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Image processing has enabled faster and more accurate image classification. It has been of great benefit to the health industry.
Manually examining medical images like MRI and X-rays can be very time-consuming, more prone to human error, and way
more costly. One such examination is the Pap smear exam, where the cervical cells are examined in laboratory settings to
distinguish healthy cervical cells from abnormal cells, thus indicating early signs of cervical cancer. In this paper, we propose a
convolutional neural network- (CNN-) based cervical cell classification using the publicly available SIPaKMeD dataset having
five cell categories: superficial-intermediate, parabasal, koilocytotic, metaplastic, and dyskeratotic. CNN distinguishes between
healthy cervical cells, cells with precancerous abnormalities, and benign cells. Pap smear images were segmented, and a deep
CNN using four convolutional layers was applied to the augmented images of cervical cells obtained from Pap smear slides. A
simple yet efficient CNN is proposed that yields an accuracy of 0.9113% and can be successfully used to classify cervical cells.
A simple architecture that yields a reasonably good accuracy can increase the speed of diagnosis and decrease the response
time, reducing the computation cost. Future researchers can build upon this model to improve the model’s accuracy to get a
faster and more accurate prediction.

1. Introduction

Cervical cancer occurs when a cell inside the cervix begins to
proliferate rapidly, thus making it a malignant cell. A virus
known as human papillomavirus (HPV) is responsible for
developing cancerous cells [1]. When detected early, cancer
can be treated and rapidly become fatal if ignored. One of
the leading causes of mortality in women worldwide is cervi-
cal cancer. Women under 30 are at high risk for the disease
[2]. According to the Centers for Disease Control and Pre-
vention (CDC), in the US alone, about 13000 women suffer
from the disease each year, resulting in around 4000 casual-

ties [3]. Around 604 000 women worldwide were diagnosed
with cervical cancer, and 342 000 deaths were reported in
2020 owing to cervical cancer [4]. These alarming numbers
have highlighted the need for prompt action to detect, diag-
nose, treat, and prevent the disease. Detecting the disease in
its preinvasive stage shows a promising disease prognosis.
Two of the most common techniques to detect the precursor
for cervical cancer are the PAP smear and HPV testing [5].

A Pap smear test can be very time-consuming since it
requires a radiologist’s examination of some 10000 cells to
identify any abnormality in cells [6]. For this reason, modern
healthcare has turned to artificial intelligence and deep
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learning to detect and diagnose cervical cancer. Not only can
an automated process detect cancer cells in a fraction of the
time but it can give objective and accurate results.
Researchers have performed image classification on Pap
smear test data and analyzed the images to detect abnormal-
ities. A CNN is commonly used for image classification. A
CNN can automatically extract features from the image
and use it to classify the image as a healthy cell or a cancer-
ous cell. Our proposed CNN model is applied to single cer-
vical cell images and classifies each cell into one of the five
categories. An infected cell has different shape, color, and
nuclei characteristics. Accurate detection of the nuclei dur-
ing segmentation can also give a good approximation of
the cytoplasm [7]. These features, once extracted, can give
an accurate prediction using the CNN model.

The biggest challenge in Pap smear analysis for cervical
cancer detection is the complexity and accuracy of the exam.
The morphology of cervical cells varies significantly in terms
of color, size, and shape [8]. It is difficult to differentiate
between different cell types with the naked eye [9]. The pri-
mary motivation for developing a CNN model to classify
cervical cells was to reduce the complexity and speed of
the classification process. Many researchers have attempted
to automate this process to achieve more accurate results.
It has been observed that high levels of accuracy have been
achieved via transfer learning, with complex CNN architec-
tures like the Alex-Net, VGG-net, and ResNet [10–16]. The
computational needs of these architectures are tremendous,
with longer processing times and requiring a more powerful
machine [17]. The ongoing efforts to reduce CNN complex-
ity for cervical cancer detection yield promising results. We
aim to create a CNN model that is accurate and computa-
tionally efficient.

