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)e Clebsch–Gordan coefficients are extremely useful in magnetic resonance theory, yet have an infamous perceived level of
complexity by many students. )e Clebsch–Gordan coefficients are used to determine both the matrix elements of the spherical
tensor operators and the total angular momentum states of a system of component angular momenta. Full derivations of these
coefficients are rarely worked through step by step. Instead, students are provided with tables accompanied by little or no
explanation of where the values in it originated from. )is lack of direction is often a source of confusion for students. For this
reason, we work through two common examples of the application of the Clebsch–Gordan coefficients to magnetic resonance
experiments. In the first, we determine the components of the magnetic resonance Hamiltonian of ranks 0, 1, and 2 and use these
to identify the secular portion of the static, heteronuclear dipolar Hamiltonian. In the second, we derive the singlet and triplet
states that arise from the interaction of two identical spin-1/2 particles.

1. Introduction

Magnetic resonance experiments play an important role in
the study of biology, materials science, and pharmacology, as
well as other disciplines [1–16]. In particular, the unparal-
leled resolution of nuclear magnetic resonance (NMR)
spectroscopy makes it ideally suited for the determination of
site-specific information about a chemical architecture
[5, 7–11]. A rigorous understanding of the theory and spin
physics describing magnetic resonance provides not only the
ability to interpret experimental data sets but also the insight
required to design new experiments.

)e Hamiltonian describes the interactions of spins in
mathematical form that, along with the density matrix,
provides a complete and quantitative framework for mag-
netic resonance theory. )erefore, the ability to generate an
accurate Hamiltonian for the system is of fundamental
importance. )is includes being able to describe the ori-
entational dependence of anisotropic Hamiltonians, for
which the spherical tensor operators are commonly
employed [17]. However, much of the literature on the

subject takes for grantedmany aspects of this process, simply
stating results rather than showing the origin of the concepts
utilized. )is has led to a conspicuous hole in the magnetic
resonance literature, particularly concerning the
Clebsch–Gordan coefficients. )e Clebsch–Gordan coeffi-
cients play an important role in two different aspects of
magnetic resonance calculations. First, they allow for the
“second rank tensor components” that are ubiquitously
referred to in the literature to be determined from first rank
spherical tensors (magnetic field vectors). Additionally, they
allow for the total spin states of a system of component
angular momenta to be constructed from the component
wave functions [18]. In this paper, we provide a detailed
strategy for calculating the Clebsch–Gordan coefficients and
work through practical examples demonstrating their use.

2. The Magnetic Resonance Hamiltonian and
Spherical Tensor Operators

One of the most important aspects of performing an ac-
curate spin physics simulation is the ability to generate the
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correct Hamiltonian operator with an accurate dependence
on molecular orientation. )e Hamiltonian is the quantum
mechanical operator describing the energy of the system.
Classically, the energy of a magnetic moment interacting
with a magnetic field is given by equation (1) below [18]:

E � − μ→T
B
→

. (1)

In equation (1), μ→ is the magnetic moment of the spin,
the superscript T indicates that we are taking the transpose
of this vector, and B

→
is the magnetic field vector that the

magnetic moment is interacting with.
)e way that the quantum mechanical equivalent of

equation (1) is commonly written is given by equation (2)
below [17]:

􏽢H � I
→T

A
→→

S
→

. (2)

In equation (2), I
→

is a vector of the spin operators 􏽢Ix, 􏽢Iy,
and 􏽢Iz. S

→
is a general field term that the spin is interacting

with and has the components 􏽢Sx, 􏽢Sy, and 􏽢Sz. S
→

could be
another set of spin operators or the external magnetic field,
for example. )e relationship between I

→
and S

→
in equation

(2) is qualitatively the same as that between μ→ and B
→

in
equation (1). However, equation (2) also contains the ad-

ditional term A
→→

. A
→→

is a 3 × 3 tensor-valued quantity that
describes the anisotropic coupling between I

→
and S

→
,

showing how the effective size of the magnetic moment
changes with the orientation of the molecule in space. It
should be noted though that an anisotropic tensor term
could also be included in equation (1), but we have chosen to
write it as it is commonly found in the literature in its
isotropic form. A second important point to consider to
avoid confusion is that the spin matrices in I

→
do not have

any units, unlike μ→ in equation (1).)is discrepancy is made

up for by multiplying A
→→

by the appropriate constants for the
overall Hamiltonian to have units of energy.

Equation (2) can be rewritten in the equivalent and
convenient form of equation (3) below [17]:

􏽢H � Tr A
→→

S
→

I
→T

􏼠 􏼡. (3)

In equation (3), the outer product, S
→

I
→T

, is a 3 × 3

matrix, just like A
→→

. )is is shown explicitly in equation (4)
below [17]:

􏽢H � Tr

axx axy axz

ayx ayy ayz

azx azy azz

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏽢Sx

􏽢Sy

􏽢Sz

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
􏽢Ix

􏽢Iy
􏽢Iz􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Tr

axx axy axz

ayx ayy ayz

azx azy azz

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏽢Sx
􏽢Ix

􏽢Sx
􏽢Iy

􏽢Sx
􏽢Iz

􏽢Sy
􏽢Ix

􏽢Sy
􏽢Iy

􏽢Sy
􏽢Iz

􏽢Sz
􏽢Ix

􏽢Sz
􏽢Iy

􏽢Sz
􏽢Iz

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(4)

)e fact that in equation (4) we have two 3 × 3matrices is
convenient, in that they can each be independently ex-
panded into the same orthonormal basis set. )e basis set
usually chosen is that of the spherical tensors of ranks 0, 1,
and 2 because they provide a means to perform a series of
many rotations with relatively little effort. )ese are dis-
cussed further in the subsequent sections. )e spherical

tensor of rank l and z-projection m is denoted T
→→(l)

m . )e
orthonormality condition is quantified in equation (5) be-
low, where δi,j is the Kronecker delta (δi,j � 1 if i � j, and 0 if
i≠ j), and the symbol † means to take the conjugate
transpose of the matrix [17].

Tr T
→→(l)†

m T
→→(l)

m􏼢 􏼣 � δl1 ,l2
δm1 ,m2

. (5)

)e matrix spherical tensors of ranks 0–2 are shown in
equations (6a)–(6i) below:

T
→→(0)

0 �

−
1
�
3

√ 0 0

0 −
1
�
3

√ 0

0 0 −
1
�
3

√

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6a)

T
→→(1)

1 �

0 0
1
2

0 0
i

2

−
1
2

−
i

2
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6b)

T
→→(1)

0 �

0 −
i
�
2

√ 0

i
�
2

√ 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6c)

T
→→(1)

− 1 �

0 0
1
2

0 0 −
i

2

−
1
2

i

2
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6d)

T
→→(2)

2 �

1
2

i

2
0

i

2
−
1
2

0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6e)
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T
→→(2)

1 �

0 0 −
1
2

0 0 −
i

2

−
1
2

−
i

2
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6f)

T
→→(2)

0 �

−
1
�
6

√ 0 0

0 −
1
�
6

√ 0

0 0
2
�
6

√

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6g)

T
→→(2)

− 1 �

0 0
1
2

0 0 −
i

2

1
2

−
i

2
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6h)

T
→→(2)

− 2 �

1
2

−
i

2
0

−
i

2
−
1
2

0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6i)

From here, the two matrices in equation (4) can each be
expanded into the spherical tensor basis and the trace
evaluated. )is is performed in equation (7) [17]:

􏽢H � Tr 􏽘
2

lA�0
􏽘

lA

mA�− lA

a
lA( )

mA
T
→→ lA( )

mA

⎛⎝ ⎞⎠ 􏽘

2

ls�0
􏽘

ls

ms�− ls

􏽢s
ls( )

ms
T
→→ ls( )

ms

⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

� 􏽘

2

l�0
􏽘

l

m�− l

(− 1)
m

a
(l)
m 􏽢s

(l)
− m.

(7)

)e identity T
→→(l)

m � (− 1)m T
→→(l)†

− m has been used to obtain
the result of equation (7) [17]. )e a

(lA)
mA

’s are the physical
space coefficients for their corresponding spherical tensors

and are related to the matrix elements of A
→→

.)ese are scalar-
valued quantities.)e 􏽢s(ls)

ms
’s are the corresponding spin space

coefficients. )ey are matrix-valued quantities whose di-
mensions will depend on the number and types of spins
present in the spin system. Note that when the trace over the
product of the two sums in equation (7) is performed, only

the terms with the same value of l and opposite values of m

are nonzero due to the orthogonality of the spherical tensor
basis. For this reason, we have made the substitutions
lA � ls � l and mA � ms � m in the final equality.

We run into an issue here, however. We are usually
supplied with the Cartesian coefficients for the tensor-valued
quantities of equation (4), but we are interested in the
spherical tensor components. )e Clebsch–Gordan coeffi-
cients will allow us to determine the spherical components of
the matrix spherical tensors of ranks 0, 1, and 2 from the
vector spherical tensors of rank 1. )ey will also allow us to
determine the higher rank terms involved in second-order
average Hamiltonian theory and above. Furthermore, they
can be used to determine the spin states of a system of
component angular momenta, in terms of the component
wave functions.

