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In this paper, we present a mathematical model for the transmission of hantavirus among rodents and its effect on the number of
hantavirus-infected human population. We investigate the model and present a standard analysis in mathematical epidemiology,
such as determining the equilibria of the system and their stability analysis, together with the relationship to the basic
reproduction number. It is found that the endemic equilibrium exists and is locally asymptotically stable when the basic
reproduction number is greater than one; otherwise, the disease-free equilibrium is stable. Later on, we also show that by
constructing a suitable Lyapunov function, the endemic equilibrium is globally asymptotically stable whenever it exists. Based
on the basic reproduction number, we present a critical level of intervention to control the spread of the disease to humans.
We found a significant finding from the present model that if the basic reproduction number is greater than one, then it is
impossible to completely eliminate hantavirus disease in the system by solely focusing on any intervention for humans, like
vaccination and curative action, without paying any attention to interventions for rodent populations. However, we can still
decrease the density of infected humans with those interventions. Hence, we suggest that a combination of several
interventions is needed to obtain effective control in eliminating the hantavirus. This information is useful for further study in
finding an optimal control strategy to reduce or eliminate the transmission of hantavirus to humans.

1. Introduction

Some examples of important zoonoses include zoonotic
influenza, salmonellosis, West Nile virus, plague, rabies,
brucellosis, dengue, and hantavirus. Rats and mice are
among the animals that spread most zoonoses to more
than 35 diseases. The diseases are transmitted to humans
via direct contact with rodents or extensive contact with
rodent excreta-contaminated material [1]. Among the zoo-
noses spread by rodents is the hantavirus disease which is
caused by the Hantaan virus. There are more than one
species of rodents that can transmit hantavirus, including
rats and mice.

Hantavirus pulmonary syndrome (HPS), or shortly han-
tavirus disease, is a fatal disease for humans. The virus is
spread worldwide and is regarded as an important zoonotic
pathogen that may cause severe and adverse effects in
humans. It is transmitted to humans via direct contact with
rodents or indirectly by rodent excreta (feces, urine, and
aerosols). Humans may become infected once they inhale
aerosolized droplets of urine or have extensive contact with
rodent excreta-contaminated materials [2]. The disease is
mainly circulated among rodents of different species and is
also able to transmit from rodents to humans. However,
there is no evidence of human-to-human transmission [3]
or human-to-rodent transmission.
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Hantaviruses are a group of viruses consisting of several
strains that have been identified as infectious agents that can
cause serious illness. Examples of Hantaan viruses are
Dobrava, Puumala (PUU), and Seoul (SEOV) subtypes
which may cause HFRS and Sin Nombre (SNV), Bayou virus
(BAY), Black Canal Creek (BCC), and New York virus (NY)
subtypes which may cause HPS [4]. To date, hantavirus
infection is still regarded as a global zoonotic challenge, with
an estimated more than 20,000 cases of hantavirus disease
occurring annually worldwide, especially in Asia [5]. Sin
Nombre virus, for example, is a type of hantavirus identified
as the infectious agent that caused the deadly outbreak of
hantavirus pulmonary syndrome in southwestern North
America in 1993. Each hantavirus is harbored by an infected
rodent species. Rodents do not lose infection and infect
humans who come into contact with them or with their feces
[6]. Each hantavirus generally associates with a primary
rodent host where substantial coevolutionary adaptation is
possible [7, 8].

There are about 30 different hantaviruses worldwide,
some of which cause infections in humans [9]. Infection in
humans is incidental, usually due to indirect transmission
through contact with infectious rodent feces, but can cause
hantavirus pulmonary syndrome with a mortality rate of
up to 37% [10]. There are two characteristics of hantavirus
infection observed in the field. For the first one, it is reported
that infections can disappear entirely from rodent popula-
tions if environmental conditions are unsuitable, only to
reappear when environmental conditions change and
become favorable. This is a temporary feature. There are also
spatial characteristics in the second one, in which there is
evidence of focal infection. This “refugia” of rodent popula-
tions can be expanded or reduced [11].

The geographical distribution of hantavirus is mainly in
Asia [5], such as in China, the Republic of Korea, and the Far
East Region of the Russia Federation. As the most endemic
country, more than 1,400,000 clinical cases of HFRS caused
by HTNV and Seoul Virus (SEOV), with about 45,000
deaths, were reported in China during the period 1950 to
2001 [12]. This is about 70% to 90% of the total reported
worldwide HFRS cases [13]. The remaining cases are
reported from 18 countries (Asia), 32 countries (Europe)
[13], and 7 countries (America) [14].

Other examples of countries that have already been
invaded by hantavirus are Japan, Indonesia, and India
(doi:10.1038/nindia.2008.104). Among several known
strains of Hantaan viruses, one of them is Puumala (PUU)
which may cause hemorrhagic fever with renal syndrome
(HFRS) and hantavirus pulmonary syndrome (HPS) in
humans [15]. Currently, there are no reported recent HFRS
cases in Japan, but there may be some undiagnostic cases
since infected brown rats are distributed throughout Japan
and grey red-backed voles are massively infected with the
PUU virus in Hokkaido [15]. Indonesia is also home to
approximately 171 species of rats, and 22 species among
them live on Java Island [16]. Wibowo [4] reported that at
least 5 species of rats are among the reservoirs of the hanta-
virus. Recently, Mulyono et al. [17] added 4 more new spe-
cies of rats which act as the reservoir of the hantavirus.