The paper contributes to the research of automated cer-
vical cancer detection in the following aspects:

(i) Propose an approach to classify a cervical cell as
cancerous or noncancerous by identifying its type
from among the five different types

(ii) Expand the data by using data augmentation tech-
niques, giving an excellent generalization to the
model

(iii) A combination of different convolutional layers and
max-pooling layers have been used to achieve good
prediction accuracy

(iv) Achieve promising results with minimum complex-
ity and earliest response time

The rest of the paper is organized as follows: Section 2
presents a literature review of the existing work done by dif-
ferent researchers. We analyzed the current work to find the
research gaps in cervical cancer cell detection. Section 3 elab-
orates on our proposed methodology, which covers the data
selection, data preprocessing techniques used, and a break-
down of our proposed architecture. Section 4 overviews the
experimental analysis and the results obtained using the pro-
posed CNN architecture. The accuracies and the loss com-

parisons are made in this section. Section 5 discusses the
conclusion of our research.

2. Literature Review

Several authors have proposed machine learning and deep
learning models for cervical cancer prediction. Research
that used Pap smear image data has mainly proposed
CNN models and achieved very high accuracy levels. The
authors in [6] proposed a model that uses a CNN model
to predict cervical cancer by first applying a two-step fea-
ture reduction approach. PCA (principal component anal-
ysis) was used to reduce the dimensionality of the image
data. An optimal feature subset was then obtained using
the GWO (grey wolf optimizer). The new optimum feature
set improves the classification process. The authors used
three famous datasets for training the proposed CNN
model: the Mendeley Liquid Based Cytology dataset, the
Herlev Pap Smear dataset, and the SIPaKMeD Pap Smear
dataset considerably high accuracies for all three datasets.
In [18], the author first identified tumor cells by clustering,
called the hotspot method. The detected tumor cells were
trained using a deep learning model, i.e., a CNN model.
Five activation sets were identified, and the best activation
set was selected using the pigeon-inspired optimizer. The
entire process yielded outstanding results; i.e., 99.6% accu-
racy was achieved. In another similar work [19], the
authors have also proposed a CNN model for detecting
and classifying cervical cancer. By analyzing the images
of cells via the CNN model, applied to the Herlev dataset,
features are learned, and the images are classified using an
extreme learning machine- (ELM-) based classifier. Multi-
layer perceptron (MLP) and autoencoder- (AE-) based
classifiers were also used for classification and prediction.
The proposed model was able to achieve 99.5% accuracy
for detection and 91.2% accuracy for classification of the
cell type. [20] is another study that has used six different
pretrained CNNs: AlexNet, VGGNet (VGG-16 and VGG-
19), ResNet (ResNet-50 and ResNet-101), and GoogLeNet
architectures for classification of cells in their precancerous
stage and compares their results. An ensemble classifier
was then used using the three best models to develop a
classifier with excellent accuracy. Hospital-based Pap smear
dataset and the Herlev dataset were two data sources used
in this model. In [21], the authors have proposed a new
CNN model named Colposcopy Ensemble Network (CYG-
NET) to classify cells using colposcopy images to differen-
tiate between healthy and cancerous cells in the cervix.
They have compared and contrasted the results with
results obtained on a VGG-19 model used for transfer
learning. The proposed model has shown a 19% higher
accuracy than the VGG model. The authors of [22] pro-
posed two lightweight CNN architectures for classifying
cervical cancer. One model was developed using three con-
volutional layers, and the other was developed using two
convolutional layers with a 2 × 2 stride. ReLU and hyper-
bolic activation functions have been used to extract fea-
tures. The models have yielded an area under the curve
score of up to 80%.
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3. Proposed Methodology

Classification of each cell enables accurate and quick detection
of malignant cells within the cervix. The proposed work is
aimed at classifying cervical cell images into 1 of the five cate-
gories, dyskeratotic, koilocytotic, metaplastic, parabasal, and
superficial-intermediate, using a CNN. The cell classification
identifies cell abnormalities, detecting the precancerous stage
and allowing for an early diagnosis to manage disease progres-
sion. The proposed work involves data selection, preprocess-
ing and augmentation, model training, and model accuracy.

