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)e equation of motion of the density matrix of an ensemble of identical spin-1/2 nuclei subject to a rotating-frame radio-
frequency field and Zeeman frequency offset is derived from the Schrodinger equation and shown to be equivalent to the
magnetization differential equations originally proposed by Bloch (excluding relaxation). )e quantum and classical differential
equations are then integrated.

1. Introduction

It is well known that the magnetization differential
equations (excluding relaxation) of Bloch [1] have a
quantum counterpart [2] in the equation of motion of the
density matrix under an appropriate Hamiltonian oper-
ator. A compact derivation of this equation is presented,
and the resulting quantum and classical differential
equations are then integrated. )e aim throughout is to
explicitly illustrate the use of quantum-mechanical
principles and matrix methods in formulating and solving
this problem. Dirac notation is used to more transparently
visualize matrix structures and manipulations. )e reader
may find it useful to refer first to the overview of Section 3
before beginning Section 2.

2. Theory and Results

2.1. Derivation of the General Equation of Motion of the
DensityMatrix. )e Schrodinger equation in Dirac notation
[3] is

d
dt

|ψ(t)〉 � − iH|ψ(t)〉. (1)

H is a time-independent Hermitian operator (square
matrix) and |ψ(t)〉 is a ket (normalized column vector)

state function [4]. )e corresponding equation for the
adjoint bra 〈ψ(t)| (the row vector complex conjugate
transpose) is

d
dt

〈ψ(t)| � 〈ψ(t)|iH, (2)

making use of the self-adjoint property H† � H of a Her-
mitian matrix.

For an ensemble of identical particles, the outer product
of the ket and bra,

|ψ(t)〉〈ψ(t)| � σ(t), (3)

is a matrix σ(t) referred to as the density matrix or operator.
)e time dependence of the density matrix is calculated by
differentiating equation (3).

d
dt

σ(t) �
d
dt

(|ψ(t)〉〈ψ(t)|)

�
d
dt

|ψ(t)〉〈ψ(t)| + |ψ(t)〉
d
dt
〈ψ(t)|

� − iHσ(t) + σ(t)iH

� − i(Hσ(t) − σ(t)H) � − i[H, σ(t)],

(4)
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obtained using equations (1), (2), and commutator notation.
Equation (4) is known as the Liouville–von Neumann

equation of motion of the density matrix.

2.2. Formof theDensityMatrix. )e density matrix elements
for a spin− 1/2 ensemble are constructed from the expec-
tation values of the spin angular momentum operators Ix, Iy,
or Iz. )ese are given by the trace (sum of diagonal elements)
of the product of the relevant spin angular momentum
operator Ix, Iy, or Iz and the density matrix σ and expressed as
ensemble projections sx, sy or szof the appropriate angular
momentum in half-integer units [4, 5].

〈Ix〉 � TrIxσ � Tr
1
2

0 1

1 0
⎛⎝ ⎞⎠

σ11 σ12

σ21 σ22
⎛⎝ ⎞⎠

�
1
2

σ12 + σ21(  �
1
2
sx,

(5)

〈Iy〉 � TrIyσ � Tr
1
2

0 − i

i 0
 

σ11 σ12
σ21 σ22

 

�
i

2
σ12 − σ21(  �

1
2
sy,

(6)

〈Iz〉 � TrIzσ � Tr
1
2

1 0
0 − 1

 
σ11 σ12
σ21 σ22

 

�
1
2

σ11 − σ22(  �
1
2
sz.

