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Te dynamics of an identical pair of entangled spin-1/2 particles, both subjected to the same random magnetic feld, are studied.
Te dynamics of the pure joint state of the pair are derived using stochastic calculus. An ensemble of such pure states is combined
using the modifed spin joint density matrix, and the joint relaxation time for the pair of spin-1/2 particles is obtained. Te
dynamics can be interpreted as a special kind of correlation involving the spatial components of the Bloch polarization vectors of
the constituent entangled spin-1/2 particles.

1. Introduction

Entanglement is an important feature of quantum me-
chanics that is useful in the area of “quantum computing
and information.” Two-qubit maximally entangled states
are of particular interest in the implementation of
quantum communication protocols like quantum tele-
portation and superdense coding [1, 2]. Tey are also
useful to generate a secured key distribution between
sender and receiver for communicating information [3].
Tis is because entangled qubits are strongly correlated
such that the behaviour of one of the qubits can decide the
behaviour of the other, irrespective of the separation,
provided the qubits are undisturbed. For example, con-
sider an entangled state in which a pair of spin-1/2
particles’ component of the angular momentum along
a preferred direction (usually the z-axis) is zero, i.e.,
(1/

�
2

√
)(|↑〉⊗ |↓〉 + |↓〉⊗ |↑〉). If one of them is measured

along the z-axis and the component of the angular mo-
mentum is found to be (1/2)Z, then the result of the other
will be forced to be − (1/2)Z. It is important to understand
the properties of the entangled states and their behaviour

in the environment in which they exist. Tis paper con-
siders one such idea, in which the entangled state of a pair
of spin-1/2 particles is considered and subjected to
a random magnetic feld. Te random feld arises due to
various couplings and molecular motions [4]. Te dy-
namics of a single spin-1/2 particle in its pure state under
a random magnetic feld has already been studied [5]. An
ensemble of spins is combined using modifed spin
density to notice the fuctuations, and the relaxation times
were obtained in the context of nuclear magnetic reso-
nance (a phenomenon in which nuclei respond to the
surrounding magnetic felds [5, 6]). Relaxation theory and
spin entanglement fnd relevance in the context of nuclear
magnetic resonance (NMR) (for example, [7, 8]). In the
current article, we restrict our attention to the “extreme
narrowed” case in which the autocorrelation time of the
random magnetic felds driving relaxation is negligibly
small and thereby the transverse/longitudinal relaxation
times are equal (this same assumption applies to our
considerations for both a single spin-1/2 particle and
a pair of entangled spin-1/2 particles.) Additionally, here,
we do not include interaction operators in the
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Hamiltonian explicitly; cf. Te ideas pertaining to long-
lived spin states described in [7, 8]. Te ideas in [5] are
used and extended for an entangled state of a pair of spin-
1/2 particles, and the dynamics are derived. Te defnition
of modifed spin density is also extended to a pair of
entangled spins (modifed spin joint density), and the
joint relaxation time is obtained.

Tis paper is organized as follows: in Section 2, we recall
important defnitions related to spin-1/2 and pairs of spin-1/
2 systems and the tensor representation of their density
matrices to familiarize the reader with the notations. In
Section 3, some important ideas in [5] are explained. Section
3 is based on the dynamics of a single spin-1/2 particle under
a random magnetic feld, in which the dynamics of the
density matrix in the form of a stochastic diferential
equation (SDE) gives relaxation time and steady state. It
demonstrates that in the extreme narrowed approximation,
the autocorrelation frequency of the dynamics of the spin
corresponds to the relaxation time of the spin, which is
a familiar parameter in the context of standard approaches to
NMR. Section 4 is an extended study on the dynamics of an
entangled pair of spin-1/2 particles, motivated by the ideas in
Section 3. Te SDE pertaining to the entangled pair gives the
steady state and the timescale associated for it to be reached
by the joint state of the pair of spins. Te correlation matrix
concept is invoked to elucidate the entanglement notion and
is motivated by some other entanglement-based measures in
the literature. Te SDE and the associated volatility are
discussed for the correlation matrix components to illustrate
that a maximally entangled state has stronger fuctuations
than its unentangled counterpart. Tese ideas were de-
veloped in the present article to convey some extra intuition
concerning the properties of entangled spins. Section 4 thus
contains the central results of the paper, beginning with the
idea of the correlation matrix, whose components are the
correlations involving the Bloch polarization vector com-
ponents of the constituent spins. We defne the Hamiltonian
for the pair of spins and derive the dynamics for a single pair
of entangled spins. An ensemble of these pure states is
combined using the modifed spin joint density, and fuc-
tuations in various components of the density matrix are
noted. Tese dynamics are interpreted as correlations from
the tensor representation of the density matrix. Using the
idea of a correlation matrix, it is shown that entangled states
have stronger scales of fuctuations than those of the
unentangled states. We obtain the joint relaxation time for
the pair of spins and conclude in Section 5 with a discussion
of the results, including the steady state density matrix and
persistence of entanglement when the constituent spins are
subjected to the same randommagnetic feld and a timescale
associated with the joint relaxation time.

2. Definitions and Prerequisites

2.1. Spin States andTeirRepresentations. Te spin-1/2 is the
fundamental unit of spin system. Te spin-j angular mo-
mentum observed along a preferred direction (usually z-
axis) takes the eigenvalues m� − j to j. Te spin-1/2 eigen-
states in |j, m〉 notation are

j �
1
2
, m �

1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉 � |↑〉,

j �
1
2
, m � −

1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉 � |↓〉.

(1)

In the presence of a strong and constant magnetic feld
applied along the z-axis (say B0􏽢z), the spin-1/2 particle tends
to align along or opposite to the direction of the magnetic
feld, following the Boltzmann fraction [5, 6], where the
minimum energy dominates (elaborated in Section 3). Tese
states are denoted by |↑〉 and |↓〉, respectively. Any other
direction parameterized by θ, ϕ is a superposition of these
two eigenstates. For example,

|ψ〉 � e
− iϕ/2 cos

1
2
θ􏼒 􏼓|↑〉 + e

iϕ/2 sin
1
2
θ􏼒 􏼓|↓〉. (2)

Tis direction gives the polarization of the spin-1/2
particle. We say that the particle is polarized along
p
→

� (sin θ cos ϕ, sin θ sinϕ, cos θ).
Te spin-1/2 eigenstates can be represented using the

vectors in C2 (two-dimensional complex vector space) as

|↑〉 �
1

0
􏼠 􏼡,

|↓〉 �
0

1
􏼠 􏼡,

(3)

so that a general quantum state of a particle polarized
along p

→ can be represented in C2 as

|ψ〉 �

e
− iϕ/2 cos

1
2
θ􏼒 􏼓

e
iϕ/2 sin

1
2
θ􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4)

We denote this state as |↗〉. Two spin states corre-
sponding to oppositely polarized vectors can be considered
as a basis for the spin system. Te state orthogonal to |↗〉 is
denoted as |↙〉 and is represented in C2 as

|↙〉 �

− e
− iϕ/2 sin

1
2
θ􏼒 􏼓

e
iϕ/2 cos

1
2
θ􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5)

whose polarization is − p
→. Defning |↗〉 and |↙〉 should not

confuse the readers.Te intention was to convey that the two
basis states can be chosen corresponding to any antipodal
directions. Te most general state parameterized by θ, ϕ
facilitates the analysis of the dynamics with the initial state/
direction given by θ, ϕ, thereby the trajectory is a random
walk on the sphere that started from that initial direction.