Figure 1 is the visual representation of how our model
works. After performing mathematical operations, the out-
put size increases at each CNN layer, while the max-
pooling function reduces the output size by half. The flat-
tened layer makes it easy for the dense layer to connect,
reducing the output size to five classes.

3.1. Data Selection. Pap smear images are one of the primary
methods of cervical cell examination. Several publicly avail-
able datasets of Pap smear images containing cluster cervical
cell images are available. We use one of the most famous
SIPaKMeD datasets. SIPaKMeD represents five cell category
names: superficial-intermediate, parabasal, koilocytotic,
metaplastic, and dyskeratotic. It contains images of 966 clus-
ters of cell images obtained from Pap smears using CCD
camera connected to a microscope. These clusters have been
cropped to obtain 4049 individual cell images. It is a labeled
dataset where each cropped cell image is classified into one
of the five categories. Superficial-intermediate and parabasal
are standard cell types; koilocytotic and dyskeratotic cells are
those cells that are detected with abnormality but are not
malignant. The fifth category of benign cells is classified as
metaplastic [23]. Figure 2 is a koilocytotic cell obtained from
the dataset. It is marked as abnormal but not malignant.
Such cells can indicate precancerous abnormality in the cells.
A parabasal cell, a normal cell, appears, as shown in Figure 3.

3.2. Data Preprocessing. Image classification requires images
to be standardized and scaled.

3.2.1. Image Segmentation. Pap smear slide images were seg-
mented by identifying cells using predefined nuclei and the
area of cytoplasm. The border was created around cells of
width 1 pixel. The images were then resized to 256 × 256
pixel size.

3.2.2. Categorical Data. The five classes, dyskeratotic, koilocy-
totic, metaplastic, parabasal, and superficial-intermediate,
were assigned five numeric labels: dyskeratotic: 0, koilocytotic:
1, metaplastic: 2, parabasal: 3, and superficial-intermediate: 4.

3.2.3. Data Augmentation. The dataset was expanded by
augmenting the images. Four different operations were per-
formed on the training data cell images as shown in Table 1.
The training images were augmented using the rescale, flip
horizontally, zoom range, and shear range operations. The
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Figure 3: A parabasal cell.
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Figure 2: A koilocytotic cell.

Table 1: Data augmentation techniques applied to the dataset.

Data augmentation technique Values

Zoom range 0.2

Sheer range 0.2

Rescale 1/255

Horizontal flip True
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validation and test data were only rescaled. For training,
2832 cell images were obtained from five classes after data
augmentation. 608 cell images were obtained for validation,
and 609 cell images were specified for testing.

3.3. Proposed Architecture. A CNN is a feed-forward neural
network commonly used for image classification. Different

layers are applied in the model to classify the data. The pro-
posed classification model is a CNN with 11 layers. Four
convolutional layers, three max-pooling layers, three dense
layers, and 1 flatten layer have been used to formulate the
CNN. Input at the first layer of the CNN model was a 256
× 256 pixel cell. The rectified linear function (ReLU) was
applied at all four convolutional layers along with a max-
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Figure 4: The proposed CNN architecture.
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pooling layer of size 2 × 2 to reduce the no. of input param-
eters to half. The convolutional layer passes extracted feature
to the flattened layer. A flattened layer and three fully con-
nected layers in the end help converge the data and are
pretty helpful in image classification. A sigmoid function,
in the end, returns a binary classification for each of the 5
class outputs. Figure 4 illustrates the complete architecture
of the proposed CNN model.