(7)

Additionally, the trace of the density matrix
Trσ � σ11 + σ22 � 1. Solving for individual density matrix
elements σ is found to be

σ �

σ11 σ12

σ21 σ22
⎛⎝ ⎞⎠ �

1
2

1 + sz sx − isy

sx + isy 1 − sz

⎛⎜⎝ ⎞⎟⎠. (8)

)e density matrix is Hermitian with diagonal ele-
ments proportional classically to longitudinal z-magne-
tization and off-diagonal elements proportional to
(complex) transverse magnetization [2, 5]. It is idempo-
tent (σ2 � σ) as verified by matrix multiplication using
s2x + s2y + s2z � 1 for a pure state and Trσ2 � 1. A geometric
formulation of the density matrix is also given in the
Appendix. It suffices henceforth to omit the diagonal
constant and proportionality factor in equation (8) and
express the density matrix as

σ �
σ11 σ12
σ21 σ22

  �
〈Iz〉 〈Ix〉 − i〈Iy〉

〈Ix〉 + i〈Iy〉 − 〈Iz〉
⎛⎝ ⎞⎠, (8a)

with 〈Ix〉2 + 〈Iy〉2 + 〈Iz〉2 � 1.

2.3. Form of theHamiltonianOperator. For a rotating-frame
radiofrequency field ω1 � cB1(rad/s) along the x-axis and a
(positive) Zeeman frequency offset Δ � ωrf − ω0(rad/s), the
Hamiltonian operator H is given by

H � ω1Ix + ΔIz �
1
2

Δ ω1

ω1 − Δ
⎛⎝ ⎞⎠. (9)

2.4. Evaluation of the Equation of Motion Equation (4).
Using the density matrix σ of equation (8a) and the
Hamiltonian operator H of equation (9) in equation (4), we
find

d
dt

σ �

ω1〈Iy〉 − iΔ 〈Ix〉 − i〈Iy〉  + iω1〈Iz〉

iΔ 〈Ix〉 + i〈Iy〉  − iω1〈Iz〉 − ω1〈Iy〉

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠. (10)

)en, (d/dt)〈Iα〉 � TrIα(d/dt)σ(α � x, y, z) and

d
dt
〈Ix〉 � Tr

1
2

0 1

1 0
⎛⎝ ⎞⎠

d
dt

σ � − Δ〈Iy〉, (11)

d
dt
〈Iy〉 � Tr

1
2

0 − i

i 0
 

d
dt

σ � Δ〈Ix〉 − ω1〈Iz〉, (12)

d
dt
〈Iz〉 � Tr

1
2

1 0
0 − 1

 
d
dt

σ � ω1〈Iy〉. (13)

Equations (11)–(13) may be assembled in the matrix
form

d
dt

〈Ix〉

〈Iy〉

〈Iz〉

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

0 − Δ 0

Δ 0 − ω1

0 ω1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

〈Ix〉

〈Iy〉

〈Iz〉

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (14)
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As the expectation values are proportional to magneti-
zations, equations (11)–(13) are seen to be equivalent to the
coupled differential equations of Bloch [1]. )ey may also be
written in a compact form (d/dt)〈Iα〉 � − i〈[Iα,H]〉 using
the cyclic commutation relations [Iα, Iβ] � iIc of the spin
operators [2].

2.5. Superoperator Form of the Liouville–von Neumann
Equation. A commutator superoperator Γ can also be
constructed from H using direct products [4].

Γ � H⊗E − E⊗H �
1
2

Δ ω1

ω1 − Δ
⎛⎝ ⎞⎠⊗

1 0

0 1
⎛⎝ ⎞⎠ −

1
2

1 0

0 1
⎛⎝ ⎞⎠⊗

Δ ω1

ω1 − Δ
⎛⎝ ⎞⎠ �

1
2

0 − ω1 ω1 0

− ω1 2Δ 0 ω1

ω1 0 − 2Δ − ω1

0 ω1 − ω1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

If the elements of σ in equation (8a) are arrayed as a
column supervector σ, equation (4) becomes

d
dt

σ � − iΓσ � −
i

2

0 − ω1 ω1 0

− ω1 2Δ 0 ω1

ω1 0 − 2Δ − ω1

0 ω1 − ω1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

〈Iz〉

〈Ix〉 − i〈Iy〉

〈Ix〉 + i〈Iy〉

− 〈Iz〉

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(16)

By solving (d/dt)〈Ix〉, (d/dt)〈Iy〉 and (d/dt)〈Iz〉, we
obtain equations (11)–(13).