Sendow et al. [18] and the reference therein pointed out
the occurrence of HPS in Indonesia. The first reported cases
of HPS in humans were in 2002, and initially, all the patients
were suspected of contracting DHF [19]. The prevalence of
hantavirus in rodents varies among cities in Indonesia, with
the highest being 28.9% in Maumere, the eastern part of
Indonesia [4]. This high prevalence of hantavirus in rodents
also happens in other parts of the world, indicating the
importance of rodents as a source of hantavirus transmis-
sion to humans and establishing the disease as a rodent-
born disease.

Considering the danger of the disease to humans, some
interventions have been proposed to control the spread of
the disease to humans. This includes prevention and treat-
ment. Prevention is done mainly by avoiding exposure to
materials carrying hantavirus such as rodent’s feces, urine,
bodily secretions, and tissues. People who have a high risk
of this exposure, such as those who are occupationally
exposed to rodents, should take extra precautions to avoid
this exposure. Some apparatus like gloves, goggles, rubber
boots or disposable shoe covers, and coveralls or gowns
may be used during their activities [20, 21], and ventilation
of the room should be sufficiently good [22]. In general,
rodent control to prevent high exposure to hantavirus in
any building or house is recommended [23], which includes
the use of rodent traps and poisons and the removal of pos-
sible nesting sites around the home [22]. Other examples of
prevention have been described by Kerins et al. [24] related
to pet rats, including euthanasia of the entire colony or test-
ing and culling of infected animals. Intervention in humans
to prevent hantavirus infection usually takes the form of vac-
cination, in which an inactivated hantavirus is injected [25].
While some therapeutics, concerned with the treatment of
disease and the action of remedial agents, are given to cure
infected humans [26], safe and effective vaccines and immu-
notherapy as preventives and treatments for hantavirus dis-
ease are still being developed [27, 28].

Hantavirus disease now begins to receive much attention
from scientists, including mathematicians, in the attempt to
understand, to control, and to eliminate it—if possible. In
regard to the application of mathematics in the study of dis-
ease transmission, there are some authors that have con-
structed some mathematical models, such as Abramson
and Kenkre [11, 29], Sauvage et al. [30], Abramson et al.
[29], Allen et al. [31–34], Alvarez et al. [35], Escudero
et al. [36], Chu et al. [37], Wesley [38, 39], Abramson [40],
Rida et al. [41], Goh et al. [42], Karim et al. (2009), Kaplan
et al. [43], Bürger et al. [44], and Yusof et al. [45, 46]. The
most influential work in this area is written by Allen et al.
whose subsequential works on mathematical modeling of
hantavirus transmission have high citations. In this paper,
we propose a new model for the transmission of hantavirus
among rodents and its effect on the number of hantavirus-
infected humans.

2. Formulation of New Model

In this section, we formulate a mathematical model for the
transmission of hantavirus by considering the following
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assumptions: (i) there is only one species of rodents; (ii) the
transmission happens only among rodents and from rodents
to humans, and there is no transmission among humans and
from humans to rodents since there is no evidence of
human-to-human transmission [3]; (iii) transmission from
rodents to humans occurs in two different modes, direct
and indirect. Direct transmission occurs when there is direct
contact between humans and infected rodents that may
cause human infection by rodent bites, while indirect trans-
mission can be done through the contact of humans and
rodents excreta [2]. (iv) The recruitment to both human
and rodent susceptible populations is constant, and (v) there
is no vertical transmission [21].

Let us consider a human population, which, due to the
circulation of hantavirus, is divided into three compart-
ments, namely, the susceptible (SH), the infected (IH), and
the recovered (RH), who are assumed to be immune with
SH t + IH t + RH t =NH t . For all variables in the model
(i.e., X = S, I, R, N), the notation X t means the number of
individuals in X class at time t. The rodent population is also
assumed to have similar compartments with SR denotes the
susceptible rodents, IR denotes the infective rodents, and
RR denotes the recovered rodents with SR t + IR t + RR
t =NR t . A schematic diagram of disease transmission is
shown in Figure 1.