3.3.1. Convolutional Layer. A convolution layer is the pri-
mary component of the CNN model. It extracts features
using a combination of convolution operation and activa-
tion function [24]. A filter is slid over the input image using
a parameter called “stride” that identifies the number of
pixels to slide over. The dot product is taken between the
filter and the subsection of the input image as per the size
of the filter [25]. In our proposed model, 4 convolutional
layers were applied using a 3 × 3 filter. The output size/fil-
ters for the first two convolutional layers are 32, thus gener-
ating 32 output values. The last two convolutional layers
generate 64 and 128 outputs, respectively. A ReLU (rectifier
linear function) was used to compute the output after each
convolution.

3.3.2. Pooling Layer. The pooling layer reduces the size of
the extracted feature map that has been processed in the
convolutional layer. This is achieved by reducing the con-
nection between layers by selecting just a few pixels from
the subsection based on predefined criteria to reduce the
computational cost. Hence, pooling can be used for more
compact representations while preserving only the most
relevant features [26]. Various pooling techniques have

been proposed. These techniques are employed based on
the different research objectives and desired outcomes,
e.g., max pooling, average pooling, sum pooling, soft pool-
ing, stochastic pooling, spatial pooling, and higher-order
pooling. The proposed architecture employs a max-
pooling layer with a pool size equal to 2 × 2. Thus, after
each max-pooling operation, the number of outputs
reduces to half the size of inputs. A max-pooling layer
was added after each convolution except for the first con-
volutional layer.

3.3.3. Flatten Layer. The flattened layer is usually placed just
before the dense layer to convert the data into a one-
dimensional array [27]. This is important to bring the image
data into a form that can result in a binary output and be
able to classify the image eventually. After all the convolu-
tions were performed, a flattened layer was inserted into
the proposed architecture. This has helped convert the 3-
dimensional output into a one-dimensional output.

3.3.4. Fully Connected Layer. The fully connected (FC) layer
is a combination of the weights, biases, and neurons and acts
as a transition to bring it into the desired output form. These
layers are usually placed before the output layer and form
the last few layers of a CNN architecture. The output of
the final fully connected layer has the same number of out-
put nodes as the number of classes [24]. There are three fully
connected dense layers at the end of the model. This reduced
the output drastically from 115200 (obtained from the flat-
tened layer) to 5 outputs, where each output corresponds
to a cell category.

3.4. Evaluation Metrics. Several measures have been used to
evaluate the performance of our CNN model. The proposed
model is assessed based on accuracy, log loss, or categorical
cross entropy.

3.4.1. Accuracy. Accuracy is the measure of how well a
model performs. It is computed by calculating the no. of cor-
rect predictions for a particular class as a ratio of the total
no. of predictions. We computed the accuracy of the CNN
by calculating the number of correct predictions made by
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Figure 5: The training and test accuracy of the proposed model per
epoch.
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Figure 6: The training and testing loss of the proposed model per
epoch.

Table 2: Train validate test split of the dataset.

Cell type Total images Train Validate Test

Dyskeratotic 813 569 122 122

Koilocytotic 825 577 124 124

Metaplastic 793 555 119 119

Parabasal 787 550 118 119

Superficial-intermediate 831 581 125 125
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the model for each cervical cell image using the following
equation:

TP + TN
TP + TN + FP + FN

, ð1Þ

where TP and TN are true positive and true negative, respec-
tively, representing correctly classified cases, and FP and FN
are false positive and false negative, respectively, represent-
ing the misclassified cases. A value nearer to 1 shows a high
level of accuracy achieved.