Higher spin systems like spin-1, 3/2 can be constructed
using the spin-1/2 system via tensor product ⊗ . A spin-j
state can be expressed in terms of tensor products of “2j”
spin-1/2 states [9]. Physically, these states can correspond to
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a single spin-j particle or a combination of 2j spin-1/2
particles. Te eigenstates of spin-1 system in terms of the
constituent spin-1/2 states in |j, m〉 notation are

|1, 1〉 �
1
2
,
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉 ⊗

1
2
,
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉 � |↑〉⊗ |↑〉,

|1, − 1〉 �
1
2
, −
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉 ⊗

1
2
, −
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉 � |↓〉⊗ |↓〉,

|1, 0〉 �
1
�
2

√
1
2
,
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉 ⊗

1
2
, −
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉 +

1
2
, −
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉 ⊗

1
2
,
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉􏼒 􏼓

�
1
�
2

√ (|↑〉⊗ |↓〉 + |↓〉⊗ |↑〉).

(6)

In addition, we also have a spin-0 state

|0, 0〉 �
1
�
2

√
1
2
,
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉 ⊗

1
2
, −
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉 −

1
2
, −
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉 ⊗

1
2
,
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉􏼒 􏼓

�
1
�
2

√ (|↑〉⊗ |↓〉 − |↓〉⊗ |↑〉).

(7)

Te states like |0, 0〉, |1, 0〉, which cannot be expressed as
product of single spin-1/2 states (as in case of |1, 1〉 ) are called
entangled states. Correspondingly, the measurement outcomes
of the constituent spins are correlated.Te states which are not
entangled are unentangled states (such as |1, 1〉). Te spin-1
eigenstates span the three-dimensionaltriplet subspace of the
spin-1 system and the spin-0 state spans the unidimensional
singlet subspace. We can represent these four states in terms of
the standard orthonormal vectors in C4 as

|1, 1〉 �

1

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

|1, − 1〉 �

0

0

0

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

|1, 0〉 �
1
�
2

√

0

1

1

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

|0, 0〉 �
1
�
2

√

0

1

− 1

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.,

(8)

Using the basis vectors, we can also defne the spin-1
states corresponding to an arbitrary direction (parameter-
ized by θ, ϕ) along which the observable component of the
angular momentum takes the eigenvalues m � 0, ± 1. Te
three states of the triplet are defned as |↗〉⊗ |↗〉, |↙〉⊗ |↙〉

and |s〉≜ (1/
�
2

√
)(|↗〉⊗ |↙〉 + |↙〉⊗ |↗〉). In this article, we

are interested in |s〉 to derive the dynamics of the entangled
state of pair of spins.

2.2. Te Spin Density Matrix and Tensor Representation.
Te quantum mechanical density matrix of a system con-
taining the states {|ϕm〉} occurring with the probability {pm}
is given by

ρ � 􏽘
m

pm ϕm

􏼌􏼌􏼌􏼌 〉〈ϕm

􏼌􏼌􏼌􏼌 , (9)

where 􏽐mpm � 1. If the decomposition above has only one
state, then it is called a pure state. Otherwise, it is called
a mixed state. Geometrically, spin-1/2 pure states corre-
spond to points on the Bloch sphere, whereas mixed states
correspond to points inside the sphere. Tis can be elabo-
rated from the tensor representation, as we are about to
demonstrate.

Te density matrix of a spin-j system can be represented
using some special tensors with “2j” indices [9].Te spin-1/2
density matrix of a pure state is given by the projection
operator |↗〉〈↗|(� ρ).

ρ �
1
2

1 + cos θ e
− iϕ sin θ

e
iϕ sin θ 1 − cos θ

⎛⎜⎜⎝ ⎞⎟⎟⎠. (10)

Tis can be expressed in terms of Pauli matrices and the
identity matrix as (cf. [9])

ρ �
1
2

􏽘

3

i�0
Xiσi, (11)

where Xi � Tr(ρσi), X0 � 1, σ0 � I, and the Pauli matrices
are

σ1 �
0 1

1 0
􏼠 􏼡,

σ2 �
0 − i

i 0
􏼠 􏼡,

σ3 �
1 0

0 − 1
􏼠 􏼡,

(12)

(X1, X2, X3) is the Bloch polarization vector whose modulus
is unity. Hence, pure states correspond to points on the unit
sphere. Now, consider a mixture of two pure states ρ1 and ρ2
with probabilities p, 1 − p. Let the Bloch unit vectors be
(X1, X2, X3) and (Y1, Y2, Y3), respectively. Te density
matrix of the mixed state is

ρ � p ρ1 +(1 − p)ρ2. (13)

From the tensor representation of ρ, the polarization
vector of the mixed state ρ is

Concepts in Magnetic Resonance Part A, Bridging Education and Research 3



P
→

� p X1, X2, X3( 􏼁 +(1 − p) Y1, Y2, Y3( 􏼁. (14)

Te magnitude of P
→

is less than unity because it lies on
the line segment joining the points (X1, X2, X3) and
(Y1, Y2, Y3). Hence, mixed states correspond to points in-
side the unit sphere (the appendix).

Te density matrix for a pair of spin-1/2 particles can be
expressed in terms of tensors with two indices. Te density
matrix of a state |↗〉1 ⊗ |↗〉2 whose constituent spin-1/2
particles are polarized along diferent directions is

ρ � |↗〉1〈↗|1 ⊗ |↗〉2〈↗|2

�
1
2

􏽘

3

i�0
Xiσi

⎛⎝ ⎞⎠⊗
1
2

􏽘

3

i�0
Yiσi

⎛⎝ ⎞⎠

�
1
4

􏽘

3

a,b�0
XaYb σa ⊗ σb( 􏼁.

(15)

XaYb � Tr[ρ(σa ⊗ σb)]. Te vector (X1, X2, X3) is the
polarization of the frst spin and (Y1, Y2, Y3) is the polar-
ization of the second spin. Te coefcients XaYb can be
interpreted as correlations between the constituent qubits
[10]. It should be noted that the indices 1, 2 in the above
equation indicate that the constituents are polarized along
diferent directions.

Te density matrix of |↗〉⊗ |↗〉 can be expressed as

ρ � |↗〉〈↗|⊗ |↗〉〈↗|

�
1
2

􏽘

3

i�0
Xiσi

⎛⎝ ⎞⎠⊗
1
2

􏽘

3

i�0
Xiσi

⎛⎝ ⎞⎠

�
1
4

􏽘

3

a,b�0
Xab σa ⊗ σb( 􏼁,

(16)

where Xab � XaXb. In this case, the constituents are po-
larized along same direction. From now on, we consider the
states in which the constituents are polarized along same or
opposite directions.

Te density matrix of a pair of entangled spins can also
be expressed in a similar way.

ρ � |s〉〈s|

�
1
2

(|↗〉〈↗|⊗ |↙〉〈↙| + |↙〉〈↙|⊗ |↗〉〈↗|

+|↗〉〈↙|⊗ |↙〉〈↗| + |↙〉〈↗|⊗ |↗〉〈↙|).

(17)

Te various terms arising above can be expressed as

|↗〉〈↗| �
1
2

I + X1σ1 + X2σ2 + X3σ3( 􏼁,

|↙〉〈↙| �
1
2

I − X1σ1 − X2σ2 − X3σ3( 􏼁,

|↗〉〈↙| �
1
2

(cos θ cos ϕ − i sinϕ)σ1 +(cos θ sinϕ + i cos ϕ)σ2 − (sin θ)σ3􏼂 􏼃,

|↙〉〈↗| �
1
2

(cos θ cos ϕ + i sinϕ)σ1 +(cos θ sinϕ − i cos ϕ)σ2 − (sin θ)σ3􏼂 􏼃.