The notations and parameters used in the schematic dia-
gram above are presented in Table 1:

As there are two different routes of infection from rodent
to human, i.e., by rodent biting and by contacting the rodent
excreta, hence, we have the following equations as the gov-
erning hantavirus transmission among rodents and humans:

dSH t
dt

= ΓH − bβbSH t IR t − ε IR t SH t βε − μHSH t ,

1

dIH t
dt

= bβbSH t IR t + ε IR t SH t βε − μH + γH IH t ,

2

dRH t
dt

= γHIH t − μHRH t , 3

dSR t
dt

= ΓR − βRSR t IR t − μRSR t , 4

dIR t
dt

= βRSR t IR t − μR + γR IR t , 5

dRR t
dt

= γRIR t − μRRR t 6

Let us consider the first case in which the number of
rodent excreta is a linear function of the number of infective
rodents, i.e., ε IR t = εIR t . Hence, the per capita success-
ful contact rate between a susceptible and the rodent excreta
rate, with the successful probability of transmission βε, is
given by εIR t βε. Furthermore, if we also assume the suc-
cessful probability of transmissions is the same regardless
of its mode of transmission (via biting by the rodent or con-
tact with rodent excreta and aerosol), i.e., βε = βb = βH , then,
we have the total transmission rate from the two different
modes given by

bβbSH t IR t + ε IR t SH t βε

= bβHSH t IR t + εIR t SH t βH

= b + ε βHSH t IR t = bβHSH t IR t

7

Hence, the complete equations for the SIR-SIR hantavi-
rus transmission in this special case are given by Equations
(3)–(6) plus the following equations:

�H

�R

SH IH RH

SR IR
�RIR

(b�b + ��e)IR
– –
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Figure 1: A schematic diagram of SIR-SIR transmission of hantavirus between humans and rodents.

Table 1: Parameters and notations used in the model formulation.

ΓH ; ΓR Recruitment rates (human; rodent)

b Number of bites/direct contact with rodent

ε Rodent excreta density

βb; βε
Probability of successful contact
(bites/direct contact; excreta)

βH ; βR
Probability of successful contact

(human; rodent)

μH ; μR Death rates (human; rodent)

γH ; γR Recovery rates (human; rodent)
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dSH t
dt

= ΓH − bβHSH t IR t − μHSR t , 8

dIH t
dt

= bβHSH t IR t − μH + γH IH t 9

In fact, the last two equations can also be derived in
more general ways without assuming βε = βb = βH . In this
case, we let bβH

′ = bβb + εβε . In the subsequent section,
we analyze the model by showing its steady-state solutions,
their stability, and their relation to the basic reproduction
number, which is central in mathematical epidemiology
studies.

3. Results

In this section, we analyze the system of Equations (3)–(6),
(8), and (9) by showing the equilibria and their stability.
The relation of the existence of the equilibria and its stability
to the basic reproduction number is also presented. Further-
more, we present the sensitivity analysis of the equilibria and
the basic reproduction number to the change of parameters
to find the most critical parameters affecting the dynamics of
the system.

3.1. The Equilibria. An endemic-free or nonendemic equilib-
rium always exists for any parameters of the model. How-
ever, we show that there is a threshold that determines the
existence of an endemic equilibrium, say T ε, so that the
endemic equilibrium exists only if T ε is above a certain
value; otherwise, an endemic equilibrium does not exist.
We sum up this property in the following theorem.

Theorem 1. In the SIR-SIR hantavirus model (Equations
(3)–(6) and Equations (8) and (9)), the following properties
hold:

(a) The trivial nonendemic equilibrium of the system
always exists, given by S0H

∗, I0H∗, R0H
∗, S0R∗, I0R∗,

R0R
∗, = ΓH/μH , 0, 0, ΓR/μR, 0, 0

(b) An endemic equilibrium is given by SeH
∗, IeH∗,

ReH
∗, SeR∗, IeR∗, ReR

∗ with S∗eR = ΓR/μRT 0, I∗eR = βR/
μR T 0 − 1 , R∗

eR = γRβR/μ2R T 0 − 1 , S∗eH = βRΓH/b
μRβH T 0 − 1 + μHβR, I∗eH = μRbβH T 0 − 1 /βR
μH + γH S∗H , and R∗

H = γH/μHI∗H , and T 0 = βRΓR/
μR μR + γR is a threshold such that the endemic
equilibrium exists only if T 0 > 1; otherwise, the
endemic equilibrium does not exist.

Proof of Theorem 1. By solving Equations (3)–(6) and Equa-
tions (8) and (9) simultaneously under steady-state condi-
tions (i.e., when all LHSs of the equations are equal to
zero), the system has two equilibria, i.e., S0H

∗, I0H∗, R0H
∗,

S0R
∗, I0R∗, R0R

∗, = ΓH/μH , 0, 0, ΓR/μR, 0, 0 and SeH
∗, IeH∗

, ReH
∗, SeR∗, IeR∗, ReR

∗ given by

(a) S0H
∗, I0H∗, R0H

∗, S0R∗, I0R∗, R0R
∗, = ΓH/μH , 0, 0,

ΓR/μR, 0, 0 which is a nonendemic equilibrium,
since all of the infected classes (I0H

∗ and I0R
∗) are

zero. Clearly, this trivial one always occurs

(b) SeH
∗, IeH∗, ReH

∗, SeR∗, IeR∗, ReR
∗ is an endemic

equilibrium, with S∗eH = βR μR + γR ΓH/bβH −μR μR
+ γR + βRΓR + βR μR + γR μH , I∗eH = bβHΓH −μR
μR + γR + βRΓR / bβH −μR μR + γR + βRΓR + βR
μR + γR μH μH + γH , R∗

eH = bβHΓH −μR μR + γR
+ βRΓR / bβH −μR μR + γR + βRΓR + βR μR + γR
μH μH + γH γH/μH , S∗eR = μR + γR/βR, I∗eR = −μR
μR + γR − βRΓR/βR μR + γR , and R∗

eR = − μR μR +
γR − βRΓR γR/βR μR + γR μR.