3. The Clebsch–Gordan Coefficients

3.1. Definition and Application. Many discussions of the
spherical tensor operators supply the relationships shown in
equations (8a)–(8i) below, which relate the Cartesian tensor
coefficients with the spherical ones, without elaborating
further on their origin [19].

a
(2)
2 �

1
2
axx −

1
2
ayy −

i

2
axy −

i

2
ayx, (8a)

a
(2)
1 � −

1
2
azx −

1
2
axz +

i

2
azy +

i

2
ayz, (8b)

a
(2)
0 �

2
�
6

√ azz −
1
�
6

√ axx −
1
�
6

√ ayy, (8c)

a
(2)
− 1 �

1
2
azx +

1
2
axz +

i

2
azy +

i

2
ayz, (8d)

a
(2)
− 2 �

1
2
axx −

1
2
ayy +

i

2
axy +

i

2
ayx, (8e)

a
(1)
1 � −

1
2
azx +

1
2
axz +

i

2
azy −

i

2
ayz, (8f)

a
(1)
0 �

i
�
2

√ axy −
i
�
2

√ ayx, (8g)

a
(1)
− 1 � −

1
2
azx +

1
2
axz −

i

2
azy +

i

2
ayz, (8h)

a
(0)
0 � −

1
�
3

√ axx −
1
�
3

√ ayy −
1
�
3

√ azz. (8i)

)e factors in front of the Cartesian coefficients used in
equations (8a)–(8i) are related to the Clebsch–Gordan coef-
ficients. Clebsch–Gordan coefficients are commonly
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encountered in the study of the addition of quantum angular
momenta. In fact, the mathematics of the spherical tensors are
isomorphous to that of quantum angular momentum systems.

)e Clebsch–Gordan coefficients are usually defined
using equation (9) below [18]:

j1, j2, J, M
􏼌􏼌􏼌􏼌 􏼋 � 􏽘

l1

m1�− l1

􏽘

l2

m2�− l2

j1, m1􏼊
􏼌􏼌􏼌􏼌⊗ j2, m2􏼊

􏼌􏼌􏼌􏼌􏼐 􏼑 j1, j2, J, M
􏼌􏼌􏼌􏼌 􏼋

· j1, m1
􏼌􏼌􏼌􏼌 􏼋⊗ j2, m2

􏼌􏼌􏼌􏼌 􏼋􏼐 􏼑.

(9)

Here, j1 and j2 are the total angular momentum
quantum numbers of two spins, analogous to the ranks of
the individual spherical tensor quantities that make up the
tensor product of equation (4). )e notations
(|j1, m1〉⊗ |j2, m2〉) and ( j1, m1|⊗ j2, m2|)􏼊􏼊 indicate the
ket and bra forms of the product basis of the two-spin
system, respectively. J and M are the total rank and
z-projections for the entire system, respectively. In equation
(9), the Clebsch–Gordan coefficients can be extracted as is
done in equation (10) below [18]:

C
j1 ,j2 ,J( )

m1 ,m2 ,M � j1, m1􏼊
􏼌􏼌􏼌􏼌⊗ j2, m2􏼊

􏼌􏼌􏼌􏼌􏼐 􏼑 j1, j2, J, M
􏼌􏼌􏼌􏼌 􏼋. (10)

Although the definition of the Clebsch–Gordan coeffi-
cients in equation (10) is true, it is not particularly useful for
actually determining what their numerical values are.
Complicated equations exist to predict what these numbers
are, but they are rarely derived in the literature and are quite
nonintuitive [20]. In the following section, we present an
intuitive method to determine what the Clebsch–Gordan
coefficients for a system are.

3.2. An Intuitive Algorithm to Compute the Clebsch–Gordan
Coefficients. In this section, we describe an intuitive algo-
rithm to generate the Clebsch–Gordan coefficients. We
derive the Clebsch–Gordan coefficients for the direct
product space of two rank 1 tensors, from which the 3 × 3
tensors of ranks 0, 1, and 2 can be determined. Bear in mind
that the problem is isomorphous to that of determining the
system spin states of two coupled spin-1 particles. )e
procedure is adapted from that touched on by Griffiths [18]
and Shankar [21].

3.2.1. Determine the Allowed Values of J and M. )e first
step in generating the Clebsch–Gordan coefficients is de-
termining which values of J and M are allowed, given the
total angular momentum quantum numbers (ranks) of the
components of the system (j1 and j2). )e rule for the
allowed values of J is that it ranges from |j1 − j2| to j1 + j2 in
steps of 1. )is is concisely written in equation (11) below
[18]:

j1 − j2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ J≤ j1 + j2. (11)

)is makes sense as the extreme values of possible spin
occur when the two spins’ z-components are either com-
pletely aligned with one another or completely anti-aligned

[18]. A complete derivation of the inequalities in equation
(11) is provided in Chapter X of the book Quantum Me-
chanics by Cohen-Tannoudji, Diu, and Laloë [22].

In our example of two rank 1 tensors, J can range from
|1 − 1| � 0 to 1 + 1 � 2, in steps of 1, meaning that J can be 0,
1, or 2. From here, the allowed values of M for each J are
straightforward to determine, as they range from − J to J in
steps of 1, following typical angular momentum rules. An
easy way to check to make sure that the correct values are
used is that the number of component states used in the
algorithm must equal the number of system states obtained.
For example, for two rank 1 tensors, there are 9 possible
combinations of m1 and m2 (the allowed states are
(|j1, m1〉⊗ |j2, m2〉) � (|1, 1〉⊗ |1, 1〉), (|1, 0〉⊗ |1, 1〉),
(|1, − 1〉⊗ |1, 1〉), (|1, 1〉⊗ |1, 0〉), (|1, 0〉⊗ |1, 0〉),
(|1, − 1〉⊗ |1, 0〉), (|1, 1〉⊗ |1, − 1〉), (|1, 0〉⊗ |1, − 1〉), and
(|1, − 1〉⊗ |1, − 1〉)). )erefore, we should expect 9 states to
be output once the Clebsch–Gordan coefficients have been
determined. Following the rules we have described, we find
that this is, in fact, the case. )e allowed states for the total
system are |j1, j2, J, M〉 � |1, 1, 2, 2〉, |1, 1, 2, 1〉, |1, 1, 2, 0〉,
|1, 1, 2, − 1〉, |1, 1, 2, − 2〉, |1, 1, 1, 1〉, |1, 1, 1, 0〉, |1, 1, 1, − 1〉,
and |1, 1, 0, 0〉.

3.2.2. Determine the Lowering Operators for the Component
and System Tensors. )e algorithm for generating the
Clebsch–Gordan coefficients that we describe in this section
relies on successive applications of lowering operators. )e
next step is to generate the lowering operators for both the
system and for the individual spins that make up the system
(note that we have been using the terms “spin” and “rank”
interchangeably to reinforce the concept that the mathe-
matics of the spherical tensors is identical to that of a
corresponding spin system). )is can be accomplished by
applying the rules in equations (12a) and (12b) below [23]:

􏽢j− (j)|j, m〉 �

�����������������

j(j + 1) − m(m − 1)

􏽱

|j, m − 1〉, (12a)

􏽢j− m,m′(j) � j, m|􏽢j– (j) j, m′
􏼌􏼌􏼌􏼌 􏼋.􏽄 (12b)

Equation (12a) states that the lowering operator for a
given spin (􏽢j − (j)) lowers the state by one z-projection
quantum number and multiplies it by a factor related to its j

and m values. A nice derivation of this result is provided in
Chapter 12 of the book Principles of QuantumMechanics by
R. Shankar [21]. Equation (12b) tells how to obtain the
(m, m′) matrix element of the lowering operator.We provide
a brief justification of equation (12b) in Section S9 of the
Supplementary Materials. For our example spin system, we
are interested in tensors of ranks 0, 1, and 2. It is convenient
to create tables that determine what each lowering operator
does to each state.)e rank 0 tensor has no states to lower, so
we omit it. We begin with the rank 1 terms given in Table 1.