, (18)

Writing in terms of (σa ⊗ σb), we get

ρ �
1
4

􏽘

3

a,b�0
Xab σa ⊗ σb( 􏼁, (19)

with Xab(� Xba) defned as

X00 � 1,

Xa0 � 1; a � 1, 2, 3,

Xaa � 1 − 2X
2
a; a � 1, 2, 3,

Xab � − 2XaXb; a≠ b; a, b � 1, 2, 3.

(20)

In this way, we could proceed for higher spins and also
extend for mixed states. We restrict ourselves to the pair of
entangled spin-1/2 particles. It is interesting to see that the
coefcients in the entangled state are diferent from those in
unentangled states. Later, we also prove a well-known fact
that the entangled states have stronger correlations than the
unentangled ones by defning the correlation matrix.

In the presence of a random magnetic feld, the polar-
ization of the spin-1/2 pure state is afected. It changes
randomly as the magnetic feld changes. Te polarization is
a vector random process whose dynamics were derived in
[5]. In the case of an entangled pair of spin-1/2 particles, the
correlation matrix is a random process whose dynamics can

4 Concepts in Magnetic Resonance Part A, Bridging Education and Research



be derived from the ideas in [5]. For more discussion on spin
states, see [11, 12].

3. Dynamics of a Spin-1/2 Particle

In this section, we briefy explain the idea of [5], which
considers a single spin-1/2 particle in its pure state. Te
dynamics in the presence of randommagnetic feldmodelled
as Gaussian white noise process can be derived using the
stochastic calculus. An ensemble of spins is combined in
a special way using the modifed spin density as opposed to
the conventionally used ensemble density matrix, which
conceals the information about the fuctuations. Te en-
semble density matrix and associated relaxation times can be
obtained from the modifed spin density via ensemble av-
eraging (law of large numbers), thereby making contact with
conventional nuclear magnetic resonance (NMR).

Here, we extract and present some important ideas from
[5] and use them to derive the dynamics of the entangled state.
Te randommagnetic feld experienced by the spinsmay be the
result, inter alia, of molecularmotions and dipolar interactions;
this constitutes the environment [4]. Such microfeld dynamics
(here treated classically, i.e., frst quantized) leads to relaxation
in the case of (an ensemble of) unentangled spin-1/2 particles,
wherein, in the present context, the standard relaxation time is
obtained from the autocorrelation properties of the spin noise
process. In this way, the amplitude of the magnetic feld
fuctuations determines the corresponding relaxation time. In
a similar way, by extending these considerations for a single
spin-1/2 particle to a pair of entangled spin-1/2 particles, the
random environment is principally due to these kinds of
dipole-dipole interactions.Te total magnetic feld experienced
by a spin-1/2 particle is the sum of main feld B0􏽢z and the
random feld B

→
1∝ k1/2(Γ(x)

t , Γ(y)
t , Γ(z)

t ). Te vector random
process is zero mean Gaussian whose autocorrelation function
is 〈Γ(a)

t Γ
(b)

t′ 〉 � δabδ(t − t′). Te Hamiltonian associated with
the main feld B0 is

H0 � − μ→ . B
→

0 � −
c

2
σ→ . B0􏽢z �

ω0

2
σ3. (21)

Te spin-1/2 particle precesses about z-axis under
constant feld. Te random Hamiltonian H1(t) is

H1(t) �
k
1/2

2
Γ(x)

t σ1 + Γ(y)
t σ2 + Γ(z)

t σ3􏼐 􏼑

�
k
1/2

2

Γ(z)
t Γ(x)

t − i Γ(y)
t

Γ(x)
t + i Γ(y)

t − Γ(z)
t

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(22)

Te Hamiltonian above, which is fundamentally here an
operator-valued stochastic process, is represented (in ap-
propriate basis) as a random matrix process. In terms of
Wiener diferentials, we can write [13]

H1(t)dt �
k
1/2

2

dW(z)
t dW(x)

t − i dW(y)
t

dW(x)
t + i dW(y)

t − dW(z)
t

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(23)

Following (23), we emphasize that the Hamiltonian (to
be precise) is not expressed in terms of Wiener diferentials.
Te Hamiltonian is modelled using a Gaussian white noise
process Γt (as in a Langevin approach [14]); thereby the
HamiltonianH1(t) does not follow the Wiener process. It is
actually the operator H1(t)dt that corresponds to Wiener
diferentials (via H1(t) ∼ Γt, H1(t)dt ∼ dWt). In other
words, the Wiener process (which corresponds directly to
the spin phase) is obtained from the Gaussian white noise
process via the time integral; thus Γt � dWt/dt, in the sense
of Langevin. In such an extreme narrowed treatment the
autocorrelation time of the random magnetic feld is neg-
ligibly small (corresponding mathematically to the Dirac
delta-function autocorrelation for the white noise process);
in a more general description, beyond extreme narrowing,
and of relevance to slow molecular motions for instance, the
magnetic feld noise could instead be modelled by a sto-
chastic process with fnite (i.e., positive)
autocorrelation time.

Te total Hamiltonian afecting the spin-1/2 is
H0 + H1(t). Te dynamics can be derived assuming the spin
is initially polarized along an arbitrary direction withH0 � 0
(switching of the main feld).Te solution to the equation of
motion of the density matrix integrated up to second order
gives the dynamics of the spin.

i
dρ
dt

� [H, ρ]. (24)

Te equation of motion integrated up to second-order
gives [5, 15]

dρ(t) � − i dt H1(t), ρ(0)􏼂 􏼃 − dt 􏽚
t

0
dτ H1(t), H1(t − τ), ρ(0)􏼂 􏼃􏼂 􏼃.

(25)

Te Wiener terms appearing in the expression of
H1(t)dt in (23) are such that dW2

t � dt and all other higher
powers dWn

t � 0 for n> 2. Terefore, the second-order so-
lution is exact [4, 5]. Assuming the initial state ρ(0) as the
pure state projection operator (10).

ρ(0) �
1
2

1 + cos θ e
− iϕ sin θ

e
iϕ sin θ 1 − cos θ

⎛⎜⎜⎝ ⎞⎟⎟⎠. (26)

Te components of dρ(t) on the left side of the equation
of motion (25) (up to second-order following the property of
Wiener diferential) are

Concepts in Magnetic Resonance Part A, Bridging Education and Research 5



d cos θt( 􏼁 � − sin θtdθt −
1
2
cos θtdθ

2
t ,

d e
iϕt sin θt􏼐 􏼑 � e

iϕt cos θtdθt −
1
2
sin θtdθ

2
t + i sin θtdϕt −

1
2
sin θtdϕ

2
t􏼒 􏼓.

(27)

Comparing the stochastic diferential equations (SDEs)
on both sides of equation (25), we get

dθt �
1
2

k cot θtdt + k
1/2dW

θ
t , (28)

dϕt �
k
1/2

sin θt

dW
ϕ
t , (29)

where

dW
θ
t � cos ϕtdW

(y)
t − sinϕtdW

(x)
t ,

dW
ϕ
t � sin θtdW

(z)
t − cos θt cos ϕtdW

(x)
t + sinϕtdW

(y)
t􏼐 􏼑.