To find the condition for the existence of the endemic
equilibrium, let us look for a threshold number, so that
SeH

∗ ≥ 0, I∗eH > 0, R∗
eH > 0, SeR∗ ≥ 0, I∗eR > 0, and R∗

eR > 0. Note
that by using some algebraic manipulation, it is easy to show
that the components of the equilibrium can be rewritten in
the following forms.

(i) First, we focus on S∗eR = μR + γR/βR. This can be
written as S∗eR = μR + γR/βR = ΓR/μR βRΓR/μR μR +
γR . If we define T 0 = βRΓR/μR μR + γR , then we
have S∗eR = ΓR/μRT 0 as required

(ii) Keeping in mind T 0 = βRΓR/μR μR + γR , then, we
have the
following-
I∗eR = −μR μR + γR − βRΓR/βR μR + γR = βR/μR T 0

− 1
(iii) Similarly, R∗

eR = − μR μR + γR − βRΓR γR/βR μR +
γR μR = γRβR/μ2R R0 − 1

(iv) Next, we have S∗eH = βR μR + γR ΓH/bβH −μR μR +
γR + βRΓR + βR μR + γR μH . Let us look at the
inverse which can be manipulated as

1
S∗eH

= bβH −μR μR + γR + βRΓR + βR μR + γR μH
βR μR + γR ΓH

= bβH −μR μR + γR + βRΓR

βR μR + γR ΓH
+ βR μR + γR μH
βR μR + γR ΓH

= bμRβH

βRΓH

−μR μR + γR + βRΓR

μR μR + γR
+ μH
ΓH

= bμRβH

βRΓH
R0 − 1 + μH

ΓH

= bμRβH R0 − 1 + μHβR

βRΓH

10

Hence, S∗eH = βRΓH/bμRβH T 0 − 1 + μHβR as requested.

(v) Next I∗eH = bβHΓH −μR μR + γR + βRΓR / bβH −
μR μR + γR + βRΓR + βR μR + γR μH μH + γH
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can be rewritten as I∗eH = bβHΓH −μR μR + γR + βR

ΓR/μR μR + γR / μH + γH bβH −μR μR + γR + βR
ΓR + βR μR + γR μH /μR μR + γR = bβHΓH T 0 −
1 / μH + γH bβH T 0 − 1 + βRμH/μR as required

(vi) Finally, we have the following algebraic expression

R∗
eH = bβHΓH −μR μR + γR + βRΓR

bβH −μR μR + γR + βRΓR + βR μR + γR μH μH + γH

γH
μH

= γH
μH

I∗H

11

which completes the proof.

3.2. The Basic Reproduction Number and Stability of the
Equilibria. Let us have a look at the form of the threshold
T 0 = βRΓR/μR μR + γR which can be written as T 0 = βR 1
/ γR + μR ΓR 1/μR and can be read verbally as the multi-
plication of four rodent epidemiological factors. The multi-
plication of the four factors mentioned above is (the force
of infection from an infectious rodent to a healthy
rodent)× (the average length of stay of an infective rodent
within the infectious period)× (the life expectancy of a
healthy rodent)× (the constant rate of susceptible rodent
recruitment). Interestingly, here, human epidemiological
factors do not appear in the threshold parameter T 0.

To provide a deeper interpretation of this threshold, let
us consider a clinical intervention. In the health context,
any intentional action designed to obtain an outcome is
called a clinical intervention. If, in the absence of clinical
intervention, we have T 0 > 1 (hence, an endemic equilib-
rium exists), then we could apply a clinical intervention
(such as vaccination), so that it is possible to reduce the
threshold to be less than 1 by changing T 0 to T ε for a cer-
tain choice of ε > 0, resulting in T ε < 1 (removing the
endemic equilibrium from the system). In the case of hanta-
virus, intervention other than clinical intervention is also
possible such as reducing the rodent recruitment rate, reduc-
ing the life expectancy of the rodent, trapping, and culling
infective rodents. This is the basic idea behind controlling/
eliminating contagious diseases from a mathematical point
of view. Finding this kind of threshold is vital in the study
of mathematical epidemiology. In modern literature, this
threshold is usually called the basic reproduction number
(sometimes the basic reproduction/reproductive ratio). It is
not easy to find this number for more complex transmis-
sions of a disease. There are some good and rigorous litera-
ture studies regarding this concept, such as Diekmann and
Heesterbeek [47], Diekmann et al. [48, 49], Van den
Driessche and Watmough [50], and Zhao [51], that provide
a more systematic way of constructing the basic reproduc-
tion number. We prove, by standard theory, that T 0 men-
tioned above are indeed the basic reproduction number.
We begin by defining the basic reproduction number.