)e rank 2 case is given in Table 2.
From equation (12b), we can determine the full matrix

representation of the lowering operators:
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􏽢j (1) �

1, 1|􏽢j (1)|1, 1􏽄 􏽅 1, 1|􏽢j (1)|1, 0􏽄 􏽅 1, 1|􏽢j (1)|1, − 1􏽄 􏽅

1, 0|􏽢j (1)|1, 1􏽄 􏽅 1, 0|􏽢j (1)|1, 0􏽄 􏽅 1, 0|􏽢j (1)|1, − 1􏽄 􏽅

1, − 1|􏽢j (1)|1, 1􏽄 􏽅 1, − 1|􏽢j (1)|1, 0􏽄 􏽅 1, − 1|􏽢j (1)|1, − 1􏽄 􏽅

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (13a)

􏽢j (2) �

2, 2|􏽢j (2)|2, 2􏽄 􏽅 2, 2|􏽢j (2)|2, 1􏽄 􏽅 2, 2|􏽢j (2)|2, 0􏽄 􏽅 2, 2|􏽢j (2)|2, − 1􏽄 􏽅 2, 2|􏽢j (2)|2, − 2􏽄 􏽅

2, 1|􏽢j (2)|2, 2􏽄 􏽅 2, 1|􏽢j (2)|2, 1􏽄 􏽅 2, 1|􏽢j (2)|2, 0􏽄 􏽅 2, 1|􏽢j (2)|2, − 1􏽄 􏽅 1, 1|􏽢j (2)|2, − 2􏽄 􏽅

2, 0|􏽢j (2)|2, 2􏽄 􏽅 2, 0|􏽢j (2)|2, 1􏽄 􏽅 2, 0|􏽢j (2)|2, 0􏽄 􏽅 2, 0|􏽢j (2)|2, − 1􏽄 􏽅 2, 0|􏽢j (2)|2, − 2􏽄 􏽅

2, − 1|􏽢j (2)|2, 2􏽄 􏽅 2, − 1|􏽢j (2)|2, 1􏽄 􏽅 2, − 1|􏽢j (2)|2, 0􏽄 􏽅 2, − 1|􏽢j (2)|2, − 1􏽄 􏽅 2, − 1|􏽢j (2)|2, − 2􏽄 􏽅

2, − 2|􏽢j (2)|2, 2􏽄 􏽅 2, − 2|􏽢j (2)|2, 1􏽄 􏽅 2, − 2|􏽢j (2)|2, 0􏽄 􏽅 2, − 2|􏽢j (2)|2, − 1􏽄 􏽅 2, − 2|􏽢j (2)|2, − 2􏽄 􏽅

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13b)

Applying the rule in equation (12a) then allows equa-
tions (13a) and (13b) to be evaluated. )is is done in

equations (14a) and (14b) below. We have also used the rule
􏽢j (j)|j, − j〉 � 0

→
(the lowest allowed z-projection cannot be

lowered any further):

􏽢j_(1) �

�
2

√
1, 1|1, 0〈 〉

�
2

√
1, 1|1, − 1〈 〉 0

�
2

√
1, 0|1, 0〈 〉

�
2

√
1, 0|1, − 1〈 〉 0

�
2

√
1, − 1|1, 0〈 〉

�
2

√
1, − 1|1, − 1〈 〉 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (14a)

􏽢j_(2) �

2 2, 2|2, 1〈 〉
�
6

√
2, 2|2, 0〈 〉

�
6

√
2, 2|2, − 1〈 〉 2 2, 2|2, − 2〈 〉 0

2 2, 1|2, 1〈 〉
�
6

√
2, 1|2, 0〈 〉

�
6

√
2, 1|2, − 1〈 〉 2 2, 1|2, − 2〈 〉 0

2 2, 0|2, 1〈 〉
�
6

√
2, 0|2, 0〈 〉

�
6

√
2, 0|2, − 1〈 〉 2 2, 0|2, − 2〈 〉 0

2 2, − 1|2, 1〈 〉
�
6

√
2, − 1|2, 0〈 〉

�
6

√
2, − 1|2, − 1〈 〉 2 2, − 1|2, − 2〈 〉 0

2 2, − 2|2, 1〈 〉
�
6

√
2, − 2|2, 0〈 〉

�
6

√
2, − 2|2, − 1〈 〉 2 2, − 2|2, − 2〈 〉 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14b)

From here, orthonormality of the basis states can be used
to evaluate the matrix elements, with i|j􏼊 􏼋 � δi,j. )is is
performed in equations (15a) and (15b) below:

Table 2: )e effect of the spin-2 lowering operator on each allowed spin state.

j m j(j + 1) m(m − 1) j(j + 1) − m(m − 1)
�����������������
j(j + 1) − m(m − 1)

􏽰

2 2 6 2 4 2
2 1 6 0 6

�
6

√

2 0 6 0 6
�
6

√

2 − 1 6 2 4 2
2 − 2 6 6 0 0

Table 1: )e effect of the spin-1 lowering operator on each allowed spin state.

j m j(j + 1) m(m − 1) j(j + 1) − m(m − 1)
�����������������
j(j + 1) − m(m − 1)

􏽰

1 1 2 0 2
�
2

√

1 0 2 0 2
�
2

√

1 − 1 2 2 0 0
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􏽢j− (1) �

0 0 0
�
2

√
0 0

0
�
2

√
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (15a)

􏽢j− (2) �

0 0 0 0 0
2 0 0 0 0
0

�
6

√
0 0 0

0 0
�
6

√
0 0

0 0 0 2 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15b)

)ese are the lowering operators for rank 1 and rank 2
tensors. )ey will be used in the following section.

3.2.3. Write the System Spin States as Linear Combinations of
the Component Spin States. We now want to write the
system spin states in terms of the component spin states.)e
resulting weights of the linear combination are the
Clebsch–Gordan coefficients. In order to begin this process,
there are a couple of useful rules to keep in mind. First,
C

(j1 ,j2 ,J)
m1 ,m2 ,M is only nonzero if m1 + m2 � M [18]. Another

useful rule is given by equation (16), where the left side of the
equation is the total angular momentum state and the right
side is the linear combination of component states:

j1, j2, j1 + j2, j1 + j2
􏼌􏼌􏼌􏼌 􏼋 � 1 j1, j1

􏼌􏼌􏼌􏼌 􏼋⊗ j2, j2
􏼌􏼌􏼌􏼌 􏼋􏼐 􏼑. (16)

)is says that the highest z-projection of the highest
allowed system spin is equal to the component state with both
component spins in their highest z-projection state. We have
explicitly written the “1” in front of the component state to
emphasize that this is the only nonzero Clebsch–Gordan
coefficient for the |j1, j2, j1 + j2, j1 + j2〉 state. )e fact that
equation (16) is true makes sense, as this is the only state for
whichm1 + m2 � j1 + j2. In our example of two rank 1 vector
spherical tensors, this gives equation (17) below:

|1, 1, 2, 2〉 � 1(|1, 1〉⊗ |1, 1〉). (17)

From here, we can simply use successive applications of the
total lowering operator (which is the sum of the individual
lowering operators) to solve for the other rank 2 terms. Note
that we are interested in the rank 2 terms at the moment, so we
know that the system lowering operator must act on the rank 2
states like a spin-2 lowering operator. For this reason, we use
the notation 􏽢J− (2) to indicate the total lowering operator for
the system. )e first round of this process is carried through
equations (18a)–(18c) below. Note that the Clebsch–Gordan
coefficents are the numbers in front of the component spin
states in the last line of the derivation (equation (18c)):

􏽢J (2)|1, 1, 2, 2〉 � 􏽢j
(1)

− (1) + 􏽢j
(2)

− (1)􏼒 􏼓(|1, 1〉⊗ |1, 1〉),

(18a)

2|1, 1, 2, 1〉 �
�
2

√
(|1, 0〉⊗ |1, 1〉) +

�
2

√
(|1, 1〉⊗ |1, 0〉),

(18b)

|1, 1, 2, 1〉 �

�
2

√

2
(|1, 0〉⊗ |1, 1〉) +

�
2

√

2
(|1, 1〉⊗ |1, 0〉)

�
1
�
2

√ (|1, 0〉⊗ |1, 1〉) +
1
�
2

√ (|1, 1〉⊗ |1, 0〉).

(18c)

In equation (18a), 􏽢J− (2) is the rank 2 lowering operator
for the system, and 􏽢j

(1)

− (1) and 􏽢j
(2)

− (1) are the rank 1
lowering operators for the component spins 1 and 2, re-
spectively. Note that 􏽢j

(1)

− (1) only affects spin number 1 and
􏽢j

(2)

− (1) only affects spin number 2. From here, the lowering
operator can again be applied. )is is carried through in
equations (19a)–(19d) below:

􏽢J− (2)|1, 1, 2, 1〉 � 􏽢j
(1)

− (1) + 􏽢j
(2)

− (1)􏼒 􏼓
1
�
2

√ (|1, 0􏼠 􏼫⊗ |1, 1〉) +
1
�
2

√ (|1, 1〉⊗ |1, 0〉)), (19a)

�
6

√
|1, 1, 2, 0〉 �

�
2

√ 1
�
2

√􏼠 􏼡(|1, − 1〉⊗ |1, 1〉) +
�
2

√ 1
�
2

√􏼠 􏼡(|1, 0〉⊗ |1, 0〉)

+
�
2

√ 1
�
2

√􏼠 􏼡(|1, 0〉⊗ |1, 0〉) +
�
2

√ 1
�
2

√􏼠 􏼡(|1, 1〉⊗ |1, − 1〉),

(19b)