(30)

Te term with the double commutator in the evolution
equation (25) contains the following integral which is
evaluated using the properties of Wiener diferentials (cf.
[5]):

􏽚
t

0
dW

(a)
t ∘dW

(b)
t− τ � −

1
2
dt δab, (31)

where a, b � x, y, z. Te product “∘” in the integral should be
understood in the Stratonovich sense (cf. [5]). From the
above SDEs equations (28) and (29), we can obtain the
dynamics of the density matrix as

dρt � k dt
1
2
I − ρt􏼒 􏼓 +

1
2
k
1/2

f g
∗

g − f

⎛⎝ ⎞⎠, (32)

where f � − sin θtdWθ
t and g � eiϕt (cos θtdWθ

t + idW
ϕ
t ).

Te dynamics can also be derived using the concept of
rotational difusion on a unit sphere by considering Lap-
lacian in spherical coordinates (cf. [5]). Te joint probability
distribution of the difusion process is

pθϕ �
1
4π

sin θ, (33)

θ, ϕ are statistically independent. Terefore,

pθ �
1
2
sin θ, 0≤ θ≤ π,

pϕ �
1
2π

, 0≤ϕ≤ 2π.

(34)

Te dynamics of a spin-1/2 particle implies the dynamics
of the spin-1/2 Bloch vector. Using the tensor representa-
tion, the dynamics of the components of the vector
(X1, X2, X3) are obtained as

dX1 � − k dt X1 + k
1/2 cos θt cosϕtdW

θ
t − sinϕtdW

ϕ
t􏼐 􏼑,

dX2 � − k dt X2 + k
1/2 cos θt sinϕtdW

θ
t + cos ϕtdW

ϕ
t􏼐 􏼑,

dX3 � − k dt X3 − k
1/2 sin θtdW

θ
t .

(35)

For an ensemble of spin-1/2 population, the modifed
spin density is defned [5] as

Σt �
1
��
N

√ 􏽘

N

j�1
ρ(j)

t , (36)

as opposed to the mean density matrix 􏽢Σt

􏽢Σt � lim
N→∞

1
N

􏽘

N

j�1
ρ(j)

t � E(ρ), (37)

which can be expressed in terms of the modifed spin density
as

􏽢Σt � lim
N⟶∞

1
��
N

√ Σt. (38)

Since the density matrix can be associated with the Bloch
vector, the advantage of modifed spin density is that it gives
information about the stochastic volatility/variances due to
the random felds afecting the spin Bloch vector. Pertaining
to each pure state in the ensemble, we defne
dχ(j)

t � sinθ(j)
t dWθ(j)

t (see (32)), so that

dχt �
1
��
N

√ 􏽘

N

j�1
dχ(j)

t ,

lim
N→∞

dχ2t � E sin2 θ􏼐 􏼑dt �
2
3
dt,

dχt �

�
2
3

􏽲

dWt.

(39)

For some Wiener process Wt, such that dW2
t � dt.

Also consider dζ(j)
t � eiϕ(j)

t (cosθ(j)
t dWθ(j)

t + i dW
ϕ(j)

t ), so
that

6 Concepts in Magnetic Resonance Part A, Bridging Education and Research



dζt �
1
��
N

√ 􏽘

N

j�1
dζ(j)

t ,

lim
N→∞

dζ2t � E e
2iϕ cos2 θ − 1􏼐 􏼑􏽨 􏽩dt

� E e
2iϕ

􏼐 􏼑E cos2 θ − 1􏼐 􏼑􏽨 􏽩dt � 0,

lim
N→∞

dζt dζ
∗
t � E cos2 θ + 1􏼐 􏼑􏽨 􏽩dt

�
4
3
dt,

dζt �
2
�
3

√ dξt,

(40)

for some complex Wiener process ξt, such that
dξ2t � 0, dξtdξ

∗
t � dt. Te coefcients 2/3 and 4/3 we ob-

tained above correspond to the variances in the longitudinal
and transverse spin components (i.e., X3 � cos θ and X1 +

iX2 � eiϕ sin θ), respectively.When the efect of random feld
is prevalent, the statistical information associated with it
cannot be ignored. Te SDE of the modifed spin density is

dΣt �
N

1/2

2
I − Σt􏼠 􏼡k dt +

1
2
k
1/2

−

�
2
3

􏽲

dWt

2
�
3

√ dξ∗t

2
�
3

√ dξt

�
2
3

􏽲

dWt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(41)

Te mean density matrix can be obtained from (38) as

d􏽢Σt �
1
2
I − 􏽢Σt􏼒 􏼓k dt, (42)

􏽢Σt �
1
2
I + 􏽢Σ0 −

1
2
I􏼒 􏼓e

− kt
. (43)

Te modifed spin density matrix Σt can be expressed in
tensors to reveal the variances in each of the spatial components
of the spin Bloch vector. 􏽢Σt can also be expressed using tensors to
see how the mean Bloch vector components X1, X2, X3 decay
exponentially to zero (geometrically the centre of the sphere).
From the expression of the ensemble density matrix (43), we see
that the steady state as t⟶∞ is the maximally mixed state
(1/2)I, which is geometrically the centre of the Bloch sphere. In
the presence of the main feld, the steady state density matrix is
given by the Boltzmann fraction [5]. Te spin longitudinal and
transverse relaxation times are each equal to k− 1.

3.1. Te Boltzmann Density Matrix. In the presence of main
feld B0􏽢z, the density matrix ρ0 under steady state assumes
Boltzmann distribution [5, 15].

ρ0 �
exp − ZH0/kBT( 􏼁( 􏼁

Tr exp − ZH0/kBT( 􏼁􏼈 􏼉
, (44)

where kB is the Boltzmann constant, T is the temperature,
andH0 is the Hamiltonian associated with themain feld B0􏽢z

(see equation (21)).

H0 �
1
2
ω0σ3

�
1
2
ω0

1 0

0 − 1
⎛⎝ ⎞⎠.

(45)

Terefore, the matrix exponential in the expression of ρ0
is

exp −
ZH0

kBT
􏼠 􏼡 �

exp −
Zω0

2kBT
􏼠 􏼡 0

0 exp
Zω0

2kBT
􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (46)

For practical purposes, |Zω0/2kBT|≪ 1 (cf. [6]). So, we
can approximate the exponential terms in the above matrix
expression as

exp ±
Zω0

2kBT
􏼠 􏼡 � 1 ±

Zω0

2kBT
. (47)

Te density matrix ρ0 can be written as

ρ0 �
1
2

1 0

0 1
⎛⎝ ⎞⎠ −

Zω0

4kBT

1 0

0 − 1
⎛⎝ ⎞⎠,

ρ0 �
1
2
I −

Zω0

4kBT
σ3.

(48)

Since ω0 < 0, the quantity − (Zω0/4kBT)> 0. We denote it
as p. So, ρ0 becomes

ρ0 �

1
2

+ p 0

0
1
2

− p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (49)

which can be expressed as

ρ0 �
1
2

+ p􏼒 􏼓|↑〉〈↑| +
1
2

− p􏼒 􏼓|↓〉〈↓|. (50)

Tis means that spins in the lower energy state |↑〉
slightly outnumber the spins in higher energy state |↓〉 (as p

is a small positive number). Te dynamics were obtained
assuming B0 � 0. Te steady state density matrix in this case
is ρ0 � (1/2)I, which complies with equation (43) as
t⟶∞.

4. The Dynamics of Entangled State of Pair of
Spin-1/2 Particles

Te entangled pair of spin-1/2 particles is studied in the
same way as we did for the case of spin-1/2. We begin with
a single pair of entangled spin-1/2 particles in their pure state
and combine using the modifed spin joint density to capture
the fuctuations; the dynamics are then interpreted in terms
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of correlations. Tis section is organized as follows: we
defne the correlation matrix and prove that the entangled
states have stronger correlations than the unentangled states
based on the positive semi-defniteness of the correlation
matrix. We consider the entangled state |s〉 and derive the
dynamics using the equation of motion. We interpret the
dynamics of the components of the density matrix |s〉〈s|

using tensor representation.

