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In this paper, we want to consider what would be involved in calculating the R2 relaxation of amide protons in a protein caused by
dipolar interactions with nearby protons, for which there are many. NMR textbooks give analytical equations and sometimes
derivations for solution NMR relaxation due to dipolar interactions between two spins.(ere are also closed equations for dipolar
interactions between three spins, which include relaxation interference, also known as cross-correlated cross-relaxation. We here
derive an expression for interference between four spins. For larger systems, such as amide protons in a protein, we develop a
local-field methodology, from which solution relaxation interference can be computed for a basically limitless number of
interacting spins.

1. Introduction

Several researchers have been interested in investigating
whether proton-proton dipolar interaction in proteins
can be utilized to obtain structural [1, 2] or dynamical
information [3]. Here, we want to consider what would be
involved in calculating the R2 relaxation of amide protons
in a protein caused by dipolar interactions with other
protons and, ultimately, compare those with experiment
[4]. NMR textbooks give closed equations and sometimes
derivations for solution NMR relaxation due to dipole-
dipole relaxation between two spins and for chemical shift
anisotropy (CSA) relaxation. (ere are also closed
equations for relaxation due to interactions between three
dipoles [5] and two dipoles and the CSA [6]. In these
cases, relaxation interference, also known as cross-cor-
related cross-relaxation, has been taken into account.
Dipolar-dipolar relaxation interference has been de-
scribed very early in the history of NMR [7, 8] and has

been exploited to achieve line narrowing [9] and struc-
tural information [1, 2]. CSA-dipolar cross-correlated
relaxation is at the core of the line narrowing in the
TROSY experiment [10].

Here, we derive an analytical expression for dipolar in-
terference between four spins. For larger systems, such as
amide protons in a protein, we develop a local-field meth-
odology, from which solution relaxation interference can be
computed for a basically limitless number of interacting spins.

2. Theory

Let us start by considering the R2 relaxation of spin I in a
rigid molecule with three protons, S-I-Q, subject to fluc-
tuating dipolar interactions IS and IQ. We assume here that
I, S, and Q have different chemical shifts and are thus
similar, but “unlike.” (e first step is to add the relaxation
rates due to the IS and IQ dipolar interactions, as given by
equation (A.24) of the Appendix.
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However, in a rigid molecule, the stochastic fluctuations
of the IS and IQ dipolar interactions are 100% correlated and
relaxation interference occurs. Relaxation interference is
also called cross-correlated cross-relaxation or cross-cor-
related relaxation.

Interference between two dipolar mechanisms can be
qualitatively understood from Figure 1. Here, we consider a
linear three-spin system with spin I in the center and spin S
and Q equidistant from I.

In this case, there are two relaxation rates for spin I, one
for molecule A, where the dipolar fields of S and Q at the
location I cancel independent of orientation with respect to
the magnetic field, and another for molecule B, where the
dipoles reinforce each other and fluctuate strongly
depending on orientation. (is is expressed as

R
I total
2 � R

IS
2 + R

IQ
2 ± R

IS− IQ
2CC . (3)

Of course, the dipoles flip by R1 processes. For macro-
molecules, R1 rates aremuch slower thanR2 rates.(us, for R2
cross-correlations, one may assume that orientations of the
dipoles remain set during the typical R2 relaxation time.

If the different dipolar permutations also give rise to
different resonances, by either scalar or residual static di-
polar coupling, one observes four NMR lines for I. (e two
outer lines have equal linewidths, and the two inner lines
also have equal, but different, linewidths. Which set will be
the broader one depends on the molecular geometry and the
sign of the (scalar) coupling. If no such coupling exists, one
will observe a superposition of a broader and narrower line
for I.

In order to obtain quantitative values for the dipolar-
dipolar cross-correlation, one starts with expanding the
double commutator master equation for R2 relaxation, as
shown in equation (A.16) of the Appendix.Wemostly follow
a formalism as introduced by [5, 11].

For two R2 relaxation mechanisms IS and IQ, modulated
by the same motions, the relaxation master equation is

d〈I+〉
dt
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where TmIS are the tensor operators of the perturbing
Hamiltonian, which for dipolar interaction between spins I
and S are given by
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with similar equations for TmIQ.
jmωm are the spectral densities of the molecular motion

at the frequencies of the bilinear spin operators including
magnitude terms.