�
6

√
|1, 1, 2, 0〉 � (|1, − 1〉⊗ |1, 1〉) + 2(|1, 0〉⊗ |1, 0〉) + (|1, 1〉⊗ |1, − 1〉), (19c)

|1, 1, 2, 0〉 �
1
�
6

√ (|1, − 1〉⊗ |1, 1〉) +
2
�
6

√ (|1, 0〉⊗ |1, 0〉) +
1
�
6

√ (|1, 1〉⊗ |1, − 1〉). (19d)

)is process can nowbe continued for the other J � 2 states,
as is done in equations (20a)–(21d). In cases where the lowering
operator is applied to the lowest possible spin state, resulting in

the zero vector, we have omitted the calculation. Once again,
note that the Clebsch–Gordan coefficients are the numbers
appearing before each of the component states on the right side
of the final line in each derivation (equations (20e) and (21d)):
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􏽢J− (2)|1, 1, 2, 0〉 � 􏽢j
(1)

− (1) + 􏽢j
(2)

− (1)􏼒 􏼓

×
1
�
6

√ (|1, − 1􏼠 􏼫⊗ |1, 1〉) +
2
�
6

√ (|1, 0〉⊗ |1, 0〉) +
1
�
6

√ (|1, 1〉⊗ |1, − 1〉)),

(20a)

�
6

√
|1, 1, 2, − 1〉 �

�
2

√ 2
�
6

√􏼠 􏼡(|1, − 1〉⊗ |1, 0〉) +
�
2

√ 1
�
6

√􏼠 􏼡(|1, 0〉⊗ |1, − 1〉)

+
�
2

√ 1
�
6

√􏼠 􏼡(|1, − 1〉⊗ |1, 0〉) +
�
2

√ 2
�
6

√􏼠 􏼡(|1, 0〉⊗ |1, − 1〉),

(20b)

�
6

√
|1, 1, 2, − 1〉 �

�
3

√
(|1, − 1〉⊗ |1, 0〉) +

�
3

√
(|1, 0〉⊗ |1, − 1〉), (20c)

|1, 1, 2, − 1〉 �

�
3

√

�
6

√ (|1, − 1〉⊗ |1, 0〉) +

�
3

√

�
6

√ (|1, 0〉⊗ |1, − 1〉), (20d)

|1, 1, 2, − 1〉 �
1
�
2

√ (|1, − 1〉⊗ |1, 0〉) +
1
�
2

√ (|1, 0〉⊗ |1, − 1〉), (20e)

􏽢J− (2)|1, 1, 2, − 1〉 � 􏽢j
(1)

− (1) + 􏽢j
(2)

− (1)􏼒 􏼓
1
�
2

√ (|1, − 1􏼠 􏼫⊗ |1, 0〉) +
1
�
2

√ (|1, 0〉⊗ |1, − 1〉)), (21a)

2|1, 1, 2, − 2〉 �
�
2

√ 1
�
2

√􏼠 􏼡(|1, − 1〉⊗ |1, − 1〉) +
�
2

√ 1
�
2

√􏼠 􏼡(|1, − 1〉⊗ |1, − 1〉), (21b)

2|1, 1, 2, − 2〉 � 2(|1, − 1〉⊗ |1, − 1〉), (21c)

|1, 1, 2, − 2〉 � 1(|1, − 1〉⊗ |1, − 1〉). (21d)

)is completes the determination of the J � 2 states for a
system of two spin-1 spins. )e resulting linear combina-
tions of component states are summarized in quations (22a)-

(22b) below. Again, the Clebsch–Gordon coefficients are the
coeffcients in front of the component states on the right-
hand side of each of these equations:

|1, 1, 2, 2〉 � 1(|1, 1〉⊗ |1, 1〉), (22a)

|1, 1, 2, 1〉 �
1
�
2

√ (|1, 0〉⊗ |1, 1〉) +
1
�
2

√ (|1, 1〉⊗ |1, 0〉), (22b)

|1, 1, 2, 0〉 �
1
�
6

√ (|1, − 1〉⊗ |1, 1〉) +
2
�
6

√ (|1, 0〉⊗ |1, 0〉) +
1
�
6

√ (|1, 1〉⊗ |1, − 1〉), (22c)

|1, 1, 2, − 1〉 �
1
�
2

√ (|1, 0〉⊗ |1, − 1〉) +
1
�
2

√ (|1, − 1〉⊗ |1, 0〉), (22d)

|1, 1, 2, − 2〉 � 1(|1, − 1〉⊗ |1, − 1〉). (22e)

)e J � 2 case gives 5 system states. However, there are 9
component states. )erefore, we need to produce 4 more
states. )ese will arise from the three J � 1 states and one
J � 0 state. We can now generate the J � 1 states. However,
we need to start with the state |j1, j2, J, M〉 � |1, 1, 1, 1〉, but
we already have an M � 1 state that corresponds to J � 2.

We can obtain an acceptable state with J � 1 and M � 1 by
demanding that 1, 1, 2, 1|t1, 1, 1, 1〉 � 0〈 . )is is done in
equations (23a)–(23f). In equations (23d)–(23f), we have
used the fact that the sum of the squares of the coefficients
for the linear combinationmust be 1 in order tomaintain the
normalization of the wave function. Furthermore, it should
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be noted that the Clebsch–Gordan coefficients are only
unique up to a complex phase factor. We have chosen this
phase factor to conform to the Condon–Shortley phase
convention and Wigner sign convention described by Baird
and Biedenharn [24]. )ese are standard conventions and
match those used by Mathematica, for example [25].

Another advantage of this convention is that all of the
Clebsch–Gordan coefficients work out to be real numbers
when it is used [24]. Conveniently, this is also the phase
convention that occurs naturally with no modification when
adhering the algorithm described herein:

1, 1, 2, 1|1, 1, 1, 1〈 〉 �
1
�
2

√ ( 1, 0〈 |⊗ 1, 1〈 |) +
1
�
2

√ ( 1, 1〈 | |⊗〈 | 1, 0|〈 )􏼠 􏼡

× C
(1,1,1)
0,1,1 (|1, 0􏼐 􏽅⊗ |1, 1〉) + C

(1,1,1)
1,0,1 (|1, 1〉⊗ |1, 0〉)),

(23a)

0 �
1
�
2

√ C
(1,1,1)
0,1,1 +

1
�
2

√ C
(1,1,1)
1,0,1 , (23b)

C
(1,1,1)
0,1,1 � − C

(1,1,1)
1,0,1 , (23c)

C
(1,1,1)
1,0,1 �

1
�
2

√ , (23d)

C
(1,1,1)
0,1,1 � −

1
�
2

√ , (23e)

|1, 1, 1, 1〉 � −
1
�
2

√ (|1, 0〉⊗ |1, 1〉) +
1
�
2

√ (|1, 1〉⊗ |1, 0〉). (23f)

From here, we can proceed in much the same manner as
before by applying the (now spin-1) lowering operator
successively until all of the spin-1 system states have been
determined. In this case, we use the notation 􏽢J− (1), as we

now need it to behave like a spin-1 lowering operator when
applied to the total state of the system. )is is performed in
equations (24a)–(25d) below:

􏽢J− (1)|1, 1, 1, 1〉 � 􏽢j
(1)

− (1) + 􏽢j
(2)

− (1)􏼒 􏼓 −
1
�
2

√ (|1, 0􏼠 􏼫⊗ |1, 1〉) +
1
�
2

√ (|1, 1〉⊗ |1, 0〉)), (24a)

�
2

√
|1, 1, 1, 0〉 � −

�
2

√ 1
�
2

√􏼠 􏼡(|1, − 1〉⊗ |1, 1〉) +
�
2

√ 1
�
2

√􏼠 􏼡(|1, 0〉⊗ |1, 0〉)

−
�
2

√ 1
�
2

√􏼠 􏼡(|1, 0〉⊗ |1, 0〉) +
�
2

√ 1
�
2

√􏼠 􏼡(|1, 1〉⊗ |1, − 1〉),

(24b)

�
2

√
|1, 1, 1, 0〉 � − (|1, − 1〉⊗ |1, 1〉) + (|1, 1〉⊗ |1, − 1〉), (24c)

|1, 1, 1, 0〉 � −
1
�
2

√ (|1, − 1〉⊗ |1, 1〉) +
1
�
2

√ (|1, 1〉⊗ |1, − 1〉), (24d)

􏽢J− (1)|1, 1, 1, 0〉 � 􏽢j
(1)

− (1) + 􏽢j
(2)

− (1)􏼒 􏼓 −
1
�
2

√ (|1, − 1􏼠 􏼫⊗ |1, 1〉) +
1
�
2

√ (|1, 1〉⊗ |1, − 1〉)), (25a)

�
2

√
|1, 1, 1, − 1〉 �

�
2

√ 1
�
2

√􏼠 􏼡(|1, 0〉⊗ |1, − 1〉) −
�
2

√ 1
�
2

√􏼠 􏼡(|1, − 1〉⊗ |1, 0〉), (25b)

�
2

√
|1, 1, 1, − 1〉 � (|1, 0〉⊗ |1, − 1〉) − (|1, − 1〉⊗ |1, 0〉), (25c)
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|1, 1, 1, − 1〉 �
1
�
2

√ (|1, 0〉⊗ |1, − 1〉) −
1
�
2

√ (|1, − 1〉⊗ |1, 0〉), (25d)

)e J � 1 states are summarized in equations
(26a)–(26c), with the Clebsch–Gordan coefficients being the
numbers in front of each of the component states on the
right-hand side of each equation:

|1, 1, 1, 1〉 � −
1
�
2

√ (|1, 0〉⊗ |1, 1〉) +
1
�
2

√ (|1, 1〉⊗ |1, 0〉),

(26a)

|1, 1, 1, 0〉 � −
1
�
2

√ (|1, − 1〉⊗ |1, 1〉) +
1
�
2

√ (|1, 1〉⊗ |1, − 1〉),

(26b)

|1, 1, 1, − 1〉 �
1
�
2

√ (|1, 0〉⊗ |1, − 1〉) −
1
�
2

√ (|1, − 1〉⊗ |1, 0〉).