2.6. Integration of the Equation of Motion Equation (4).
)e integrated solutions of Schrodinger equations (1), (2) are

|ψ(t)〉 � exp(− iHt)|ψ(0)〉, (17)

〈ψ(t)| � 〈ψ(0)|exp iHt. (18)

Accordingly

σ(t) � |ψ(t)〉〈ψ(t)| � exp(− iHt)|ψ(0)〉〈ψ(0)| exp iHt

� exp(− iHt)σ(0)exp iHt.

(19)

Equation (19) provides a means of calculating the time
evolution of the density matrix (unitary transformation)
from some initial state with the exponential operator
exp(− iHt) and its adjoint.

Equation (4) may be recovered by differentiating
equation (19), as follows:

d
dt

σ(t) � − iHσ(t) + exp(− iHt)σ(0)iH expiHt

� − iHσ(t) + σ(t)iH � − i[H, σ(t)],

(20)

as H and expiHt commute.

2.7. Form of the Exponential Operator R � exp − iHt. As Ix
and Iz do not commute the operator exp − iHt must be
explicitly calculated.

)e diagonal matrix of eigenvalues of the Hamiltonian
operator H of equation (9) is

D �
1
2

Ω 0

0 − Ω
⎛⎝ ⎞⎠, Ω � Δ2 + ω2

1 
1/2

. (21)

)e corresponding normalized eigenvector matrix U is
found to be

U �
cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)
  � |1〉 |2〉( , (22)

with tan θ � (ω1/Δ) and expressing U as a row vector of
kets.

AsU is unitaryUT � U− 1 andH � UDU− 1.)e operator
R � exp − iHt is then given by

R � U exp(− iDt)U− 1
� |1〉 |2〉( 

(c − is)〈1|

(c + is)〈2|
 

� c(|1〉〈1| + |2〉〈2|) − is(|1〉〈1| − |2〉〈2|)

�
c − is cos θ − is sin θ

− is sin θ c + is cos θ
  � |1〉 |2〉( ,

(23)

using half-angle formulas with c, s � cos(Ω/2)t, sin(Ω/2)t

and expressing R as a row vector of kets. As R is unitary, the
adjoint is given by

R†
� R− 1

� exp iHt �
c + is cos θ is sin θ

is sin θ c − is cos θ
 

�
〈1|

〈2|
 ,

(24)

Concepts in Magnetic Resonance Part A, Bridging Education and Research 3



using Dirac notation to write R† as the corresponding
column vector of bras.

2.8. Time Evolution of the Density Matrix for Various Initial
States. (a) With the system initially at equilibrium 〈Iz〉 � 1

and the density matrix of equation (8a)
evolves according to equation (19). Using
Dirac notation for R and R†, we may write

σ(t) � R
1 0

0 − 1
 R†

� |1〉〈1| − |2〉〈2|

�
cos2θ + c sin2θ is sin θ + sinθcosθ[1 − c]

− is sin θ + sin θ cos θ[1 − c] − cos2θ − c sin2θ
⎛⎝ ⎞⎠,

(25)

using half-angle formulas and now with
c, s � cosΩt, sinΩt (the reader should verify
equations (23) and (25)). )e trace expressions of
equations (5)–(7) then provide the integrated
solutions

〈Ix〉 � sin θ cos θ [1 − cosΩt], (26)

〈Iy〉 � − sin θ sinΩt, (27)

〈Iz〉 � cos2θ + sin2θ cosΩt. (28)

(b) With the system initially along x〈Ix〉 � 1 and

σ(t) � R 0 1
1 0 R† � |1〉〈2| + |2〉〈1|. Along

y〈Iy〉 � 1 and σ(t) � R 0 − i

i 0 R† � − i(|1〉〈2|

− |2〉〈1|).)ese equations lead, respectively, to sets of
expectation values given by column 1 or column 2 of
equation (42).