In the expansion, the “diagonal” terms such as
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and their complex conjugates will give rise to the auto-
correlation rates RIS

2 and R
IQ
2 , as shown in equation (A.22) of

the Appendix.
In the cross terms,
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and their complex conjugates, only spin operators with
exactly the same precession frequency will be relevant, i.e.,
only the pair (IzSz, IzQz) and the four terms I+Sz, I− Sz, I+Qz,
and I− Qz.

We obtain the following equation from equations (6a)
and (6b):

−
d〈I+〉
dt

�〈4 I+, IzSz , IzQz 〉jcc0 (0)

+
3
2
〈 I+, I− Sz , I+Qz 〉jcc1 ωI( ,

(8)
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Figure 1: Pictorial representation of dipolar cross-correlation in a
linear S-I-Q system.(e dipolar fields of S andQ at the location of I
for A, independent of orientation with respect to the magnetic field
(vertical). In B, the dipolar fields of S and Q reinforce each other at
the location of I and modulate strongly as a function of molecular
orientation.
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where the ½ term is dropped because there are two
equivalent cross terms, as given in equations (7a) and (7b).

(e cross-correlation spectral densities are
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with, for isotropic motion,
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where the P2 cos(θIS− IQ) � 1/2(3 cos2(θIS− IQ) − 1) term
originates from transforming the IQ dipolar vector into the
IS frame or vice versa and using the addition theorem of
spherical harmonics. Here, θIS− IQ is the angle between
vectors IS and IQ and τc is the (rotational) correlation time.

In contrast to the R2 autocorrelation, the double com-
mutators drive cross-relaxation
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One ends up with a set of coupled differential equations:
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Here, RIP
2I and RAP

2I are the in-phase (IP) R2 rate for the
<I+> coherence and antiphase (AP) R2 rate for the 4 <I+SzIz>
coherence. (e antiphase terms relax faster because of
the extra Sz and Qz R1 relaxation. For macromolecules, the
difference can be neglected because R1 is small as compared
to R2, and one can easily diagonalize the rate matrix and
obtain relaxation “eigenvectors”
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(e total R2 relaxation for proton i, as stated before in
equation (3), is then given by
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One notices that 1H IS-autorelaxation contains a 5J(0)
term (equation (2)), while the dipolar cross-correlation has a
4J(0) term (equation (14)). (e extra J(0) in autorelaxation is
due to the fact that J(0) and J(ωI − ωS) are for two protons
similar enough for the spectral densities to add (see

Appendix), but (ωI − ωS) and (ωI − ωQ) are different
enough for the spin operators to diphase and not cross-
correlate. (us, there will not be a complete cancelation of
relaxation, as suggested in the situation of Figure 1. It can
still happen, if the differences in distances IS and IQ would
make up for the 4/5 term.

If one cannot make the approximation that RIP
2I and RAP

2I

are equal, the rates become
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Let us now extend this formalism to a 4-spin system,
with a central spin I and 3 other spins S, Q, and P in its
vicinity.

From the master equation, we arrive at three cross terms:
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leading to terms such as 4I+SzQz, 4I+SzPz, and 4I+PzQz,
driven by the rates
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(is appears to lead to eight different relaxation rates
(RIS

2 + R
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QS
2 ± R

IS− IQ
2CC ± RIS− IP

2CC ± R
IP− IQ
2CC ). However, that

cannot be right; adding one more dipole P to the S-I-Q

situation should just give rise to twomore rates, four in total.
So, one should not stop here and construct the full relaxation
matrix.

Also, one must take cross-relaxation between the dif-
ferent four-spin terms into account (here only showing some
J(0) terms),
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and three reverse processes.
(e differential equations in matrix form will now
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Here, we are neglecting the differences between R2 in-
phase and antiphase relaxation. (is matrix has four ei-
genvalues, which correspond to what must be physically
correct. While the exact eigenvalues of this matrix could
potentially be analytically obtained, it becomes harder when
differences between R2 in-phase and antiphase relaxation
have to be considered as well. However, because matters will
quickly become more complicated when even more spins
interact, we will not attempt to derive an analytical solution
for the four-spin case here. For instance, in a protein, there
are typically at least 20 protons around every amide proton
in a 6 Å sphere which would all have to be taken into ac-
count. In such a case, one would need to diagonalize a
262144∗ 262144 matrix (220 − 2).