(26c)

We now have 8 states and their corresponding
Clebsch–Gordan coefficients (5 from J � 2, and 3 from
J � 1). We finally need the Clebsch–Gordan coefficients for
the state |j1, j2, J, M〉 � |1, 1, 0, 0〉. In order to accomplish
this, we proceed in much the same way that we used to solve
for the |1, 1, 1, 1〉 state; only now, it needs to be orthogonal to
both |j1, j2, J, M〉 � |1, 1, 2, 0〉 and |j1, j2, J, M〉 � |1, 1, 1, 0〉

states. )is gives the simultaneous system of equations (27a)
and (27b) below:

1, 1, 2, 0|1, 1, 0, 0〈 〉 � 0 �
1
�
6

√ ( 1, − 1|⊗ 1, 1|) +
2
�
6

√ ( 1, 0|⊗ 1, 0|) +
1
�
6

√ ( 1, 1|⊗ 1, − 1|)〈 )〈􏼪􏼪􏼪􏼪􏼠

× C
(1,1,0)
− 1,1,0 (|1, − 1􏼐 􏽅⊗ |1, 1〉) + C

(1,1,0)
0,0,0 (|1, 0〉⊗ |1, 0〉) + C

(1,1,0)
1,− 1,0 (|1, 1〉⊗ |1, − 1〉)),

(27a)

1, 1, 1, 0|1, 1, 0, 0〈 〉 � 0 � −
1
�
2

√ ( 1, − 1|⊗ 1, 1|) +
1
�
2

√ ( 1, 1|⊗ 1, − 1|)〈 )〈􏼪􏼪􏼠

× C
(1,1,0)
− 1,1,0 (|1, − 1􏼐 􏽅⊗ |1, 1〉) + C

(1,1,0)
0,0,0 (|1, 0〉⊗ |1, 0〉) + C

(1,1,0)
1,− 1,0 (|1, 1〉⊗ |1, − 1〉)).

(27b)

)is leads to the following derivation in equations
(28a)–(28i):

0 �
1
�
6

√ C
(1,1,0)
− 1,1,0 +

2
�
6

√ C
(1,1,0)
0,0,0 +

1
�
6

√ C
(1,1,0)
1,− 1,0 , (28a)

0 � −
1
�
2

√ C
(1,1,0)
− 1,1,0 +

1
�
2

√ C
(1,1,0)
1,− 1,0 , (28b)

C
(1,1,0)
1,− 1,0 � C

(1,1,0)
− 1,1,0 , (28c)

0 �
1
�
6

√ C
(1,1,0)
− 1,1,0 +

2
�
6

√ C
(1,1,0)
0,0,0 +

1
�
6

√ C
(1,1,0)
− 1,1,0 , (28d)

C
(1,1,0)
0,0,0 � − C

(1,1,0)
− 1,1,0 , (28e)

C
(1,1,0)
− 1,1,0 �

1
�
3

√ , (28f)

C
(1,1,0)
1,− 1,0 �

1
�
3

√ , (28g)

C
(1,1,0)
0,0,0 � −

1
�
3

√ , (28h)

|1, 1, 0, 0〉 �
1
�
3

√ (|1, − 1〉⊗ |1, 1〉) −
1
�
3

√ (|1, 0〉⊗ |1, 0〉)

+
1
�
3

√ (|1, 1〉⊗ |1, − 1〉).

(28i)

Again, the overall phase of the wave function has been
chosen to use the Condon-Shortley phase convention that is
used by Mathematica, and they have been chosen to produce
a normalized wave function. To summarize, all 9 system
states are reproduced in equations (29a)–(29i) below:

|1, 1, 2, 2〉 � 1(|1, 1〉⊗ |1, 1〉), (29a)

|1, 1, 2, 1〉 �
1
�
2

√ (|1, 0〉⊗ |1, 1〉) +
1
�
2

√ (|1, 1〉⊗ |1, 0〉),

(29b)

|1, 1, 2, 0〉 �
1
�
6

√ (|1, − 1〉⊗ |1, 1〉) +
2
�
6

√ (|1, 0〉⊗ |1, 0〉)

+
1
�
6

√ (|1, 1〉⊗ |1, − 1〉),

(29c)
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|1, 1, 2, − 1〉 �
1
�
2

√ (|1, 0〉⊗ |1, − 1〉) +
1
�
2

√ (|1, − 1〉⊗ |1, 0〉),

(29d)

|1, 1, 2, − 2〉 � 1(|1, − 1〉⊗ |1, − 1〉),

(29e)

|1, 1, 1, 1〉 � −
1
�
2

√ (|1, 0〉⊗ |1, 1〉) +
1
�
2

√ (|1, 1〉⊗ |1, 0〉),

(29f)

|1, 1, 1, 0〉 � −
1
�
2

√ (|1, − 1〉⊗ |1, 1〉) +
1
�
2

√ (|1, 1〉⊗ |1, − 1〉),

(29g)

|1, 1, 1, − 1〉 �
1
�
2

√ (|1, 0〉⊗ |1, − 1〉) −
1
�
2

√ (|1, − 1〉⊗ |1, 0〉),

(29h)

|1, 1, 0, 0〉 �
1
�
3

√ (|1, − 1〉⊗ |1, 1〉) −
1
�
3

√ (|1, 0〉⊗ |1, 0〉)

+
1
�
3

√ (|1, 1〉⊗ |1, − 1〉).

(29i)

Although the example used here involved 2 spins of spin-
1, this same procedure can be used for any two spins (or the
equivalent calculation for tensor-valued quantities). All of
these can be verified using Mathematica’s “ClebschGordan
[{j1, m1},{j2, m2},{J, M}]” command.

4. The Clebsch–Gordan Coefficients and
Spherical Tensors

)e spherical tensors are tensors which rotate according to
equation (30) below [17]:

T
→→(l)

m (new frame) � 􏽘
l

m′�− l

D
(l)

m′ ,m T
→→(l)

m′(old frame). (30)

Here, the D
(l)

m,m′ ’s are the matrix elements of the Wigner
rotation matrix. As we have stated previously and will
continue to stress throughout this text, the rotational be-
havior of the spherical tensor operators is identical to that of
the corresponding spin states of the same values of l and m.

Further explanation of this relationship is provided by
Shankar [21]. For vectors, which are tensors of rank 1, the
basis elements that have this property are given by in
equations (31a)–(31c) below:

T
→(1)

1 �

−
1
�
2

√

−
i
�
2

√

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31a)

T
→(1)

0 �

0
0
1

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (31b)

T
→(1)

− 1 �

1
�
2

√

−
i
�
2

√

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (31c)

)e importance of the Clebsch–Gordan coefficients to
the spherical tensor operators can be realized by first con-
sidering the behavior of the Cartesian basis vectors given by
equations (32a)–(32c) below:

i
→

�

1

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (32a)

j
→

�

0
1
0

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (32b)

k
→

�

0
0
1

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠. (32c)

In order to obtain terms describing the interactions of a
spin with other fields, we need to take outer products of these
vectors with themselves. If this is done with the Cartesian
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vectors, we obtain the following 9 matrices (equations
(33a)–(33i)):

i
→

i
→T

�

1 0 0

0 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (33a)

i
→

j
→T

�

0 1 0
0 0 0
0 0 0

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (33b)

i
→

k
→T

�

0 0 1
0 0 0
0 0 0

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (33c)

j
→

i
→T

�

0 0 0
1 0 0
0 0 0

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (33d)

j
→

j
→T

�

0 0 0
0 1 0
0 0 0

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (33e)

j
→

k
→T

�

0 0 0
0 0 1
0 0 0

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (33f)

k
→

i
→T

�

0 0 0
0 0 0
1 0 0

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (33g)

k
→

j
→T

�

0 0 0
0 0 0
0 1 0

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (33h)

k
→

k
→T

�

0 0 0
0 0 0
0 0 1

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠. (33i)

From equations (33a)–(33i), we see that if the outer
product of two Cartesian basis vectors is calculated, a
Cartesian basis tensor is the result. )is is not the case for
the spherical basis: the outer product of two spherical
vectors does not necessarily produce a spherical tensor
with the correct rotational property given by equation
(30). )e Clebsch–Gordan coefficients, however, provide
us with the coefficients necessary to construct spherical
tensors from linear combinations of the outer products of
spherical vectors. )ey can be constructed in a completely
analogous way to the strategy we used to build up the
system wave functions from component wave functions in

the previous section. )us, we obtain the following 9
relationships of equations (34a)–(34i):

T
→→(2)

2 � 1T
→(1)

1 T
→(1)T

1 , (34a)

T
→→(2)

1 �
1
�
2

√ T
→(1)

0 T
→(1)T

1 +
1
�
2

√ T
→(1)

1 T
→(1)T

0 , (34b)

T
→→(2)

0 �
1
�
6

√ T
→(1)

− 1 T
→(1)T

1 +
2
�
6

√ T
→(1)

0 T
→(1)T

0 +
1
�
6

√ T
→(1)

1 T
→(1)T

− 1 ,

(34c)

T
→→(2)

− 1 �
1
�
2

√ T
→(1)

0 T
→(1)T

− 1 +
1
�
2

√ T
→(1)

− 1 T
→(1)T

0 , (34d)

T
→→(2)

− 2 � 1T
→(1)

− 1 T
→(1)T

− 1 , (34e)

T
→→(1)

1 � −
1
�
2

√ T
→(1)

0 T
→(1)T

1 +
1
�
2

√ T
→(1)

1 T
→(1)T

0 , (34f)

T
→→(1)

0 � −
1
�
2

√ T
(1)
− 1 T

→(1)T

1 +
1
�
2

√ T
→(1)

1 T
→(1)T

− 1 , (34g)

T
→→(1)

− 1 �
1
�
2

√ T
→(1)

0 T
→(1)T

− 1 −
1
�
2

√ T
→(1)

− 1 T
→(1)T

0 , (34h)

T
→→(0)

0 �
1
�
3

√ T
→(1)

− 1 T
→(1)T

1 −
1
�
3

√ T
→(1)

0 T
→(1)T

0 +
1
�
3

√ T
→(1)

1 T
→(1)T

− 1 .

(34i)

As an example of how to perform one of these calcu-

lations, we explicitly derive the T
→→(2)

0 spherical tensor in
equations (35a)–(35d) below:

T
→→

(2)

0 �
1
�
6

√ T
→(1)

− 1 T
→(1)T

1 +
2
�
6

√ T
→(1)

0 T
→(1)T

0 +
1
�
6

√ T
→(1)

1 T
→(1)T

− 1 ,

(35a)

T
→→(2)

0 �
1
�
6

√

1
�
2

√

−
i
�
2

√

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
1
�
2

√ −
i
�
2

√ 0􏼠 􏼡

+
2
�
6

√

0
0
1

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ 0 0 1( 􏼁

+
1
�
6

√

−
1
�
2

√

−
i
�
2

√

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
�
2

√ −
i
�
2

√ 0􏼠 􏼡,

(35b)
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T
→→

(2)

0 �
1
�
6

√

−
1
2

−
i

2
0

i

2
−
1
2

0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
2
�
6

√

0 0 0
0 0 0
0 0 1

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

+
1
�
6

√

−
1
2

i

2
0

−
i

2
−
1
2

0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(35c)

T
→→

(2)

0 �

−
1
�
6

√ 0 0

0 −
1
�
6

√ 0

0 0
2
�
6

√

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (35d)

All of the other spherical tensors shown in equations
(6a)–(6i) can be constructed in an equivalent manner to that
shown above (equations (35a)–(35d)).

5. The Hamiltonian and
Clebsch–Gordan Coefficients

5.1. ;e Spherical Components of Hamiltonian. )e
Clebsch–Gordan coefficients allow for a quick determina-
tion of the terms of the Hamiltonian and how they change
upon a rotation. Conveniently, in addition to being able to
be used to generate the spherical tensors themselves, they
can also be used to generate the spherical components of the
Hamiltonian from the corresponding spherical tensor co-
efficients. )is is shown in equations (36a)–(36i) below:

􏽢s
(2)
2 � 1 −

1
�
2

√ 􏽢I+􏼠 􏼡 −
1
�
2

√ 􏽢S+􏼠 􏼡 �
1
2
􏽢I+

􏽢S+, (36a)

􏽢s
(2)
1 �

1
�
2

√ 􏽢Iz􏼐 􏼑 −
1
�
2

√ 􏽢S+􏼠 􏼡 +
1
�
2

√ −
1
�
2

√ 􏽢I+􏼠 􏼡 􏽢Sz􏼐 􏼑

� −
1
2
􏽢Iz

􏽢S+ −
1
2
􏽢I+

􏽢Sz,

(36b)

􏽢s
(2)
0 �

1
�
6

√
1
�
2

√ 􏽢I−􏼠 􏼡 −
1
�
2

√ 􏽢S+􏼠 􏼡 +
2
�
6

√ 􏽢Iz􏼐 􏼑 􏽢Sz􏼐 􏼑 +
1
�
6

√ −
1
�
2

√ 􏽢I+􏼠 􏼡
1
�
2

√ 􏽢S−􏼠 􏼡

� −
1

2
�
6

√ 􏽢I−
􏽢S+ +

2
�
6

√ 􏽢Iz
􏽢Sz −

1
2

�
6

√ 􏽢I+
􏽢S− ,

(36c)

􏽢s
(2)
− 1 �

1
�
2

√ 􏽢Iz􏼐 􏼑
1
�
2

√ 􏽢S−􏼠 􏼡 +
1
�
2

√
1
�
2

√ 􏽢I−􏼠 􏼡 􏽢Sz􏼐 􏼑

�
1
2
􏽢Iz

􏽢S− +
1
2
􏽢I−

􏽢Sz,

(36d)

􏽢s
(2)
− 2 � 1

1
�
2

√ 􏽢I−􏼠 􏼡
1
�
2

√ 􏽢S−􏼠 􏼡 �
1
2
􏽢I−

􏽢S− , (36e)

􏽢s
(1)
1 � −

1
�
2

√ 􏽢Iz􏼐 􏼑 −
1
�
2

√ 􏽢S+􏼠 􏼡 +
1
�
2

√ −
1
�
2

√ 􏽢I+􏼠 􏼡 􏽢Sz􏼐 􏼑

�
1
2
􏽢Iz

􏽢S+ −
1
2
􏽢I+

􏽢Sz,

(36f)
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􏽢s
(1)
0 � −

1
�
2

√
1
�
2

√ 􏽢I−􏼠 􏼡 −
1
�
2

√ 􏽢S+􏼠 􏼡 +
1
�
2

√ −
1
�
2

√ 􏽢I+􏼠 􏼡
1
�
2

√ 􏽢S−􏼠 􏼡

�
1

2
�
2

√ 􏽢I−
􏽢S+ −

1
2

�
2

√ 􏽢I+
􏽢S− ,

(36g)

􏽢s
(1)
− 1 �

1
�
2

√ 􏽢Iz􏼐 􏼑
1
�
2

√ 􏽢S−􏼠 􏼡 −
1
�
2

√
1
�
2

√ 􏽢I−􏼠 􏼡 􏽢Sz􏼐 􏼑

�
1
2
􏽢Iz

􏽢S− −
1
2
􏽢I−

􏽢Sz,

(36h)

􏽢s
(0)
0 �

1
�
3

√
1
�
2

√ 􏽢I−􏼠 􏼡 −
1
�
2

√ 􏽢S+􏼠 􏼡 −
1
�
3

√ 􏽢Iz􏼐 􏼑 􏽢Sz􏼐 􏼑 +
1
�
3

√ −
1
�
2

√ 􏽢I+􏼠 􏼡
1
�
2

√ 􏽢S−􏼠 􏼡

� −
1

2
�
3

√ 􏽢I−
􏽢S+ −

1
�
3

√ 􏽢Iz
􏽢Sz −

1
2

�
3

√ 􏽢I+
􏽢S− ,

(36i)

)ese are the same 􏽢s(l)
m ’s that are mentioned in equation

(7). In equations (36a)–(36i), the one-spin spherical tensor
operators for spin I are − (1/

�
2

√
)􏽢I+, 􏽢Iz, and (1/

�
2

√
)􏽢I− , for

the m � 1, m � 0, and m � − 1 cases, respectively. )e
analogous expressions are used for the S-operators. 􏽢I+ and 􏽢I−

are the raising and lowering operators for spin I (again,
analogous quantities exist for the S-operators). )eir rela-
tionship to the Cartesian operators is shown in equations
(37a) and (37b) below:

􏽢I+ � 􏽢Ix + i􏽢Iy, (37a)

􏽢I− � 􏽢Ix − i􏽢Iy. (37b)

)ese expressions can be used to write equations
(36a)–(36i) in the manner done in equations (38a)–(38i)
below:

􏽢s
(2)
2 �

1
2
􏽢Ix

􏽢Sx −
1
2
􏽢Iy

􏽢Sy −
i

2
􏽢Ix

􏽢Sy −
i

2
􏽢Iy

􏽢Sx, (38a)