The basic reproduction number of an infection is the
expected number of cases produced by one case in a popula-
tion where all the individuals are susceptible to infection.

The authors of [19] (p. 4) defined the basic reproduction
number, with the symbolR0, as the expected number of sec-
ondary cases per primary case in a “virgin” population. In
the same book, they showed that R0 ≔ lim

n⟶∞
Kn 1/n ([47],

p. 75), where K is the next-generation matrix defined
therein. According to the authors, this is a natural definition
of the basic reproduction number from which its value can
be computed. However, there is another way to compute
the basic reproduction number other than from this defini-
tion. In fact, there are some methods that are easier to use
to obtain the basic reproduction number. As an example,
the following method is suggested in Van den Driessche
and Watmough [50]. The authors looked at an epidemic
multicompartment model dxi/dt = f i x =F i x −V i x ,
i = 1,⋯, n (as in Equations (3)–(6) and Equations (8)
and (9) above). They showed that the function f i x can be
decomposed into the rate of appearance of new infections
in the ith compartment, F i x , and the rate of transfer of
individuals from/into the ith compartment, V i x . Further-
more, they defined F and V to be the Jacobian matrix evalu-
ated at the nonendemic equilibrium and showed that the
basic reproduction number can be calculated as the spectral
radius R0 = ρ FV−1 . The following theorem provides the
basic reproduction number of the SIR-SIR hantavirus model
in Equations (3)–(6) and Equations (8) and (9), which in this
case is exactly the same as the threshold T 0 in Theorem 1.

Theorem 2. The SIR-SIR hantavirus model (Equations
(3)–(6) and Equations (8) and (9)) has the basic reproduction
number R0 = βRΓR/μR μR + γR .

Proof of Theorem 2. Following the method in [50], with ref-
erence to Equations (3)–(6) and Equations (8) and (9), we
have the rate of appearance of new infection vectors F x
and the rate of transfer of individual vectors V x :

F =

0
bβHSHIR

0
0

βRSRIR

0

, 12

V =

−ΓH + bβHSHIR + μHSR

μH + γH IH

−γHIH + μHRH

−ΓR + βRSRIR + μRSR

μR + γR IR

−γRIR + μRRR

13
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Next, from the two vectors, we obtain two matrices

F =
0 bβHSH

0 βRSR
, 14

V =
μH + γH 0

0 μR + γR
15

Consequently,

V−1 =

1
μH + γH

0

0 1
μR + γR

, 16

FV−1 =
0 bβHSH

μR + γR

0 βRSR
μR + γR

, 17

which gives rise to the effective reproduction number
R0 = ρ FV−1 = βRSR/μR + γR where SR = ΓR/μR. Hence, R0
= ρ FV−1 = βRΓR/μR μR + γR which completes the proof.

Theorem 3. The SIR-SIR model in Equations (3)–(6) and
Equations (8) and (9) always has a trivial equilibrium, while
the nontrivial equilibrium exists only if the basic reproduction
number is greater than 1, i.e., R0 = βRΓR/μR μR + γR > 1.

Proof of Theorem 3. It is obvious as a consequence of Theo-
rems 1 and 2.

Theorem 4. The nonendemic equilibrium S0H
∗, I0H∗, R0H

∗,
S0R

∗, I0R∗, R0R
∗ of Equations (3)–(6) and Equations (8)

and (9) is locally asymptotically stable whenever R0 = βR
ΓR/μR μR + γR < 1 and unstable otherwise.

Proof of Theorem 4. It is easy to show that the eigenvalues
of the Jacobian matrix at the disease-free are λ1 = −μR,
λ2 = −μH , λ3 = − μH + γH , and βRΓR − μR μR + γR /μR.
The last eigenvalues is certainly negative if R0 = βRΓR/μR
μR + γR < 1.

Theorem 5. If the endemic equilibrium SeH
∗, IeH∗, ReH

∗,
SeR

∗, IeR∗, ReR
∗ of Equations (3)–(6) and Equations (8) and

(9) exists (i.e., whenever R0 = βRΓR/μR μR + γR > 1), then
it is locally asymptotically stable.

Proof of Theorem 5. As before, it can be shown the eigen-
values of the Jacobian matrix at the disease-free are λ1 =
−μR, λ2 = −μH , λ3 = − μH + γH , and λ4 = −bβbH βRΓR −
γRμR − μ2R + βRμH μR + γR /βR μR + γR = −bβbH βRΓR/μR
μR + γR − 1 + βRμH μR + γR /βR μR + γR which is
clearly negative if R0 = βRΓR/μR μR + γR > 1.

Further, we can also show that the endemic equilibrium,
if exists, is globally asymptotically stable as follows.

Theorem 6. If the endemic equilibrium SeH
∗, IeH∗, ReH

∗,
SeR

∗, IeR∗, ReR
∗ of Equations (3)–(6) and Equations (8) and

(9) exists (i.e., whenever R0 = βRΓR/μR μR + γR > 1), then
it is globally asymptotically stable.