We must take another approach. To arrive at an esti-
mation for the effects in a multiproton spin system, we will
start from a “solid-state NMR” point of view. We calculate
BΩloc(i), the net local magnetic field at center proton i due to
theM surrounding protons j [12] for a certain orientation of
the molecule in the external magnetic field:

B
Ω
loc(i) �

μ0
4π



j�M

j≠i
D

cicj

r
3
ij

⎛⎝ ⎞⎠P2 cos θij . (21)

Here, θij is the angle between the internuclear vector ij
and the magnetic field directionΩ in the molecular frame.D
represents a particular distribution of the signs of the
z-components of the dipoles j. If one varies the magnetic
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field direction according to a sphere distribution and adds
the results, one obtains the powder pattern for that particular
distribution D. Subsequently, one coadds all powder pat-
terns for different values of D and normalizes to arrive at the
“cross-correlated” dipolar powder pattern for the 1HN under
consideration.

It is the time dependence of Bloc, as caused by molecular
motion, that drives the solution NMR dipolar relaxation.
(e R2 relaxation is then obtained as the second moment of
the (cross-correlated) powder pattern [12]:

R
solution
2i � 4τc 

Ω
Bloc(i) − B

Ω
loc(i)) 

2
, (22)

where the brackets indicate average overall orientations. In
practice, we permute only the signs of the eight closest
protons (256 different distributions D) and treat the spins
further out with a single random distribution where spins up
and down are on average equal. So, each distribution then
gives rise to an individual resonance for i with its own R2
rate.(e sum of all of those creates the inhomogeneous sum-
line for resonance i.

3. Verification

We verified the algorithm with a three-atom arrangement
(see Table 1) with results in Figure 2. In this figure, the
green points were calculated from equations (14) and (15)
for dipolar-dipolar cross-correlation, while the drawn
black line was calculated using the “solid-state” approach.
(e results are identical. In red is a relaxation curve cal-
culated from the straight addition of R2 (IS) and R2 (IQ)
(see equation (1)). It is clear that the cross-correlation
cannot be neglected, except when one considers the first
part of the curve. Fitting a single exponential against a
complete cross-correlated relaxation curve (dashed line)
yields an erroneous rate.

In Figure 3(a), we show calculated R2 relaxation rates for
the HN of Asp45 of the protein GB1. (is amide has 21
proton neighbors within a sphere of 6 Å. Here, the difference
between relaxation curves with and without cross-correla-
tions is smaller than the example case in Figure 2. From this,
one would tend to conclude that many protons cancel each
other’s cross-correlations. However, that is not necessarily
true; in Figure 3(b), we show calculated R2 relaxation rates
for the HN of Asn35 of the protein GB1. (is amide has
more (36) proton neighbors within a sphere of 6 Å, yet the
difference between relaxation curve with and without cross-
correlations is larger than for Asp45. (is happens because
the R2 relaxation of Asn35 is dominated by two close-by
protons.

(is manuscript was written in anticipation of the in-
terpretation of experimental T1rho data for protein amide
protons, which we hope may contribute to more complete
understanding of protein molecular dynamics (E.R.P. Zui-
derweg and D.A. Case, in preparation). We conclude from
the current analysis that one can still fit a single exponential
to the beginning of the T1rho relaxation curves, even when
many protons interact. (is result is the same as for a 3-spin
network, but that was not previously demonstrated.

However, how far down a relaxation curve can go varies
from proton to proton environment. Judging from
Figure 3(b), one should limit the recording of T1rho relax-
ation curves to values larger than 0.8xI0, where I0 is the initial
value of the decay curve.

4. Description of the Codes

(e computer program requires as input a “protonated”
PDB file, the radius of the sphere of protons around the
amide protons one is interested in, the rotational correlation
time, and the spectrometer frequency. Basically, the program
consists of four nested loops: amides, protons around am-
ides, permutation of dipole signs of these surrounding
protons, and rotation of the magnetic field vector in the
molecular frame.

A set of 10 nested loops permutes the dipolar signs of
the closest 10 hydrogens (1024 distributions). (e more
remote hydrogens in the sphere (if any) have their dipolar
signs assigned according to a 50% random chance. (e
local dipolar field at a certain 1HN due to the surrounding
protons in a certain permutation D of surrounding di-
poles is calculated according to equation (20). Here, the
program takes the differences between “like” and “unlike”
spins (see Appendix) into account. (en, the program
calculates, according to equation (22), the R2 relaxation
rate due to that permutation, by rotating the external field

Table 1: Coordinates of an arbitrary three-spin arrangement (Å).
dIS � 2 Å, dIQ � 2.236 Å, and P2 cos(θIS− IQ)� 0.70.