􏽢s
(2)
1 � −

1
2
􏽢Iz

􏽢Sx −
1
2
􏽢Ix

􏽢Sz +
i

2
􏽢Iz

􏽢Sy +
i

2
􏽢Iy

􏽢Sz, (38b)

􏽢s
(2)
0 �

2
�
6

√ 􏽢Iz
􏽢Sz −

1
�
6

√ 􏽢Ix
􏽢Sx −

1
�
6

√ 􏽢Iy
􏽢Sy, (38c)

􏽢s
(2)
− 1 �

1
2
􏽢Iz

􏽢Sx +
1
2
􏽢Ix

􏽢Sz +
i

2
􏽢Iz

􏽢Sy +
i

2
􏽢Iy

􏽢Sz, (38d)

􏽢s
(2)
− 2 �

1
2
􏽢Ix

􏽢Sx −
1
2
􏽢Iy

􏽢Sy +
i

2
􏽢Ix

􏽢Sy +
i

2
􏽢Iy

􏽢Sx, (38e)

􏽢s
(1)
1 � −

1
2
􏽢Iz

􏽢Sx +
1
2
􏽢Ix

􏽢Sz +
i

2
􏽢Iz

􏽢Sy −
i

2
􏽢Iy

􏽢Sz, (38f)

􏽢s
(1)
0 �

i
�
2

√ 􏽢Ix
􏽢Sy −

i
�
2

√ 􏽢Iy
􏽢Sx, (38g)

􏽢s
(1)
− 1 � −

1
2
􏽢Iz

􏽢Sx +
1
2
􏽢Ix

􏽢Sz −
i

2
􏽢Iz

􏽢Sy +
i

2
􏽢Iy

􏽢Sz, (38h)

􏽢s
(0)
0 � −

1
�
3

√ 􏽢Ix
􏽢Sx −

1
�
3

√ 􏽢Iy
􏽢Sy −

1
�
3

√ 􏽢Iz
􏽢Sz. (38i)

)e quantities derived in equations (36a)–(36i) deal with
the spin space portion of equations (4) and (7) (the 􏽢s(l)

m ’s).
)ese are analogous to the terms of the physical space portion
of the Hamiltonian (the a(l)

m ’s) shown in equations (8a)–(8i).
Once the spherical components of the Hamiltonian have been
determined, equation (30) can be used to quickly transform
between various frames of reference, which is useful in the
simulation of experiments involvingmagic angle spinning, for
example. A commonMAS problemwill involve 3 applications
of equation (30). First, one will rotate from the principal axis
frame of each interaction to a common, crystallite frame (it is
often convenient, but not necessary, to choose a crystallite
frame that is coincident with the principal axes of one of the
interactions).)e crystallite frame is then rotated to a frame of
reference fixed on the rotor. Finally, a time-dependent
transformation is performed from the rotor fixed frame to the
lab frame [17]. An example of the results of this type of
simulation is shown in Figure 1. In the static case, broad
powder patterns are observed for the two resonances pictured.
As the rotor begins to spin, the powder patterns break into a
manifold of spinning sidebands. Eventually, the rotor spins at
a high enough frequency to remove all of the second rank
anisotropic interactions and narrow resonances are observed.
)ese simulations were performed using techniques previ-
ously described by the authors [26]. Note, however, that MAS
does not fully remove many higher-order interactions such as
the second-order quadrupole coupling and others that were
not included in this simulation [27].

5.2. Spatial Rotations and the Secular Approximation. In
many magnetic resonance simulations, and in particular
those involving spin-1/2 nuclei, it is convenient to make the
secular approximation.)is process is made straightforward
using the spherical tensor operators constructed using
Clebsch–Gordan coefficients. )is is demonstrated well by
the following example involving the static, heteronuclear
dipolar coupling interaction. It shows how the convenient
properties of the spherical tensor components in both the
spin and physical space components of the Hamiltonian
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make for a relatively compact way of performing rotations
and truncating the Hamiltonian.

5.2.1. Angular Dependence of Hamiltonian. Recognizing that
the first rank terms of the Hamiltonian are zero (because the
physical space coefficients are zero in the principal axis frame,
they must be zero in all frames of reference), the Hamiltonian of
equation (7) can be written as in equation (39) below:

􏽢H � a
(0)
0 􏽢s

(0)
0 + 􏽘

2

m�− 2
(− 1)

m
a

(2)
m 􏽢s

(2)
− m. (39)

From here, equations (36a)–(36i) can be substituted into
equation (39). )is substitution is performed in equation
(40) below:

􏽢H � a
(0)
0 −

1
2

�
3

√ 􏽢I−
􏽢S+ −

1
�
3

√ 􏽢Iz
􏽢Sz −

1
2

�
3

√ 􏽢I+
􏽢S−􏼢 􏼣

+ a
(2)
2

1
2
􏽢I−

􏽢S−􏼔 􏼕

− a
(2)
1

1
2
􏽢Iz

􏽢S− +
1
2
􏽢I−

􏽢Sz􏼔 􏼕

+ a
(2)
0 −

1
2

�
6

√ 􏽢I−
􏽢S+ +

2
�
6

√ 􏽢Iz
􏽢Sz −

1
2

�
6

√ 􏽢I+
􏽢S−􏼢 􏼣

− a
(2)
− 1 −

1
2
􏽢Iz

􏽢S+ −
1
2
􏽢I+

􏽢Sz􏼔 􏼕

+ a
(2)
− 2

1
2
􏽢I+

􏽢S+􏼔 􏼕.

(40)

Now, we can evaluate the physical space components.
)ese are given in terms of their Cartesian components in
equations (8a)–(8i). However, in practice, the physical space
components are characterized in terms of their principal axis
values (aXX, aYY, and aZZ) in the form of three parameters
known as the isotropic value (aiso), the anisotropic value
(aiso), and the asymmetry parameter (η). )e relationships
between these 6 values are given by equations (41a)–(41c).
By convention, aXX, aYY, and aZZ are identified by the
relationship |aZZ − aiso|≥ |aXX − aiso|≥ |aYY − aiso| [17].

aiso �
1
3

aXX + aYY + aZZ( 􏼁 , (41a)

aaniso � aZZ − aiso , (41b)

η �
aYY − aXX

aaniso
. (41c)

Substituting equations (41a)–(41c) into (8a)–(8i), we can
write the physical space coefficients in the principal axis
frame in terms of aiso, aaniso, and η. )is is shown in
equations (42a)–(42i) below [17]:

a
(2)
2 (PAS) � −

1
2
ηaaniso, (42a)

a
(2)
1 (PAS) � 0, (42b)

a
(2)
0 (PAS) �

�
6

√

2
aaniso, (42c)

a
(2)
− 1 (PAS) � 0, (42d)

a
(2)
− 2 (PAS) � −

1
2
ηaaniso, (42e)

a
(1)
1 (PAS) � 0, (42f)

a
(1)
0 (PAS) � 0, (42g)

a
(1)
− 1 (PAS) � 0, (42h)

a
(0)
0 (PAS) � −

�
3

√
aiso. (42i)

For the dipolar coupling interaction, aiso � 0,
aaniso � 2ωD, and η � 0.)us, only a

(2)
0 (PAS) is nonzero.We

know what a
(2)
0 (PAS) is, but we want a

(2)
0 in the lab frame.

)is can be evaluated by using a property of the spherical
components that makes such transformations straightfor-
ward. )is is shown in equation (43) below [17]:

a
(l)
m (new frame) � 􏽘

l

m�− l

D
(l)

m,m′ Ω
lab
PAS􏼐 􏼑a

(l)

m′(old frame) . (43)

Here, the D
(l)

m,m′(Ω
lab
PAS)’s are the Wigner rotation matrix

elements and are readily available in the literature [17].

050100150200250300
13C Chemical Shi� (ppm)

0 kHz MAS

1 kHz MAS

4 kHz MAS

32 kHz MAS

Figure 1: Simulations of powder patterns caused by the chemical
shift anisotropy interaction at 0, 1, 4, and 32 kHz of MAS. )ese
arise from the time modulation of the interactions present, which
can be derived from the spherical tensor operators.

14 Concepts in Magnetic Resonance Part A, Bridging Education and Research



Equation (43) is the component analog of the tensor rotation
equation in equation (30).ΩlabPAS is the set of α, β, and c Euler
angles that describe the rotation from the principal axis
frame to the lab frame. Because a

(2)
0 (PAS) is the only

nonzero principal axis frame component, its value in the lab
frame can be written as is shown in equation (44) below [17]:

a
(2)
0 � D

(2)
0,0 Ω

lab
PAS􏼐 􏼑a

(2)
0 (PAS). (44)

We can now make the substitution
D

(2)
0,0(Ωlab

PAS) � (1/2)(3 cos2(βlabPAS) − 1). )is is shown in
equation (45). We have also substituted in equations (42c)
and (44) for a

(2)
0 (PAS).

a
(2)
0 �

1
2

3 cos2 βlabPAS􏼐 􏼑 − 1􏼐 􏼑(2)

�
6

√

2
􏼠 􏼡ωD. (45)

)e expression in equation (45) is rewritten in the form
of equation (46) below:

a
(2)
0 �

�
6

√

2
ωD 3 cos2 βlabPAS􏼐 􏼑 − 1􏼐 􏼑. (46)

Substituting equation (46) into equation (40) yields
equation (47):

􏽢H �

�
6

√

2
ωD 3 cos2 βlabPAS􏼐 􏼑 − 1􏼐 􏼑

−
1

2
�
6

√ 􏽢I−
􏽢S+ +

2
�
6

√ 􏽢Iz
􏽢Sz −

1
2

�
6

√ 􏽢I+
􏽢S−􏼢 􏼣.