4.1. Te Correlation Matrix. Te correlation matrix we de-
fne here quantifes quantum correlations between the
constituent spins in the language of classical probability.
Recall the density matrix of a pure state consisting of a pair
of spins polarized in diferent directions, |↗〉1 ⊗ |↗〉2 is

ρ � |↗〉1〈↗ | 1 ⊗ |↗〉2〈↗ | 2

�
1
2

􏽘

3

i�0
Xiσi

⎛⎝ ⎞⎠⊗
1
2

􏽘

3

i�0
Yiσi

⎛⎝ ⎞⎠

�
1
4

􏽘

3

a,b�0
XaYb σa( 􏼁⊗ σb

⎛⎝ ⎞⎠.

(51)

XaYb � Tr[ρ(σa ⊗ σb)]. As explained in Section 2,
(X1, X2, X3) is the polarization of the frst spin and
(Y1, Y2, Y3) is the polarization of the second spin. We
defne a tensor 􏽢Cij as

􏽢Cij �
1
2

σi ⊗ σj + σj ⊗ σi􏼐 􏼑. (52)

Te components of the correlation matrix are defned as

Cij � Tr ρ􏽢Cij􏼐 􏼑. (53)

In case of two spins with diferent polarization vectors,

Cii � XiYi,

Cij �
1
2

XiYj + XjYi􏼐 􏼑.

(54)

Similarly, the correlation matrices can be defned for
states like |↗〉⊗ |↗〉, |↗〉⊗ |↙〉, |s〉≜ (1/

�
2

√
)(|↗〉⊗ |↙〉 +

|↙〉⊗ |↗〉). Te state |s〉 is called maximally entangled state
as we demonstrate using the correlation matrix. A general
entangled state can be represented as

|χ〉 � e
− iβ/2 cos

1
2
α􏼒 􏼓|↗〉⊗ |↙〉 + e

iβ/2 sin
1
2
α􏼒 􏼓|↙〉⊗ |↗〉.

(55)
For α � 0, β � 0 and α � π, β � 0, we obtain the

unentangled states |↗〉⊗ |↙〉 and |↙〉⊗ |↗〉 as special cases,
respectively. Now the Bloch vectors of |↗〉 and |↙〉 are X

→

and − X
→
, respectively. Consider the correlation matrix

defned from the tensor representation of density matrix
|χ〉〈χ|. Te components of the matrix C are

Cii � − X
2
i + sin α cos β 1 − X

2
i􏼐 􏼑,

Cij � − XiXj − XiXj sin α cos β.
(56)

If we represent X
→

by the column vector X, the corre-
lation matrix C is

C � − XXT
+ sin α cos β I − XXT

􏼐 􏼑. (57)

For α � 0, π and β � 0, the correlation matrix corre-
sponds to the unentangled states |↗〉⊗ |↙〉 and |↙〉⊗ |↗〉.
Te correlation coefcient

max
α,β

sin α cos β � 1, (58)

is attained for α � (π/2), β � 0 and α � − (π/2), β � π. Te
quantum states corresponding to these pairs are |s〉 and
− i|s〉. Since the overall phase does not distinguish quantum
states as both correspond to the same point in their state
space (the complex projective space CPn for an n + 1 di-
mensional quantum system). Both the pairs of (α, β) cor-
respond to |s〉. Te correlation matrix of the maximally
entangled state C(s) is

C(s)
� I − 2XXT

􏼐 􏼑. (59)

Te correlation matrix of the general entangled state:

C � − XXT
+ sin α cos β I − XXT

􏼐 􏼑. (60)

Also,

C(s)
− C � (1 − sin α cos β) I − XXT

􏼐 􏼑, (61)

(1 − sin α cos β)≥ 0 and the matrix (I − XXT) has the pos-
itive semi-defnite property as its eigenvalues are 0, 1, 1.
Terefore, the matrix C(s) − C≽0. So, we can write

C≼C(s)∀α, β. (62)

Tus, C(s) is the maximal correlation matrix corre-
sponding to the maximum value of sin α cos β.Consistently,
|s〉 is referred to as maximally entangled state with strong
correlations between the constituent spins.

4.2. Dynamics of Entangled Spin-1/2 Pair under Random
Magnetic Field. In this section, we derive the dynamics of
a pair of entangled spin-1/2 particles experiencing the same
random magnetic feld. Te joint random Hamiltonian af-
fecting the entangled pair is

H(tot)
� H(1) ⊗ I + I⊗H(2)

. (63)

Since both the spins are under the same feld H(1) �

H(2) � H,
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H �
k
1/2

2
Γ(x)

t σ1 + Γ(y)
t σ2 + Γ(z)

t σ3􏼐 􏼑

�
k
1/2

2

Γ(z)
t Γ(x)

t − i Γ(y)
t

Γ(x)
t + i Γ(y)

t − Γ(z)
t

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(64)

In terms of Wiener diferentials, we can write [13]
(according to Langevin)

H dt �
k
1/2

2

dW(z)
t dW(x)

t − i dW(y)
t

dW(x)
t + i dW(y)

t − dW(z)
t

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (65)

Te total joint Hamiltonian can be expressed as

H(tot)dt �
k
1/2

2

2 dW
(z)
t dW

(w)
t ∗

dW
(w)
t 0

dW
(w)
t ∗ 0

0 dW
(w)
t ∗

dW
(w)
t 0

0 dW
(w)
t

0 dW
(w)
t ∗

dW
(w)
t − 2 dW

(z)
t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(66)

where dW
(w)
t ≜ dW

(x)
t + i dW(y)

t . Let the initial joint density
matrix of the entangled pair be ρ(0) � |s〉〈s|. Te equation
of motion of the joint density matrix integrated up to
second-order [5, 15] is then

dρ(t) � − i dt H(tot)
(t), ρ(0)􏽨 􏽩 − dt 􏽚

t

0
dτ H(tot)

(t), H(tot)
(t − τ), ρ(0)􏽨 􏽩􏽨 􏽩. (67)

Comparing the expressions on both sides of the equa-
tion, we get the SDEs of θ, ϕ as

dθt �
1
2

k cot θtdt + k
1/2dW

θ
t , (68)

dϕt �
k
1/2

sin θt

dW
ϕ
t , (69)

where

dW
θ
t � cosϕtdW

(y)
t − sinϕtdW

(x)
t , (70)

dW
ϕ
t � sin θtdW

(z)
t − cos θt cos ϕtdW

(x)
t + sinϕtdW

(y)
t􏼐 􏼑.

(71)

Te term with the double commutator in the equation of
motion (67) contains the following integral [5]:

􏽚
t

0
dW

(a)
t ∘ dW

(b)
t− τ � −

1
2
dt δab, (72)

where a, b � x, y, z as in case of spin-1/2. Te product “∘” in
the integral should be understood in the Stratonovich sense
(cf. [5]). Te dynamics of the density matrix can be obtained
as

dρt � 3k ρM − ρt( 􏼁dt + k
1/2

g1 − g
∗
2

− g2 − g1

− g
∗
2 g
∗
3

− g1 g
∗
2

− g2 − g1

g3 g2

− g1 g
∗
2

g2 g1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (73)

where the fuctuating terms in the matrix can be read of as

g1 � sin θt cos θtdW
θ
t ,

g2 �
1
2
e

iϕt cos 2θtdW
θ
t + i cos θtdW

ϕ
t􏼐 􏼑,

g3 � − e
i2ϕt sin θt cos θtdW

θ
t + i sin θtdW

ϕ
t􏼐 􏼑.