x y z
Center spin (I) 0 0 0
Neighbor (S) 0 2 0
Neighbor (Q) 0 − 2 1

Re
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Figure 2:(e green points were calculated from equations (14) and
(15) for dipolar-dipolar cross-correlation, while the solid black line
was calculated using the “solid-state” approach (equations (21) and
(22)). Fitting a single exponential against a complete cross-cor-
related relaxation curve (dashed line) yields an erroneous rate. In
red is a relaxation curve calculated from the straight addition of R2
(IS) and R2 (IQ) (equation (1)). A (isotropic) rotational correlation
time τc of 10 ns was used in all calculations.
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direction (the z-axis) through the molecular frame using
an isotropic spherical distribution (5000 orientations)
(http://corysimon.github.io/articles/uniformdistn-on-
sphere/).

(e relaxation rate for that permutationD is then used to
compute a R2 relaxation curve. (e computed R2 relaxation
curves for all different permutations D are then added to
obtain the complete R2 relaxation curve, as shown in Fig-
ures 2 and 3.

(e program is written in Fortran 90 and contains no
references to outside libraries. (e source code is available
from the author.

Appendix

(is appendix presents a refresher on dipolar R2 relaxation,
mostly following the formalism, as developed by Goldman
[11] and further extended by [13], to help follow the algebra
in the main body of the paper.

When the density operator σ is subject to both a time-
independent (eigen) HamiltonianH0 and a time-dependent
perturbing dipolar Hamiltonian H1(t), its evolution, in
units of Z, is given by

d

dt
σ(t) � − i H0 + H1(t), σ(t) . (A.1)

Transforming to the rotating frame of the time-inde-
pendent Hamiltonian, one obtains

d

dt
σ(t) � − i H1(t), σ(t) , (A.2)

with the time-dependent Hamiltonian also transformed to
the rotating frame. One keeps in mind that this equation
describes an ensemble average. First, one imposes on
equation (A.2) that the density operator cannot evolve
(“relax”) when it was not perturbed in the first place (e.g., by
a r.f. pulse). (us, one makes the substitution

d

dt
σ(t) � − i H1(t), σ(0) − σeq , (A.3)

where σeq is the density operator at equilibrium, which is not
evolving under H0 (i.e., the usual “high temperature ap-
proximation with σeq ∼ Iz).

One uses the Hausdorff expansion to integrate equation
(A.3):

σ(t) � σ(0) − i 
t

0
H1(t′), σ(0) − σeq dt′

− 
t

0


t′

0
H1 t′( , H1 t″( , σ(0) − σeq  dt′dt″ + . . . .

(A.4)

Since the dipolar Hamiltonian has zero average in so-
lution, the second term in equation (A.4) vanishes. (e
fourth and higher-order terms also vanish because the
perturbing Hamiltonian causes only small changes of the
density operator, allowing the expansion to converge rap-
idly. One thus obtains the formal relaxation equation:

σ(t) � σ(0) − 
t

0


t′

t

H1 t′( , H1 t″( , σ(0) − σeq  dt′dt″. (A.5)

(e perturbing Hamiltonian fluctuates not only by the
fluctuating dipole-dipole interactions between spins I caused
by random molecular motion captured in the terms FDD

m (t)

but also by frequencies of the spin operators I, S, and I+S−

(ωI, ωS, ωI− ωS, etc.).
It can be abbreviated as


H

DD
IS (t) � 

m�2

m�− 2
F
DD
m (t)TmIS. (A.6)

TmIS are the tensor operators of the perturbing Ham-
iltonian, which for dipolar interaction between spins I and S
are given by
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Figure 3:(e calculated R2 relaxation rates (a) for the HN of Asp45 of the protein GB1 which has 21 proton neighbors within a sphere of 6 Å
and (b) for the HN of Asn35 with 37 proton neighbors within a sphere of 6 Å. (e black curves are with cross-correlations (equations (21)
and (22)), while the red curves are computed as the sum of the R2 rates (equation (1)). A (isotropic) rotational correlation time τc of 10 ns was
used in all calculations.

