
of cancer stem cells (CSC) [35]. Tumor stemness could also
affect the immune microenvironment of liver cancer. For
example, M2 TAMs could promote the expression of stem-
ness proteins [36]. Another aspect, the CXCL11, a cytokine
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Figure 7: The risk score was associated with the sensibility to immunotherapy and chemotherapy. (a) Several disparities in immunological
checkpoints between high- and low-risk groups; (b–e) variations in PD-L1, CTLA4, PD-1, and PD-L2 between high- and low-risk patients;
(f, g) High-risk patients may have a lower TIDE score and a higher percentage of immunotherapy responders; (h) high-risk individuals may
respond better to CTLA4 and PD-1 treatment; and (i) low-risk patients may respond better to Erlotinib.

14 Computational and Mathematical Methods in Medicine



18
0.6

0.5

0.4

0.3

0.2M
isc

la
ss

ifi
ca

ito
n 

er
ro

r

0.1

0.0

–8 –6 –4
Log (𝜆)

–2

18 18 17 16 16 15 14 12 10 9 8 7 6 6 6 6 4

(a)

17–11.00

0.98

0.96

5⨯
CV

 ac
cu

ra
cy

5⨯
CV

 er
ro

r

0.94

0.06

0.04

0.02

0.00
0 20 40 60

Number of features
80

17–0

(b)

Overlap

Lasso

SVM_RFE

116

DEPDC1 DEPDC1B

NGFR CALCRL

PRR11 TRIP13

(c)

–2

Fustat

–1

0

1

DEPDC1

DEPDC1B

2

NGFR

CALCRL

PRR11

TRIP13

High
Low

(d)

1.0

0.8

0.6

0.4

Se
ns

iti
vi

ty
 (T

PR
)

0.2

0.0

1.0

0.8

0.6

0.4

Se
ns

iti
vi

ty
 (T

PR
)

0.2

0.0

1.0

0.8

0.6

0.4

Se
ns

iti
vi

ty
 (T

PR
)

0.2

0.0
1.00.80.60.40.20.0

1.0

0.8

0.6

0.4

Se
ns

iti
vi

ty
 (T

PR
)

0.2

0.0

1.0

0.8

0.6

0.4

Se
ns

iti
vi

ty
 (T

PR
)

0.2

0.0

1.0

0.8

0.6

0.4

Se
ns

iti
vi

ty
 (T

PR
)

0.2

0.0

1 − specificity (FPR)
1.00.80.60.40.20.0

1 − specificity (FPR)
1.00.80.60.40.20.0

1 − specificity (FPR)

1.00.8

CALCRL
AUC: 0.760

Cl: 0.707–0.813

PRR11
AUC: 0.804

Cl: 0.755–0.854

0.60.40.20.0
1 − specificity (FPR)

1.00.80.60.40.20.0
1 − specificity (FPR)

1.00.80.60.40.20.0
1 − specificity (FPR)

TRIP13
AUC: 0.814

Cl: 0.766–0.862

NGFR
AUC: 0.754

Cl: 0.701–0.808

DEPDC1B
AUC: 0.782

Cl: 0.729–0.835

DEPDC1
AUC: 0.792

Cl: 0.741–0.844

(e)

1.0

0.8

0.6

0.4

Se
ns

iti
vi

ty
 (T

PR
)

0.2

0.0
1.00.80.60.40.20.0

1 − specificity (FPR)

Model
AUC: 0.932

Cl: 0.906–0.813

(f)

Figure 8: Continued.
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involved in the recruitment of activated T cells to inflamma-
tory sites, was found significantly affect the stemness genes,
sphere formation, and tumorigenicity in liver cancer [37].

Immunotherapy and chemotherapy are the best choices
for the advanced liver cancer stage [4]. Low-risk patients
could be higher responsive to Erlotinib, whereas high-risk
patients could be more responsive to PD-1 and CTLA-4
treatment. According to the LASSO regression and SVM-
RFE algorithm, we identified six characteristic genes, includ-
ing DEPDC1, DEPDC1B, NGFR, CALCRL, PRR11 and
TRIP13. The logistic regression model showed an extremely
great prediction efficiency in the patients risk group. In the
clinical application, measuring the expression level of these
six genes might accurately identify the risk group of a
patient, which might have the potential to guide the progno-
sis and therapy options of liver cancer patients.

Although our study was performed based on high-
quality bioinformatics analysis, some limitations should
be noticed. First, the populations included in our study
were mainly White populations. Therefore, the underlying
race bias might reduce the credibility of our conclusion.
Second, some specific clinical features, for example, labora-
tory examination, lifestyle, and other basic diseases were
not provided in most patients. However, our approach
proved an excellent pattern for identifying liver cancer
patients’ survival time as well as their immunotherapy
and chemotherapy responsiveness.
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