Proof of Theorem 6. The system of the last three equations is
the famous SIR model. So, by using a standard Lyapunov
function for the SIR model, we can show that the endemic
equilibrium point of Equations (3)–(6) and Equations (8)
and (9) is globally attractive in Ω defined by

Ω = SH , IH , RH , SR, IR, RR ∈ℝ6
+ SR > 0, IR > 0 18

Note that the following equations are satisfied at the
endemic equilibrium:

ΓR = βRS
∗
eRI

∗
eR + μRS

∗
eR and μR + γR = βRS

∗
eR. Define the

function V Ω⟶ℝ by V SH , IH , RH , SR, IR, RR = SR −
log SR + IR − log IR. The derivative of V along the trajecto-
ries of (3)–(6), (8), and (9) is given by

dV
dt

= 1 − S∗eR
SR

dSR
dt

+ 1 − I∗eR
IR

dIR
dt

= 1 − S∗eR
SR

βRS
∗
eRI

∗
eR + μRS

∗
eR − βRSRIR − μRSR

+ 1 − I∗eR
IR

βRSRIR − βRS
∗
eRIR

= −μR
SR − S∗eR

2

SR
+ βRS

∗
eRI

∗
eR 1 − S∗eR

SR
1 − SRIR

S∗eRI
∗
eR

+ βRS
∗
eRI

∗
eR 1 − I∗eR

IR

SRIR
S∗eRI

∗
eR

−
IR
I∗eR

= −μR
SR − S∗eR

2

SR
+ βRS

∗
eRI

∗
eR 2 − S∗eR

SR
−

SR
S∗eR

19

To proceed with the last expression, 2 − S∗eR/SR − SR/S∗eR,
let us consider the following arithmetic-geometric mean
(AGM) relation x + y/2 ≥ xy, where the equality holds if
and only if x = y. Using this AGM relation x = S∗eR/SR
and y = SR/S∗eR we obtain the expression S∗eR/SR + SR/S∗eR/2
≥ 1 or equivalently 2 − S∗eR/SR + SR/S∗eR ≤ 0, where the
equality holds if and only if S∗eR = SR. Thus, we can conclude
that dV/dt = 0 if and only if S∗eR = SR otherwise dV/dt < 0.
By LaSalle’s invariant principle, the ω-limit set of any trajec-
tory starting inΩ is contained in the maximal invariant set of
Ω. It is straightforward to show that the maximal invariant
set of Ω is the singleton consists of the endemic equilibrium
point. Since every forward orbit inΩ is bounded, we can con-
clude that the endemic equilibrium is globally attractive inΩ.

3.3. The Critical Level of Intervention. When an intervention
is carried out to control the spread of the disease, the basic
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reproduction number R0 = βRΓR/μR μR + γR in Theorem 2
will change to the effective reproduction number Re

0 with
the exact formula depending on the intervention being used.
For example, if we are able to control so that only a portion
of rodents could interact, say by a constant c, or decrease
the probability successful contact from βR to β′R = 1 − c
βR, then the basic reproduction number will reduce to
Re

0 = 1 − c βRΓR/μR μR + γR . To stop the spread of the dis-
ease, we needRe

0 < 1 which is equivalent to c > 1 − 1/R0. We
call c∗ = 1 − 1/R0 as the critical intervention level that will be
able to change the stability of the endemic equilibrium to an
unstable equilibrium whenever R0 > 1.

In the case above, the critical intervention level has a
simple form as a function of the basic reproduction number.
Other forms are also possible, for example, when we take
rodent culling as the intervention then basically it increases

the natural mortality μR to a higher mortality μ′R so that
the effective reproduction number becomes Re

0 = βRΓR/μ′R
μ′R + γR = βRΓR/cμR cμR + γR < 1. In this case, the critical
intervention level c∗ is obtained by solving cμR cμR + γR /
βRΓR > 1, and given by the following, c∗ = −1/2γR + 1/2

4βRΓR + γ2R /μR = γR/2μR 4βRΓR/γ2R + 1 − 1 which is
positive.

We summarize the formulas for the critical intervention
level in the following Table 2.

The critical level of intervention in Table 2 is derived
using the effective reproduction number by equalizing it to
one and solving for c as described in Section 3.3. Hence, it
can only be used to undertake an intervention in the rodent
population since the reproduction number does not contain
parameters for the human population. The critical level of

Table 2: Critical intervention level found by setting the effective reproduction number to be less than one.