6 Concepts in Magnetic Resonance Part A, Bridging Education and Research

http://corysimon.github.io/articles/uniformdistn-on-sphere/
http://corysimon.github.io/articles/uniformdistn-on-sphere/


T0 � 2IzSz −
1
2

I+S− + I− S+( , (A.7a)

T±1 � ∓
�
3
2



I±Sz + IzS±( , (A.7b)

T±2 �

�
3
2



I±S±( . (A.7c)

On expanding, this becomes


H

DD
IS (t) � +2F

IS
0 (t)IzSz −

1
2
F
IS
0 (t) I+S− + I− S+( e

i ωI− ωS( )t

+

�
3
2



F
IS
1 (t) I+Sz( e

i ωI( )t
−

�
3
2



F
IS
1 (t) I− Sz( e

i ωI( )t

+

�
3
2



F
IS
1 (t) IzS+( e

i ωS( )t
−

�
3
2



F
IS
1 (t) IzS−( e

i ωS( )t

+

�
3
2



F
IS
2 (t) I+S+( e

i ωI+ωS( )t
+

�
3
2



F
IS
2 (t) I− S−( e

i ωI+ωS( )t
,

(A.8)

with

F
IS
0 (t) � −

μ0
4π

 
cIcSZ

r
3
IS

 
3 cos2 θ(t) − 1

2
� F

IS∗
0 (t), (A.9a)

F
IS
±1(t) � ±

μ0
4π

 
cIcSZ

r
3
IS

 

�
3
2



sin θ(t)cos θ(t)e
±iφ(t)

� − F
IS∗
∓1 (t), (A.9b)

F
IS
±2(t) � −

μ0
4π

 
cIcSZ

r
3
IS

 

�
3
8



sin2 θ(t)e
±2iφ(t)

� F
IS∗
∓2 (t). (A.9c)

Here, μ0 is the permittivity of vacuum, Z is the Planck’s
constant divided by 2π, c′s are the gyromagnetic ratios, and
rIS is the distance between the dipoles. (e angles θ(t) and

φ(t) are fluctuating polar angles between the IS vector and
the direction of the external magnetic field.

In terms of equations (A.6), (A.7a), (A.7b), and (A.7c),
equation (A.5) now becomes

σ(t) − σ(0) � 
m,n�2

m,n�− 2
Tm T

†
n, σ(0) − σEQ    × 

t

0


t′

0
F
IS
m t′( F

IS∗
n t″( e

i ωmt′− ωnt″ t

dt″dt′. (A.10)

Here, one recognizes 
t

0 FIS
m(t′)FIS∗

n (t″) dt′ as a time
correlation function (AC(τ)) of FIS

m(t′) (make the substi-
tution tʺ� tʹ+ τ). One makes the common assumption that
time correlation functions decay exponentially:

AC(τ) � AC(0)e
− (τ)/τc , (A.11)

with a single rotational correlation time τc in case of iso-
tropic motion

(e second integral in equation (A.10) is the Fourier
transform of that time correlation function, which takes the
shape of a Lorentzian:

J(ω) �
2
5

τc

1 + ω2τ2c
. (A.12)

From the 25 terms in equation (A.10), only the ones with

equal frequencies e
i(ωmt′− ωmt″)t contribute. (is is called the

Redfield kite, named after the author of one of the earliest
papers on NMR relaxation [14]. It suffices to just take the five
diagonal terms into account and drop the second
summation.

One arrives at the “master equation” of relaxation [11]
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d〈σ〉

dt
� −

1
2



m�+2

m�− 2
TmIS, T

†
mIS, σ(0) − σEQ   jm, (A.13)

with

jm �
1
8

μ0
4π

 
2 cIcSZ

r3IS
 

2

J ωm( 

�
1
8

μ0
4π

 
2 cIcSZ

r3IS
 

22
5

τc

1 + ω2
mτ

2
c

,

(A.14)

assuming isotropic motion.
It is interesting to consider the time development of an

observable Q:

d〈Q〉

dt
� Trace Q

d〈σ〉

dt
 . (A.15)

(e master equation for the time development of an
observable Q is derived from (A.12) using commutation
algebra and no new assumptions:

d〈Q〉

dt
� −

1
2



m�+2

m�− 2
〈 Q, TmIS , T

†
mIS 〉 − 〈 Q, TmIS , T

†
mIS 〉eq jmm. (A.16)

Now, we are finally ready to derive the R2 relaxation rate
for <I+>. We start by setting the equilibrium term to zero:

d〈I+〉
dt

� −
1
2



m�+2

m�− 2
〈 I+, TmIS , T

†
mIS 〉jmm. (A.17)