(c) For 〈Ix〉 � sin θ and 〈Iz〉 � cos θ, the ensemble is
aligned with the effective field Beff � (Ω/c) and σ is
time-independent (the reader should verify this
assertion).

2.9.RadiofrequencyField along the y-Axis. For a rf field along
the y-axis, the Hamiltonian operator H becomes

H � ω1Iy + ΔIz �
1
2

Δ − iω1

iω1 − Δ
⎛⎝ ⎞⎠. (29)

)e eigenvalues are again those of equation (21), andU is
found to be

U �
cos(θ/2) − sin(θ/2)

i sin(θ/2) i cos(θ/2)
  � |1〉 |2〉( , (30)

from which R is calculated from equation (23) using
equation (30) and its adjoint to be

R � exp − iHt � U exp(− iDt)U†

�
c − is cos θ − s sin θ

s sin θ c + is cos θ
  � |1〉 |2〉( ,

(31)

using half-angle formulas with c, s � cos
Ω/2( t, sin Ω/2( t and writing R as a row vector of kets.
With 〈Iz〉 � 1, the density matrix evolves using equation

(31) and its adjoint R† according to

σ(t) � R
1 0

0 − 1
 R†

� |1〉〈1| − |2〉〈2|

�
cos2θ + c sin2θ s sin θ − i sin θ cos θ[1 − c]

s sin θ + i sin θ cos θ[1 − c] − cos2θ − c sin2θ
⎛⎝ ⎞⎠,

(32)
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using half-angle formulas and now with
c, s � cosΩt, sinΩt.

Equations (5)–(7) give the integrated solutions

〈Ix〉 � sin θ sinΩt, (33)

〈Iy〉 � sin θ cos θ[1 − cosΩt], (34)

〈Iz〉 � cos2θ + sin2θ cosΩt. (35)

2.10. Integration of the Bloch Differential Equations.
Equation (14) may be recast as

d
dt

M � − KM, (36)

where M � Mx My Mz 
T
is a column vector of mag-

netizations and

K �

0 Δ 0

− Δ 0 ω1

0 − ω1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (37)

)e integrated solution is

M(t) � exp(− Kt)M(0). (38)

)e diagonal eigenvalue matrix of K is
D � diag 0 iΩ − iΩ( Ω � (Δ2 + ω2

1)
1/2, and the normal-

ized eigenvector matrix U that diagonalizes K is found to be

U �
1
�
2

√

�
2

√
sin θ cos θ cos θ

0 i − i

�
2

√
cos θ − sin θ − sin θ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� |1> |2> ⌊3>( ,

(39)

expressing U as a row vector of kets. As U is unitary, the
matrix adjoint U† � U− 1, the corresponding column vector
of bras. Using Dirac notation, diagonalization of K can be
represented as

U− 1KU �

〈1|

〈2|

〈3|

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 0|1〉 iΩ|2〉 − iΩ|3〉(  �

0

iΩ

− iΩ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � D,

(40)

where, e.g., |i〉 represents the ith column of U, 〈i| is its row
adjoint, 〈i|i〉 � 1, and 〈i|j〉 � 0.

K is given by

K � U DU− 1
� |1〉 |2〉 |3〉( 

0

iΩ

− iΩ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

〈1|

〈2|

〈3|

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � iΩ(|2〉〈2| − |3〉〈3|).

(41)

)e matrix A � exp − Kt is then

A � U exp − DtU− 1
� |1〉 |2〉 ⌊3⌋( 

〈1|

(c − is)〈2|

(c + is)〈3|

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� |1〉〈1| + c(|2〉〈2| + |3〉〈3|) − is(|2〉〈2| − |3〉〈3|)

�

sin2θ + c cos2θ − s cos θ sin θ cos θ[1 − c]

s cos θ c − s sin θ

sin θ cos θ[1 − c] s sin θ cos2θ + c sin2θ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(42)

with c, s � cosΩt, sinΩt (the reader should verify equation
(42)).