Intervention to rodent
population

Objective Critical intervention level

Culling/poisoning/trapping
Increase rodent death rate from μR
to a higher mortality μ′R = cμR

c∗ = γR/2μR 4βRΓR/γ2R + 1 − 1

= γR/2μR μR μR + γR /γ2R 4R0 + 1 − 1

Curing
Increases rodent recovery rate from γR

to a higher recovery γ′R = cγR
c∗ = βRΓR − μ2R/γRμR =R0 γR + μR/γR − μ2R/γRμR

Isolation/transmission
inhibitor

Reduces successful contact rate among rodents
from or infection probability of rodent contact
from βR to a lower contact rate β′R = 1 − c βR,

with 0 < c < 1
c∗ = 1 − 1/R0
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Figure 2: The growth of susceptible humans and rodents in the absence of hantavirus (solid lines) and in the presence of hantavirus (dashes
and dots).
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intervention above is aimed at eliminating the hantavirus
so that the endemic state I∗eR is zero and hence I∗eH also
vanishes. In fact, by observing the endemic state I∗eH = bβH
ΓH −μR μR + γR + βRΓR / bβH −μR μR + γR + βRΓR + βR
μR + γR μH μH + γH , we can only decrease this endemic
state but will not make it vanish without the intervention of
the rodent population. This can be seen as, whenever R0 >
1, I∗eH ≤ 0 only if −μR μR + γR + βRΓR ≤ 1 which is equiva-
lent to either we makeR0 ≤ 1 by doing an intervention to the
rodent population or making one of b, βH , ΓH parameters
zero. The following section gives some numerical examples
to illustrate the results presented above.

4. Numerical Examples

In this section, we present numerical examples to show the
behavior of the SIR-SIR hantavirus model with and without
the presence of clinical/nonclinical intervention (trapping/
culling/poisoning the rodents, educating people to increase

awareness regarding the danger of hantavirus so they avoid
contact with rodents and their excreta, etc.). We use the fol-
lowing parameter values in the simulations:

b = 0 1,

βH = 0 0015,

ΓH = 0 25,

γH = 1
200 ,

μH = 1
65∗365 ,

βR = 0 002,

ΓR = 0 25,

γR = 0 0075,

μR = 0 007
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Figure 3: Transient solution of the system withR0 = 4 926108374 for (a) human subpopulations and (b) rodent subpopulations. The lower
figures show the near equilibrium for (c) human subpopulations and (d) rodent subpopulations.
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For comparison, we initially consider that there are 1,000
human individuals and 100 rodents in an environment. If it
is assumed that there are no hantavirus-infected rats, both
populations grow independently towards their respective
equilibrium, as illustrated in Figure 2. In the absence of han-
tavirus, the growth of healthy human and rodent popula-
tions is depicted in the solid lines in Figures 2(a) and 2(b),
respectively. Now, in the presence of hantavirus, if it is
assumed that there is 1 infected rodent entering the system,
the growth of the healthy or susceptible populations is
shown in dash-dot lines in Figures 2(a) and 2(b), respec-
tively. Compared to the case of the absence of hantavirus

infection, both subpopulations are lower due to the infection
of hantavirus and change their status to infected population.
The dashed lines in the figures show the growth for different
bigger infected rodent initial values (50 individuals). In the
long term, in the presence of hantavirus, all subpopulations
will converge to the equilibrium state as predicted by the sta-
bility theorem of the endemic state.

For the purpose of comparison, the following examples
will assume a high basic reproduction number (chosen by
the appropriate parameters above), and the hantavirus is
heavily circulated among rodents, as indicated by the high
initial value of infected rodents SR 0 = 50, IR 0 = 50, and
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Figure 4: Transient solution of the system with the presence of culling to the rodent so that the death rate of the rodents increases up to
twice the existing death rate, resulting in an effective reproduction number as low as Re

0 = 1 66. However, this level of culling rate is not
sufficient to eliminate the hantavirus.
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Figure 5: The effect of different culling levels of c to the number of infected human and infected rodent subpopulations. The critical culling
level is c = 2 703278061, meaning that culling with a level lower than that level will not be effective in eliminating the hantavirus.
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RR 0 = 1. These initial values are chosen arbitrarily, just for
illustration. The growth of all subpopulations is shown in
Figure 3.

Figure 3 shows the transient solution of the system for
human subpopulations (Figure 3(a)) and rodent subpopula-
tions (Figure 3(b)). The lower figures show a near-
equilibrium solution for human subpopulations (Figure 3(c))
and rodent subpopulations (Figure 3(d)). The resulting basic
reproduction number for the chosen parameters indicates that
the disease will become endemic eventually. To control the
transmission of the hantavirus, we assume that culling is done
to increase the death rate of the rodent up to twice the current

death rate. The resulting solution of the system is shown in
Figure 4 with the effective reproduction number Re