(74)

Te density matrix ρM in (73) is given by

ρM �
1
3

1 0

0
1
2

0 0

1
2

0

0
1
2

0 0

1
2

0

0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (75)

which can be expressed as

ρM �
1
3

|1, 1〉〈1, 1| +
1
3

|1, 0〉〈1, 0| +
1
3

|1, − 1〉〈1, − 1|. (76)

By the simulation of noise associated with the random
magnetic feld, ρM can be computed via ensemble averaging
of SDE (73). For instance, let Qt be a stochastic process being
characterized by the SDE.

dQt � btdt + StdWt, (77)

where bt is the drift and St is the volatility. Following [16], we
can obtain bt and St from the process Qt that is being ob-
served. bt � E(dQt)/dt where E(.) is the expectation (mean/
average) operator. Tis means that we need an ensemble of
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sample paths Qt to compute the drift bt. In other words,
generate a large number of Q(t) and Q(t + Δt) and compute
the ensemble mean of the diferenceQ(t + Δt) − Q(t) so that
via the law of large numbers the drift can be computed as
bt � limN⟶∞ (1/NΔt) 􏽐

N
i�1(Qi(t + Δt) − Qi(t)). Using this

idea, the steady state density matrix ρM can be verifed from
the SDE (73). Te steady state density matrix denoted by
ρM,num computed by simulating noise pertaining to random
magnetic feld looks as shown below:

ρM,num �

a δ1
δ∗1 b

δ1 δ2
b − δ1

δ∗1 b

δ∗2 − δ∗1

b − δ1
− δ∗1 a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (78)

where a ≈ (1/3), b ≈ (1/6) and |δ1|, |δ2| ≈ 0 (cf. ρM in (75)).
Using the modifed spin density, we can combine an

ensemble of pairs to reveal the fuctuations that are the
origin of joint relaxation. Later, we give the interpretation
for various components of the matrix in the SDE (73). Te
modifed spin pair density Σt is defned [5] as

Σt �
1
��
N

√ 􏽘

N

j�1
ρ(j)

t . (79)

Now we calculate the following terms to write the SDE of
Σt:

G1 �
1
��
N

√ 􏽘

N

j�1
g

(j)
1 ,

G1 �
1
��
N

√ 􏽘

N

j�1
sinθ(j)

t cosθ(j)
t dW

θ(j)

t �
2
15

dt,

lim
N→∞

G
2
1􏽨 􏽩 � E sin2 θ cos2 θ􏼐 􏼑dt,

G1 �

��
2
15

􏽲

dWt,

. (80)

for some Wiener process Wt, such that dW2
t � dt. Tis is

possible from the stability property of the Gaussian distri-
bution. Te sum of Gaussian distributed random variables is
Gaussian distributed [5, 14]. From the independence of the
random variables g

(j)
1 , the squared sum, [G2

1], corresponds
to the sample mean of the independent and identically
distributed (iid) random variables sin2θ(j)

t cos2θ(j)
t dt via the

law of large numbers, the sample mean tends to the expected
value as N⟶∞. Similarly,

G2 �
1
��
N

√ 􏽘

N

j�1
g

(j)
2 . (81)

Since θ, ϕ are statistically independent,

lim
N⟶∞

G
2
2􏽨 􏽩 �

1
4
E e

i2ϕ
􏼐 􏼑E cos 2θ dW

θ
t + i cos θ dW

ϕ
t􏼐 􏼑

2
dt � 0,

lim
N⟶∞

G
∗
2G2 �

1
4
E cos2 2θ + cos2 θ􏼐 􏼑dt �

1
5
dt,

G2 �

�
1
5

􏽲

dξt,

(82)

for some complex Wiener process ξt, such that dξtdξ
∗
t � dt

and dξ2t � 0.

G3 �
1
��
N

√ 􏽘

N

j�1
g

(j)
3 . (83)

Since θ, ϕ are statistically independent,

lim
N⟶∞

G
2
3􏽨 􏽩 � E e

i4ϕ
􏼐 􏼑E sin θ cos θ dW

θ
t + i sin θ dW

ϕ
t􏼐 􏼑

2
dt � 0,

lim
N⟶∞

G
∗
3G3 � E sin2 θ cos2 θ + sin2 θ􏼐 􏼑dt �

4
5
dt,

G3 �

�
4
5

􏽲

dζt.

(84)

Tus, we can write for some complex Wiener process ζt,
such that dζ2t � 0 and dζtdζ

∗
t � dt. It is to be noticed that Gi

′s
and gi
′s are stochastic diferential forms. All the expected

values are calculated based on the SDEs obtained from θ, ϕ
whose joint probability density is

pθϕ �
1
4π

sin θ; 0≤ θ ≤ π, 0≤ϕ≤ 2π. (85)

Now we can write the SDE of the modifed spin pair
density.

dΣt � 3k dt N
1/2ρM − Σt􏼐 􏼑 + k

1/2

G1 − G
∗
2

− G2 − G1

− G
∗
2 G
∗
3

− G1 G
∗
2

− G2 − G1

G3 G2

− G1 G
∗
2

G2 G1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(86)

In the above SDE, N1/2 in the numerator shows that the
components of Σt become large as N⟶∞. Physically, it
means that the overall signal obtained from an ensemble of
particles also becomes large as N becomes large. Following
[5], we can now defne the mean density matrix 􏽢Σt � E(ρ).
Te SDE (73) of ρt is mean reverting. Te entangled pair of
spins asymptotically attain the state ρM of (75) at the rate 3k.
Tis can be understood better by calculating E(ρ) via the law
of large numbers,

E(ρ) � 􏽢Σt � lim
N⟶∞

1
��
N

√ Σt. (87)

Te (deterministic) diferential equation in 􏽢Σt akin to
conventional NMR can be obtained from the SDE (86) of Σt as
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d􏽢Σt � ρM − 􏽢Σt􏼐 􏼑3k dt. (88)

Solving, we get

􏽢Σt � ρM + 􏽢Σ0 − ρM􏼐 􏼑e
− 3kt

, (89)

for some initial mean density matrix 􏽢Σ0. Te joint relaxation
time constant is (3k)− 1.

4.3. Interpretation of Spin Dynamics in terms of Correlations.
Te tensor representations of the density matrix yield var-
ious correlations involving the spatial components of the

Bloch vectors of the constituent spins. Te dynamics of the
density matrix determine the dynamics of these correlation
components. As we already mentioned, in the case of spin-1/
2, the Bloch vector is a random process, whereas in the case
of an entangled pair of spin-1/2 particles, it is the correlation
matrix that is the random process of primary relevance. Te
SDEs can be derived from the correlation components of
a single pair of entangled spins. Let C(s) denote the corre-
lation matrix of the maximally entangled state |s〉. Te SDEs
of various components of the (symmetric) matrix C(s) (see
equation (59)) are

dC
(s)
11 � kdt 1 − 3C

(s)
11􏼐 􏼑 − 4k

1/2 sin θt cos θtcos
2ϕtdW

θ
t − sin θt sinϕt cos ϕtdW

ϕ
t􏼐 􏼑, (90)

dC
(s)
22 � kdt 1 − 3C

(s)
22􏼐 􏼑 − 4k

1/2 sin θt cos θtsin
2ϕtdW

θ
t + sin θt sinϕt cosϕtdW

ϕ
t􏼐 􏼑, (91)

dC
(s)
33 � kdt 1 − 3C

(s)
33􏼐 􏼑 + 4k

1/2 sin θt cos θtdW
θ
t , (92)

dC
(s)
12 � − 3kdt C

(s)
12 − 2k

1/2 sin θt cos θt sin 2ϕtdW
θ
t + sin θt cos 2ϕtdW

ϕ
t􏼐 􏼑, (93)

dC
(s)
23 � − 3kdt C

(s)
23 − 2k

1/2 cos 2θt sinϕtdW
θ
t + cos θt cos ϕtdW

ϕ
t􏼐 􏼑, (94)

dC
(s)
13 � − 3kdt C

(s)
13 − 2k

1/2 cos 2θt cos ϕtdW
θ
t − cos θt sinϕtdW

ϕ
t􏼐 􏼑. (95)