K is antisymmetric so that
KT � − K, (exp − Kt)T � (expKt) and (exp − Kt)(exp−

Kt)T � E. A is therefore orthogonal and 〈i|i〉 � 1, 〈i|j〉 � 0.
Equation (38) becomes

M(t) � AM(0). (43)

For the system initially at equilibrium,
M(0) � 0 0 1( 

T and M(t) is given by column 3 of
equation (42). )ese solutions are those of equations
(26)–(28) obtained by integration of the density matrix.

3. Discussion

)e results of Section 2 are summarized here to delineate the
steps leading from the Schrodinger eq. (1) to the differential
eq. (14) of the expectation values of the spin angular mo-
mentum operators and their subsequent integration.

(1) )e general differential equation of motion of the
density matrix equation (4) is first derived from the
Schrodinger equation (1) and its adjoint equation (2).

(2) )e density matrix equation (8) for an ensemble of
identical spin− 1/2 nuclei is then constructed from
the expectation values of the spin angular mo-
mentum operators.

(3) )e Hamiltonian operator equation (9) for a ro-
tating-frame rf field and Zeeman frequency offset is
formulated.

(4) )e time dependence of the density matrix elements
is then calculated (equation (10)). Suitable combi-
nations of these give coupled differential equations
(11)–(13) for the expectation values of the spin
operators.

(5) An equivalent superoperator formulation of the
equation of motion is presented.

(6) Integration of the Schrodinger equations (1), (2)
leads to equation (19) describing the time evolution
of the density matrix via unitary transformation
using an exponential operator and its adjoint.

Concepts in Magnetic Resonance Part A, Bridging Education and Research 5



(7) A diagonalization method is used to calculate the
necessary exponential operator (equation (23)).

(8) )e time evolution of the density matrix equation
(19) is then calculated for the Hamiltonian operator
of equation (9) with the initial condition 〈Iz〉 � 1,
and suitable combinations of density matrix ele-
ments give equations (26)–(28) for the spin oper-
ator expectation values. Other initial conditions are
considered.

(9) A shifted rf field along the y-axis (equation (29))
leads to expectation values given by equations
(33)–(35) for the system initially at equilibrium.

(10) Finally, a diagonalization method is used to inte-
grate the Bloch differential equation (36), giving
equation (43).

4. Conclusion

As the expectation values of the operators representing the
projection of the spin angular momentum along x, y or z are
proportional to the respective magnetizations, the quantum
and classical differential equations of motion (and their
integrated solutions) for a spin− 1/2 ensemble are shown to
be equivalent. It is noteworthy that the Bloch equations,
originally proposed phenomenologically [1] using a classical
argument, are quantum-mechanical in origin. )e equiva-
lence arises from the correspondence [2] between (a) the
(classical) cross product coupling of the nuclear magnetic
moment vector with the effective field vector and (b) the
(quantum-mechanical) commutation relations governing
the spin angular momentum operators used to construct the
density matrix and the effective field Hamiltonian operator.

Appendix

)e state of the spin− 1/2 ensemble may be represented by
the general linear operator

O∝ sxIx + syIy + szIz

&9; �
cos θ sin θ

sin∗θ − cos θ
 ,

(A.1)

with tan θ � (|sx − isy|/sz) and s2x + s2y + s2z � 1. )e symbol
∗ denotes complex conjugate.

)e unitary eigenvector matrix U that diagonalizes O is
found to be

U �
c − s

s
∗

c
∗

⎛⎝ ⎞⎠ � |1〉 |2〉( , s � sin
θ
2

 , c � cos
θ
2

 ,

(A.2)

with corresponding eigenvalues ±1. )e density matrix is
then

σ

�
cc
∗

cs

(cs)
∗

ss
∗

⎛⎝ ⎞⎠ �
1
2

1 + cos θ sin θ

sin∗θ 1 − cos θ
⎛⎝ ⎞⎠,

(A.3)

in agreement with equation (8). )e idempotent nature of σ
is evident as σ2 � |1〉〈1||1〉〈1| � |1〉〈1| � σ.
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