(47)

5.2.2. ;e Secular Approximation. Up until this point, we
have used the spherical components of the physical space
portion of the Hamiltonian to transform between the
principal axis frame and the lab frame. We can also use the
spherical components in the spin space portion of the
Hamiltonian to conveniently transform into a rotating frame
with each spin. )is is performed in equation (48) using the
unitary operator 􏽢U � exp[iωIt

􏽢Iz]exp[iωSt􏽢Sz], where ωI and
ωS are the Larmor frequencies for the I and S-spins,
respectively:

􏽢Hrot �

�
6

√

2
ωD 3 cos2 βlabPAS􏼐 􏼑 − 1􏼐 􏼑 􏽢U

−
1

2
�
6

√ 􏽢I−
􏽢S+ +

2
�
6

√ 􏽢Iz
􏽢Sz −

1
2

�
6

√ 􏽢I+
􏽢S−􏼢 􏼣 􏽢U

− 1
.

(48)

Recall from equations (36a)–(36i) that 􏽢I+, 􏽢Iz, and 􏽢I− ,
along with the corresponding S-spin operators, are related to
the vector spherical tensor operator components. )e I-spin
operators have the convenient rotational properties shown
in equations (49a)–(49c) below, with corresponding rela-
tionships for the S-spin operators [28]:

􏽢U −
1
�
2

√ 􏽢I+􏼠 􏼡 􏽢U
− 1

� exp iωIt􏼂 􏼃 −
1
�
2

√ 􏽢I+􏼠 􏼡 , (49a)

􏽢U
1
�
2

√ 􏽢I−􏼠 􏼡 􏽢U
− 1

� exp − iωIt􏼂 􏼃
1
�
2

√ 􏽢I−􏼠 􏼡 , (49b)

􏽢U􏽢Iz
􏽢U

− 1
� 􏽢Iz

. (49c)

Substituting the expressions in equations (49a)–(49c)
into equation (48) yields equation (50) below [28]:

􏽢Hrot �

�
6

√

2
ωD 3 cos2 βlabPAS􏼐 􏼑 − 1􏼐 􏼑

× −
1

2
�
6

√ exp − i ωI − ωS( 􏼁t􏼂 􏼃􏽢I−
􏽢S+􏼢

+
2
�
6

√ 􏽢Iz
􏽢Sz −

1
2

�
6

√ exp i ωI − ωS( 􏼁t􏼂 􏼃􏽢I+
􏽢S− 􏼣.

(50)

Application of first-order average Hamiltonian theory
allows equation (50) to be averaged over one period of the
frequency ωI − ωS, so long as |(ωI − ωS)| is much greater than
any other interaction in the Hamiltonian. )e time-depen-
dent portions average to 0. )is is the so-called “secular
approximation” and can lead to great simplification of the
Hamiltonian and decrease in simulation times. )e final,
rotating frame secular Hamiltonian is shown in equation (51)
below [23]:

􏽢Hrot � ωD 3 cos2 βlabPAS􏼐 􏼑 − 1􏼐 􏼑􏽢Iz
􏽢Sz. (51)

6. The Singlet-Triplet Basis

Another common set of Clebsch–Gordan coefficients that
arise inmagnetic resonance are those of what is referred to as
the singlet-triplet basis. )is arises from the interaction of
two spin-1/2 particles. We can again follow the procedure
prescribed in Section 3. First, we need to identify the allowed
values of J. )ere are two spin-1/2 particles, so the allowed
values of J are |1/2 − 1/2|≤ J≤ 1/2 + 1/2 or 0≤ J≤ 1. Again,
this was adapted from the procedure mentioned in Griffiths
[18] and Shankar [21].

We first need to determine the effect of the lowering
operators for spin-1/2 and spin-1 on the basis states (the
spin-0 state cannot be lowered any further). )is is given in
Tables 3 and 4.

From here, we determine what the system states are in
terms of the states of the component spins. We begin with the
state |j1, j2, J, M〉 � |1/2, 1/2, 1, 1〉 in equation (52) below:

1
2
,
1
2
, 1, 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 􏼝 � 1
1
2
,
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 􏼝⊗
1
2
,
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 􏼝􏼒 􏼓. (52)

From here, we apply the total lowering operator to
obtain |j1, j2, J, M〉 � |1/2, 1/2, 1, 0〉, as given in equations
(53a)–(53c) below:
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􏽢J− (1)
1
2
,
1
2
, 1, 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼝 � 􏽢j

(1)

−

1
2

􏼒 􏼓 + 􏽢j
(2)

−

1
2

􏼒 􏼓􏼒 􏼓
1
2
,
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼝⊗

1
2
,
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼝􏼒 􏼓,

(53a)

�
2

√ 1
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A subsequent application of the lowering operator yields
equations (54a)–(54e) below:
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)is completes the three J � 1 states (the triplet). We
now need to determine what the single J � 0 state is (the
singlet). )is is accomplished by using the orthogonality
condition for the basis states, in the same manner that we
determined the |j1, j2, J, M〉 � |1, 1, 1, 1〉 state in Section 3.
)is is accomplished in equations (55a)–(55f) below:
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Table 3: )e effect of the spin-1/2 lowering operator on each allowed spin state.

j m j(j + 1) m(m − 1) j(j + 1) − m(m − 1)
�����������������
j(j + 1) − m(m − 1)

􏽰

1/2 1/2 3/4 − 1/4 1 1
1/2 − 1/2 3/4 3/4 0 0

Table 4: )e effect of the spin-1 lowering operator on each allowed spin state.
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Figure 2: )e spin states of a system of two spin-1/2 particles with
positive gyromagnetic ratios. )e component spin states are
depicted on the left and the system spin states on the right.

16 Concepts in Magnetic Resonance Part A, Bridging Education and Research



C
(1/2,1/2,0)
− 1/2,1/2,0 � − C

(1/2,1/2,0)
1/2,− 1/2,0 , (55c)

C
(1/2,1/2,0)
1/2,− 1/2,0 �

1
�
2

√ , (55d)

C
(1/2,1/2,0)
− 1/2,1/2,0 � −

1
�
2

√ , (55e)

1
2
,
1
2
, 0, 0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 􏼝 � −
1
�
2

√
1
2
, −
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 􏼝⊗
1
2
,
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 􏼝􏼒 􏼓 +
1
�
2

√
1
2
,
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 􏼝⊗
1
2
, −
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 􏼝􏼒 􏼓. (55f)

Again, in equations (55d)–(55f), we have used the
normalization condition and the Condon–Shortley phase
convention to obtain these specific values for the

Clebsch–Gordan coefficients. )e spin states of the singlet-
triplet basis are summarized in equations (56a)–(56d) below:
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An energy level diagram for the spin states shown in
equations (56a)–(56d) when they are placed in a magnetic
field is shown in Figure 2.

)e example described above was for a system of two
identical spin-1/2 particles, but higher spin systems can be
treated in a similar manner. For example, this could be the 3-
electron system of an N@C60 endofullerene [29, 30] or the 7-
electron DOTA-Gd3+ complex [31]. )e effects of the
lowering operator for all spins between 1/2 and 4 is given in
Sections S1–S8 of the Supplementary Materials, respectively.

7. Conclusion

)e Clebsch–Gordan coefficients play an important part in
magnetic resonance simulations. Not only do they allow for
higher-order spherical tensors to be constructed from lower
order ones but also allow for the spin states of a system to be
determined from component spin wave functions in the
system. Despite the number of roles that they play inmagnetic
resonance simulations, an explanation of the origin of the
Clebsch–Gordan coefficients is rarely provided, particularly
in magnetic resonance literature. Here, we have derived the
Clebsch–Gordan coefficients for two tensors of rank 1 to form
resultant rank 0, 1, and 2 tensors, determined the angular
dependence and secular portion of the static, dipolar coupling
Hamiltonian, and derived the triplet and singlet states of two
identical spin-1/2 spins. Other uses include determining the
spin states of high spin transition metal complexes such as

those involving Gd3+ [31] and endofullerenes [29, 30] (such as
N@C60) and for the calculation of the fourth rank tensor
components of second-order average Hamiltonians, such as
those present in systems with large quadrupolar couplings
[32], hyperfine couplings [33], and zero field splittings [34].
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