Figures 1–6 show the sample paths for the six correlation
components of the correlation matrix C(s) pertaining to α �

(π/2), β � 0 (maximally entangled state). Tese are obtained
numerically from the solution of the SDEs (90)–(95). Tese
SDEs can also be derived from the SDEs of X1, X2, X3 that
we obtained in case of a single spin-1/2. We can also derive
the SDEs for the correlation components of a general
entangled state. Let C denote the correlation matrix of
a general entangled state:

|χ〉 � e
− iβ/2 cos

1
2
α􏼒 􏼓|↗〉⊗ |↙〉 + e

iβ/2 sin
1
2
α􏼒 􏼓|↙〉⊗ |↗〉.

(96)

Tese plots are obtained via the SDEs of θt,ϕt, assuming
the Wiener fuctuating terms of the random magnetic feld
components are zero mean Gaussian dWt ∼ N

��
dt

√
where N

is the normal random variable (zero mean and variance
unity).

Te dynamics of the general correlation matrix com-
ponents can be derived from the defnition, using the SDEs
of X1, X2, X3, as

dC11 � k dt 2 sin α cos β − 1 − 3C11( 􏼁 − 2k
1/2

(1 + sin α cos β) sin θt cos θtcos
2ϕtdW

θ
t − sin θt sinϕt cos ϕtdW

ϕ
t􏼐 􏼑, (97)

dC22 � k dt 2 sin α cos β − 1 − 3C22( 􏼁 − 2k
1/2

(1 + sin α cos β) sin θt cos θtsin
2ϕtdW

θ
t + sin θt sinϕt cosϕtdW

ϕ
t􏼐 􏼑, (98)

dC33 � k dt 2 sin α cos β − 1 − 3C33( 􏼁 + 2k
1/2

(1 + sin α cos β) sin θt cos θtdW
θ
t􏼐 􏼑, (99)

dC12 � − 3k dt C12 − k
1/2

(1 + sin α cos β) sin θt cos θt sin 2ϕtdW
θ
t + sin θt cos 2ϕtdW

ϕ
t􏼐 􏼑, (100)

dC23 � − 3k dt C23 − k
1/2

(1 + sin α cos β) cos 2θt sinϕtdW
θ
t + cos θt cos ϕtdW

ϕ
t􏼐 􏼑, (101)
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dC13 � − 3k dt C13 − k
1/2

(1 + sin α cos β) cos 2θt cos ϕtdW
θ
t − cos θt sinϕtdW

ϕ
t􏼐 􏼑. (102)

Te stochastic volatility S(Rt, t) in a general SDE,

dRt � b Rt, t( 􏼁dt + S Rt, t( 􏼁dWt, (103)

is a measure of how the magnitude of fuctuations in
a stochastic process Rt vary randomly. In the above SDE, the
drift term b(Rt, t) is in general a function of Rt, t, in which
case, the SDE corresponds to an It􏽢o process Rt. Else, Rt is
a difusion.

Finally, we consider the mean squared volatility in the
SDEs of the correlation components (97)–(102) in case of
a general entangled state |χ〉 in order to interpret how the
fuctuations occur in a maximally entangled state, in contrast
to an unentangled state. We therefore calculate E(dC2

ab)/dt

in each case [E(.)can be calculate d usingpθϕ]. Te matrix is

E dC
2
ab􏼐 􏼑

dt
⎡⎣ ⎤⎦ � k(1 + sin α cos β)

2

8
15

2
5

2
5

2
5

8
15

2
5

2
5

2
5

8
15

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (104)

with max
α,β

sin α cos β � 1. So, the infnitesimal fuctuation
matrix corresponding to the maximally entangled state is

E dC
(s)2

ab􏼒 􏼓

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � k

32
15

8
5

8
5

8
5

32
15

8
5

8
5

8
5

32
15

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (105)

from which it is easy to see that

E dC
(s)2

ab􏼒 􏼓

dt
≥
E dC

2
ab􏼐 􏼑

dt
.

(106)

Tese results can be numerically verifed by considering
an ensemble of sample paths and calculating the mean
squared volatility. To illustrate, consider equation (103) to
generate a large number of sample paths to obtain their
squared diferences (Ri(t + Δt) − Ri(t))2. Now, fnd the
sample mean of the squared diferences, which tends to the
expected value of the squared stochastic volatility via the law
of large numbers. In other words, E(S2t ) is equal to
lim

N⟶∞
(1/NΔt) 􏽐

N
i�1 (Ri(t + Δt) − Ri(t))2, which is ob-

tained numerically to verify the above results for an en-
semble of sample paths of the correlation components to
obtain the matrix elements of (105). To elaborate, fuctuating
random magnetic feld components are generated following
the Wiener property dWt � N

��
dt

√
, where N is the standard

normal random variable has a zero mean and unit variance.

Following equations (68)–(71), the quantities θ(t), θ(t + dt)

and ϕ(t), ϕ(t + dt) can be obtained, which could be used to
generate the components C

(s)
ab (t), C

(s)
ab (t + dt) via the SDEs

(90)–(95). By considering an ensemble of sample paths for
the correlation components, the expected value of the
squared stochastic volatility can be calculated using the law
of large numbers, as mentioned above. As an illustration, we
shall simulate as demonstrated above to
calculate [E(dC(s)2

ab)/k dt] numerically to obtain the
matrix [E(dC(s)2

ab)/k dt]num components in equation
(105) (notice k in the denominator to avoid the de-
pendence of k for convenience). Te (expected) squared
volatility matrix evaluated numerically for two runs is
given below (for comparing with equation (105)):

E dC(s)2
ab􏼒 􏼓

k dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

num

�

2.0784 1.5626 1.5343

1.5626 2.0784 1.5343

1.5343 1.5343 2.0630

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

E dC(s)2
ab􏼒 􏼓

k dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

num

�

2.1956 1.6523 1.6599

1.6523 2.1956 1.6599

1.6599 1.6599 2.1732

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(107)

Te correlation matrix structure we have described is
therefore an efective measure to quantify the entanglement
between constituent spins. Indeed, there are other measures
to quantify entanglement, such as concurrence, which leads
to the idea of entanglement of formation (cf. [17] for the
defnitions of concurrence and entanglement of formation).
In this case, we assumed that the initial state is maximally
entangled and the constituents are subjected to the same
random magnetic feld, meaning the maximally entangled
state evolves into another maximally entangled pure state.
As a result of the defnition [17], the concurrence (and thus
the entanglement of formation) remains constant for the
maximally entangled state. In other words, the plot of
concurrence versus time is a constant function. Te cor-
relation matrix we defned in this article for a maximally
entangled state evolves as a stochastic matrix process as the
random magnetic feld fuctuates and thus is an Ito process
in its own right via Ito’s formula, the trajectories of which are
plotted (Figures 1–6). Te compact matrix SDE (of the
maximally entangled state) for the process C(s)

t can be ob-
tained from the component SDEs as

dC(s)
t � kdt I − 3C(s)

t􏼐 􏼑 + k
1/2Ft (108)

where Ft is a matrix containing the fuctuation terms
appearing from (90)–(95). It is necessary to mention the
general Ito formula for any kind of entanglement quantifer
that could be defned depending on the context. Let Gt �

g(Xt) be a function/functional (an entanglement quantifer
in this context), dependent on a stochastic process Xt, where
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Xt is characterized by the SDE dXt � btdt + StdWt analo-
gous to the dependence ofC(s)

t on (θt,ϕt). Ten, SDE of Gt is
obtained as

dGt �
zg

zx
dXt +

1
2

z
2
g

zx
2 dX

2
t

� bt

zg

zx
+
1
2

z
2
g

zx
2S

2
t􏼠 􏼡dt + St

zg

zx
dWt.