0 = 1 66.
This culling is not effective in eliminating the hantavirus, both
in rodent and human population. This level of culling is not
sufficient to drive the hantavirus to extinction. In fact, by refer-
ring to Table 2 regarding the critical intervention level, to
increase the rodent death rate from μR to a higher mortality
μ′R = cμR, we need to set c > 2 703278061 which makes the
effective reproduction number less than one. Figure 5 shows
the resulting solution of the system when culling as the inter-
vention on the rodent population is undertaken at various
levels of c. Figure 6 shows the resulting solution of the system
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Figure 6: The effect of different curing levels of c to the number of infected human and infected rodent subpopulations. The critical curing
level is c = 8 590476190, meaning that curing with a level lower than that level will not be effective in eliminating the hantavirus.
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Figure 7: The effect of different isolation levels of c to the number of infected human and infected rodent subpopulations. This intervention
can also be interpreted as vaccination. The critical isolation level is c = 0 797.
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for the same parameters as in Figures 4 and 5, when curing as
the intervention to the rodent population is undertaken for
various levels of c, with the critical curing level is c =
8 590476190. This kind of intervention is not common, but
it is feasible in terms of application technique since it is anal-
ogous to poisoning but with a different objective, i.e., to
increase the recovery rate of the infected rodents. Figure 7
shows the resulting solution of the system when isolation to
make contact among rodents is applied for various levels of c
, with a critical isolation level of c = 0 767. This intervention
can be viewedmathematically as similar to vaccination; hence,
the critical isolation level is analogous to herd immunity to
some extent. In reality, this intervention is also uncommon
and difficult to implement since we have to vaccinate at least
76.7% of the rodent population unless vaccination can be
implemented orally in the form of food bait for the rodents.

The results above are derived by assuming a mass action
incidence rate and ignoring the presence of time delays. The
results may be different if we do a fine-tuning to the model
with the inclusion of more detailed and relevant factors. As
an example, we show that if a saturated incidence rate as
in Zhang et al. [52] is used in the present model, the solu-
tions in Figure 3 change to those in Figure 8. Other informa-
tion that also needs to be uncovered is the effect of the
uncertainty of the parameters. In the following section, we
present one way to analyze the effect of parameter uncer-
tainty on the number of infected human population. We
would like to derive the sensitivity indices to see which
parameters are most influential on the results of the model
(in this case, the number of infected human population).

4.1. Sensitivity Analysis. As most of the parameters have
strong uncertainty, we perform a global sensitivity analysis
to identify the most influential parameters of the model. It
is measured against the increasing number of infected indi-
viduals. There are a lot of sensitivity analysis methods, such

as Chitnis et al. [53], Marino et al. [54], and the references
therein. Here, we use Latin hypercube sampling (LHS) in
combination with the partial rank correlation coefficient
(PRCC) [54] since it is among the most popular, reliable,
and efficient sensitivity analyses to provide global sensitivity
indexes. By following the method of Marino et al. [54], we
simulate 2,000 samples, and the result is given in Figure 9.
The range of the parameters used is given in Table 3.
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Figure 8: An example of the effect of saturated incidence on the number of infected human and infected rodent subpopulations. In this
example, we use the functional form βHSH t IR t /1 + αIR t with α = 0 05 instead of βHSH t IR t .
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Figure 9: The PRCC plot shows the probability of successful
contact between rodents βr is the most influential parameter and
has a positive relationship. Meanwhile, the parameters μr and γr
have a negative relationship, which indicates that an increase in
these parameter values results in a decrease in the number of
hantavirus infections.

11Computational and Mathematical Methods in Medicine



Figure 9 shows that the probability of successful contact
between rodents βr is the most influential parameter and has
a positive relationship. This is realistic as the rodent is the
source of infections, and hence, when humans and rodents
interact and they successfully transmit viruses, the number
of hantavirus cases increases. On the other hand, the param-
eters μr and γr have a negative relationship, which indicates
that an increase in these parameter values results in a
decrease in the number of hantavirus infections. An increase
in the death rate of rodents aids in minimizing the number
of hantavirus cases.

The figure shows that the greatest effect of intervention
to control the spread of hantavirus is by reducing the contact
rate between rodents βr and by increasing the death rate and
recovery rate parameters μr and γr . In reality, interventions
to control the contact rate between rodents are difficult to
implement, but increasing the death rate can be done much
easier by nonclinical interventions, such as trapping, culling,
and poisoning. Theoretically, increasing rodent recovery
can also be implemented by using “drug food,” although
uncommon.

5. Conclusion

We have constructed a simple mathematical model for the
transmission of hantavirus among rodents. Apart from the
simpleness of the model, we arrive at the following useful
insight. The analysis of the model shows that if the basic
reproduction number is greater than one, then it is impossi-
ble to completely eliminate hantavirus disease in the system
by solely focusing on any intervention to humans, like vacci-
nation and curative action, without paying any attention to
interventions to the rodent population unless there is no
contact at all between human and rodent or between human
and rodents’ excreta or the successful probability contact
rate is zero. However, we can still decrease the density of
infected humans with those interventions. Hence, we suggest
that a combination of several interventions is needed to
obtain effective control in eliminating the hantavirus. Fur-

ther, to determine the most significant parameters that can
be used as control variables to reduce or eliminate hantavi-
rus transmission, we use the Latin hypercube sampling in
combination with partial rank correlation coefficient sensi-
tivity analysis and found that the contact rate between
rodents, the death rate, and the recovery rate of rodent’s
parameters are among the most significant parameters in
determining both the numbers of infected rodents and
infected humans. This justifies our first finding that solely
focusing on intervention to humans may not succeed in
completely eliminating hantavirus infection in the system.
Moreover, this information is useful for further study in
finding an optimal control strategy to reduce or eliminate
the transmission of hantavirus to humans.
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