Expanding equation (A.15), one obtains

−
d〈I+〉
dt

�
1
2

A + B + B′ + C + C′ + D + D′ + E + E′ ,

(A18)

with the terms

A � 4〈 I+, IzSz , IzSz 〉j0(0) �〈I+〉j0(0),

B � +
1
4
〈 I+, I+S− , I− S+ 〉j0 ωI − ωS(  � 0,

B′ � +
1
4
〈 I+, I− S+ , I+S− 〉j0 ωI − ωS(  �

1
4
〈I+〉j0 ωI − ωS( ,

C � +
3
2
〈 I+, I+Sz , I− Sz 〉j1 ωI(  � 0,

C′ � +
3
2
〈 I+, I− Sz , I+Sz 〉j1 ωI(  �

3
4
〈I+〉j1 ωI( ,

D � +
3
2
〈 I+, IzS+ , IzS− 〉j1 ωS(  �

3
4
〈I+〉j1 ωS( ,

D′ � +
3
2
〈 I+, IzS− , IzS+ 〉j1 ωS(  �

3
4
〈I+〉j1 ωS( ,

E � +
3
2
〈 I+, I+S+ , I− S− 〉j2 ωI + ωS(  � 0,

E′ � +
3
2
〈 I+, I− S− , I+S+ 〉j2 ωI + ωS(  �

3
2
〈I+〉j2 ωI + ωS( .

(A.19)
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For the expansion of the commutators, one uses

I+, Iz  � − I+; I− , Iz  � I− ; I+, I−  � 2Iz, (A.20a)

and the product rules

IzIz �
1
4

E; I+I− �
1
2

E + Iz; I− I+ �
1
2

E − Iz, (A.20b)

IzI+ � − I+Iz �
1
2
I+; IzI− � − I− Iz � −

1
2
I− , (A.20c)

with E being the unit matrix.
One finds that all double commutators in equation

(A.19) result in terms linear in I+, yielding an uncoupled
differential equation

−
d〈I+〉
dt

� R
I
2〈I+〉, (A.21)

with

R
I
2 �

1
8

μ0
4π

 
2 cIcSZ

r3IS

 

2

4J(0) + 3J ωI(  + 6 ωS( 

+ J ωI − ωS(  + 6J ωI + ωS( .

(A.22)

For two protons with different chemical shifts, one
makes the substitutions

J ωI − ωS(  � J(0); J ωS(  � J ωI(  � J ωH( , (A.23)

which yields

R
I
2 �

1
8

μ0
4π

 
2 cHcHZ

r3IS

 

2

5J(0) + 9J ωH(  + 6J 2ωH(  .

(A.24)

(is is called the “unlike” proton-proton dipolar re-
laxation equation.

In the case of two protons I and Iʹwith identical chemical
shifts, or when the chemical shifts are forced to be equal
during a spin lock, the cross terms between different co-
herence orders in the dipolar Hamiltonian cannot be
neglected.

In particular, two cross terms between the single
quantum terms C and D of equation (A.19) enter in the
relaxation master equation, giving rise to cross-relaxation to
the other spin:

I+, I− Iz
′ , IzI+
′  � 2 IzIz

′, IzI+
′  �

1
2

Iz
′, I+
′  �

1
2
I+
′. (A.25)

Similarly, the frequencies of J(0) and zero-quantum
terms in this case are precisely equal, so that two cross terms
between terms A and B of equation (A.17) will occur as well:

− I+, IzIz
′ , I− I+
′  � I+Iz

′, Iz− I+
′  �

1
2
I+
′. (A.26)

Capturing both transfers into one equation yields

−
d〈I+〉
dt

�
1
2

j0(0) +
3
2
j1 ωH(  〈I+

′〉 ≡ σROE〈I+
′〉, (A.27)

σROE �
1
8

μ0
4π

 
2 cIcSZ

r3IS

 

2

4J(0) + 6 ωI(  . (A.28)

(e cross-relaxation rate in equation (A.28) is called the
rotating frame Overhauser effect and was first discovered
and quantified by [15] using the name “camel-spin.”

Since the I and I′ chemical shifts are identical, one may
add equation (A.28) to equation (A.24) to obtain

R
I
2 �

1
8

μ0
4π

 
2 cHcHZ

r3IS

 

2

9J(0) + 15J ωH(  + 6J 2ωH(  .

(A29)

(is equation holds two protons with identical chemical
shifts, or spinlocked. It is called the “like” spin relaxation
equation. (is has led to confusion. A better nomenclature
would be to call this the identical spin relaxation equation.
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