(109)

Similarly, we can proceed with the dependence of two or
more stochastic processes (cf. [13, 14]).

5. Conclusion

Tis article could be taken as a pedagogical one. Te spin-1/2
density matrix of a pure state follows the mean-reverting
dynamics, from which the timescale and steady state can be
obtained, as understood previously in the context of NMR [5].
As higher spin states are obtained from sums of tensor
products, the dynamics of the density matrix of a pure state of
an unentangled pair of spin-1/2 particles is obtained from the
total Hamiltonian acting on the tensor product |↗〉⊗ |↗〉.
Tereby, the dynamics of an unentangled spin pair can be
obtained by considering the tensor product of individual spin-
1/2 SDEs that are obtained in [5]. On the other hand, the
entangled spin pair density matrix is not obtained with mere
tensor products. Accordingly, in the current article, the dy-
namics of a pure state of an entangled pair of spins are derived
based on the single spin-1/2 dynamics of [5], and it is found
that the entangled spins reach a joint steady state within
a certain timescale. Further, it could be considered that a new
computational approach is followed, viz., the introduction of
the correlation matrix (that resembles the correlation matrix
of classical probability theory), and that was motivated by
various measures of entanglement in the literature and its
ensuing extremization, which is the rationale for the term and
agrees with the name “maximally entangled state.” Tis is
further illuminating to the concept of entanglement and so
included. Further, the idea of volatility in a general SDE is
explained and analysed where it arises in the SDEs of the
correlation components to demonstrate that, from this point
of view, maximally entangled state states have a stronger scale
of fuctuations compared to their unentangled counterparts.
In the context of NMR, it is useful to see how a pair of
entangled state of spin-1/2 particles evolve when subjected to
the same random magnetic feld, which is caused by various
disturbances and molecular motion [4, 15], and how long it
takes to relax to the steady state. Te relaxation time gives the
rate at which an entangled state evolves into the steady-state
density matrix ρM.Tis further helps to study the dynamics of
the maximally entangled state and the concept of disentan-
glement time when the constituent spins are subjected to
independent random magnetic felds (see [18] for more
discussion).

Appendix

The Spin-1/2 Density Matrix and the Bloch
Sphere

Te spin-1/2 density matrix for a pure state ρ � |↗〉〈↗|

corresponding to an arbitrary direction of polarization,
parameterized by θ, ϕ, is given by

ρ �
1
2

1 + cos θ e
− iϕ sin θ

e
iϕ sin θ 1 − cos θ

⎛⎜⎜⎝ ⎞⎟⎟⎠, (A.1)

which can be expressed in terms of Pauli matrices and the
identity matrix as

ρ �
1
2

􏽘

3

i�0
Xiσi, (A.2)

where Xi � Tr(ρσi), X0 � 1, σ0 � I, and the Pauli matrices
are

σ1 �
0 1

1 0
􏼠 􏼡,

σ2 �
0 − i

i 0
􏼠 􏼡,

σ3 �
1 0

0 − 1
􏼠 􏼡.

(A.3)

(X1, X2, X3) is the polarization vector. Pure states cor-
respond to points on the Bloch sphere. Let ρ1 and ρ2 be two
pure states with probabilities p and 1 − p, respectively, in
a mixture. Let X

→
≜ (X1, X2, X3) and Y

→
≜ (Y1, Y2, Y3) be the

polarization vectors associated with ρ1 and ρ2. Ten, the
density matrix ρ is given by

ρ � pρ1 +(1 − p)ρ2. (A.4)

Using the tensor representation, the polarization vector
P
→

associated with ρ is given by

P
→

� p X
→

+(1 − p)Y,
→

(A.5)

which is a point inside the Bloch sphere as it lies on the line
segment joining X

→
and Y

→
. Geometrically, P

→
divides the join of

X
→

and Y
→

in the ratio (1 − p): p. If we denote the distance of
P
→

from X
→
, Y

→
as dPX and dPY, respectively, we can write [5]

dPX: dPY � (1 − p): p. (A.6)

As p⟶ 1, dPX⟶ 0 meaning P
→

approaches X
→

which
corresponds to the pure state ρ1. Tis is evident from the
density matrix expression of ρ. A mixed state ρ can be
visualised as a point P (say) inside the Bloch sphere. Tere
are infnitely many line segments passing through P that
intersect the Bloch sphere at two points corresponding to
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pure states ρ1 and ρ2. Correspondingly, ρ can represent
infnitely many mixtures. For example, consider the fol-
lowing density matrix as shown below:

ρ �

3
4

0

0
1
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.7)

Tis can be shown as a mixture of pure states |↑〉 and |↓〉
as

ρ �
3
4

|↑〉〈↑| +
1
4

|↓〉〈↓|. (A.8)

Geometrically, ρ is represented by the point (0, 0, 1/2)

inside the sphere. Let |α〉〈α|, |β〉〈β| be two pure states
representing points (± (

�
3

√
/2), 0, (1/2)).

|α〉〈α| < mfencedopen ��
1
2

3
2

−

�
3

√

2
􏼠 􏼡

−

�
3

√

2
􏼠 􏼡

1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.9)

Te point (0, 0, 1/2) representing ρ is the midpoint of
( ± (

�
3

√
/2), 0, (1/2)). Terefore, ρ can be shown as an equal

mixture of |α〉, |β〉.

ρ �
1
2

|α〉〈α| +
1
2

|β〉〈β|. (A.10)

However, ρ can be uniquely decomposed into orthog-
onal states that correspond to antipodal points on the join of
P and the centre of the sphere. In the above example, the
decomposition of ρ in terms of orthogonal states |↑〉 and |↓〉
is unique. Let | ± x〉 be two pure states represented by the
points ( ± 1, 0, 0). Ten

| + x〉〈+x| �
1
2

1 1

1 1
⎛⎝ ⎞⎠,

| − x〉〈− x| �
1
2

1 − 1

− 1 1
⎛⎝ ⎞⎠.

(A.11)

Ten, ρ can be shown to be a mixture of |↑〉 and |↓〉,
| ± x〉 as

ρ �
2
3

|↑〉〈↑| +
1
6

|↓〉〈↓| +
1
12

| + x〉〈+x| +
1
12

| − x〉〈− x|.

(A.12)
Tis is to show that the number of constituent states

in a mixture can be greater than the dimension of the
system, which is 2 in the case of spin-1/2. (For more
discussion about the properties of density matrix, see
[5, 19, 20]).

Data Availability

Tis research is theoretical and there is no applicability for
enclosing the data. Only simulated (random) data are in-
cluded, and the methodology for producing this is detailed
in the text.
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