3.4.2. Categorical Cross Entropy/Log Loss. Cross entropy is
the most commonly used loss calculation function in CNNs.
The probability of predicted class vs. the actual class output,
i.e., 0 or 1, is compared, and a loss is assigned that acts as a
penalty in case the predicted value is far from the actual
value. This value is a logarithmic value where higher loss
means a higher difference in predicted and actual and vice
versa. During the training phase, the cross entropy loss is
computed and helps adjust weights after each iteration
through backpropagation. With each adjustment, the aim
is to reduce the loss. The cross entropy of a good model is
somewhat close to 0 [28]. Binary cross entropy computes
loss for true and false classes, whereas the categorical cross

entropy computes the loss for each class and is computed
using the following equation [29]:

−
1
N
〠
N

i=1
〠
C

c=1
1yi∈Cc log pmodel yi∈Cc½ �ð , ð2Þ

where N is the total no. of observations and C is the total no.
of classes. P represents the probability of observation I that
belongs to class c.

4. Experimental Analysis and Findings

The proposed model used the train validate test approach.
The model was fine-tuned using the validation data and
then tested on the dataset. Since the dataset was large and
the model needed repeatedly tuning parameters, the best
approach was to split the dataset into three partitions. The
data was split in the ratio of 70 : 15 : 15 for training, valida-
tion, and testing. The train validate split is shown in
Table 2.

The data was trained on the model using 32 epochs with
an Adam optimizer. It was observed that the training accu-
racy steadily kept increasing throughout all 32 epochs from
0.432 to 0.948. The validation accuracy, on the other hand,
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Figure 7: Confusion matrix of the proposed model for the five cell categories.
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did not increase as smoothly. Validation accuracy for the
first epoch was 0.61. Maximum validation accuracy achieved
was 0.933, which stopped improving beyond epoch 25, as
shown in Figure 5. The test accuracy was equal to 0.9113.

The training loss computed using categorical cross
entropy was highest at 1.44 at the first epoch and steadily
decreased at each epoch till it reached 0.14 at the last epoch.
The validation loss did not decrease as smoothly and fluctu-
ated quite a bit during epochs. It began at 1.04 and gradually
declined. The loss fluctuated between 3.0 and 2.5 from
epochs 16 to 31 and rose drastically to 0.40 in epoch 32, as
shown in Figure 6.

Figure 7 is the confusion matrix of our model. For each
class, the correctly classified and misclassified values can be
seen. 113 out of 122 test images were classified accurately
for the class dyskeratotic whereas nine cell images were mis-
classified. One hundred twelve cell images were correctly
classified out of 124 test images for koilocytotic. Twelve cell
images were misclassified. For the class, metaplastic 102
images were for the true class out of a total of 119 test
images, and 17 images were not correctly classified. 115
out of 119 images were correctly classified for the parabasal
class. Four test images were wrongly classified. Lastly, for the
superficial-intermediate class, out of the 125 test images, 113
were correctly classified, and 12 were misclassified.

Results conclude that the proposed CNN model is com-
putationally simple and does not require much time to train,
validate, and test. It yielded a pretty good accuracy and had a
low misclassification rate. The model performs poorly as the
number of epochs exceeds 15. Fine-tuning the parameters
will help overcome these shortcomings.

5. Conclusion

Cervical cells have complex anatomy and require hours and
hours of physical examination in a laboratory setting to
examine them. With the growth in the number of cervical
cancer cases, it has become the need of the hour to not only
diagnose cervical cancer in the precancerous or early stages
but also reduce the overhead cost involved by reducing the
time and resources spent during diagnosis. We used data
from the publicly available cervical cell images dataset
SIPaKMeD and trained a CNN model to classify cell images
into five major cell categories. This classification enables
health practitioners to distinguish normal cells from abnor-
mal cells and predict precancerous cervical cell abnormali-
ties. An 11-layer CNN architecture comprising four
convolutional layers, three max-pooling layers, three dense
layers, and one flatten layer has been used in the architec-
ture. ReLU and sigmoid activation functions were used to
achieve the desired results. Overall testing accuracy of
91.1% was achieved using this simple yet efficient model.
Researchers can enhance this model to obtain faster results
as promising as the computationally demanding AlexNet,
VGGNet, and ResNet models employed in other recent
research. For future improvements, the model should be
trained on a bigger pool of Pap smear images to provide a
better generalization.
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