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Radiofrequency (RF) transmit feld (B1) mapping is a promising method in mitigating the B1 inhomogeneity in various magnetic
resonance imaging (MRI) applications. Although several phase- or magnitude-based B1 mapping methods have been proposed,
these methods often require complex modeling, long acquisition time, or specialized MRI sequences. A recently introduced
simultaneous echo refocusing (SER) technique can be applied in the B1 mapping method to extend the three-dimensional (3D)
spatial coverage only without long data acquisition.Terefore, in this study, a multislice B1 mappingmethod using composite spin
echo sequences and SER techniques is proposed to obtain more accurate B1 mapping with short data acquisition time. To evaluate
the performance of the proposed B1 mapping method, computational simulations were performed and compared with Morrell’s
method, double angle method, and Yarnykh’s method. Tese results showed that the angle-to-noise ratio of the proposed B1
mapping method has wider B1 range compared to that of other B1 mapping methods. In addition, the proposed B1 mapping
methods were compared to the multislice iterative signal intensity mapping method in both phantom and in vivo human
experiments, and there was no remarkable diference between the two methods regarding the fip angle distribution in these
experiments. Based on these results, this study demonstrated that the proposed B1 mapping method is suitable for accurately
measuring B1 propagation under the condition providing reduced scan time and wider 3D coverage of B1 mapping by applying
composite RF pulse and SER techniques into the phase-sensitive method.

1. Introduction

Radiofrequency (RF) transmit feld (B1) measurement is
used in various magnetic resonance imaging (MRI) appli-
cations, such as the adjustment of transmit gain to generate
RF pulses for specifc fip angle (FA), design of multitransmit
RF pulses [1–3], specifc absorption rate (SAR) estimation,
and quantitative T1 mapping [4, 5]. Several methods have
been proposed to measure the RF B1, which can be broadly
classifed into MR signal magnitude-based methods that

estimate the B1 from the magnitude of the MR image [6–15]
and MR signal phase-based methods that estimate the B1
from the phase of the MR image [16–19].

Te magnitude-based B1 mapping methods depend on
changes in magnitude of MR signal according to the B1 feld
and include ftting progressively increasing FAs [6], stim-
ulated echoes [7], ratios of MR signals [8–12], signal null at
certain FAs [13], ratio of the MR signals acquired at a dual
steady state [14], and comparison of spin echo (SE) and
stimulated echo signals [15]. Tese methods have several
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combinations of the following problems: T1 dependence;
long acquisition times, mainly from acquiring several im-
ages; long repetition time (TR) for mitigating the T1 ac-
quisition; and inaccuracy over a wide range of B1 especially
at low FAs or FAs close to 90° or 180°. Several phase-based B1
mapping methods have been proposed as an alternative to
magnitude-based B1 mapping methods [16–20]. To generate
the MR signal phase dependence on FA, Morrell [16] and
Chang [17] proposed the use of a pair of successive or-
thogonal RF pulses, whereas Sacolick et al. [18] proposed the
use of the Bloch–Siegert phase shift efect [21].

Although such efective B1 mapping methods based on
phase or magnitude imaging have been proposed
[7, 9, 11, 13–16, 18, 22–25], these methods often require the
complexmodeling, long acquisition time, or specializedMRI
sequences. Terefore, these methods have not been in-
tegrated into clinical applications, resulting in an ongoing
need for a practical, accurate, and fast B1 mapping method.

Te multislice excitation technique is commonly used in
MRI to obtain three-dimensional (3D) spatial coverage. It
can be described as a process during which multiple image
planes are independently sampled using diferent frequency
ofsets in the RF pulses of otherwise identical MR pulse
sequences. Experiments to improve efciency in sequences
for SE imaging have been demonstrated using interleaved
methods. Te interleaved T2-weighted SE sequences where
selective RF pulses independently excite and then refocus
diferent slice signals, essentially interleaving the SE se-
quences during the delay time between pairs of excitations
and refocusing pulses, have been successfully applied in
clinical practice [26]. Te multislice sequences are faster and
more efcient than conventional analogs since the in-
terleaving process eliminates relatively large sequence dead
time. Recently, the simultaneous echo refocusing (SER)
technique has been proposed to overcome the interleaved
approaches [27]. Te MR signals in multiple image planes
are generated with slice-selective RF excitations and ac-
quired within an SE pulse, utilizing a shared refocusing
process. Te MR signals originating from diferent slices are
refocused at diferent times on each read period and further
refocused with switched read gradients. In the proposed
applications, temporal simultaneity of SER is efectively
similar to that in 3D Fourier transform (FT) imaging, only
without long data acquisition periods needed in 3D FT to
obtain sufcient sampling along two-phase encoding axes.
Terefore, the SER method can be used in the B1 mapping
method to extend the 3D spatial coverage only without long
data acquisition. Particularly, the B1 mapping method using
composite RF pulses and multislice imaging (by applying
SER techniques) is more efcient in reducing data collection
time compared to the previous B1 mapping method using
composite RF pulses.

In this study, we proposed the multislice B1 mapping
method using a pair of composite RF pulses, 90y

° − 0x° − 90y°
and 90y

° − 180x° − 90y°, and SER technique. Te perfor-
mance of the proposed B1 mapping method was evaluated
using the computational simulations and phantom and in
vivo human experiments using a 3-Tesla MRI scanner. Par-
ticularly, the multislice iterative signal intensity (ISI) mapping

method was selected as a reference method for comparison
with the proposed B1 mappingmethod in all MR experiments
because it is an accurate method for signal intensity mea-
surements even if the data acquisition time is long [6].

2. Theory

2.1. Phase-Based B1MappingMethods. As mentioned above,
there are some phase-based B1 mapping methods. One
method by Oh is referred to as the SE phase-sensitive method
[19]. Tis method uses composite SE pulses for encoding the
FA in the phase of the resulting image and requires a baseline
subtraction image for removing other sources of image phase,
such as main magnetic feld (B0) inhomogeneity and receive
phase. One method by Morrell is referred to as the phase-
sensitive method [16]. Tis method uses an excitation pulse
with a gradient-recalled echo (GRE) sequence for encoding
the FA in the phase of the resulting image instead of using an
SE sequence. Tis method has the same long TR requirement
as the signal magnitude-based sequences, although it is ef-
fective and more accurate in a larger range of FAs than
a double angle signal magnitude-based B1 map [28]. Tese
two phase-based B1 mapping methods are based on com-
posite RF pulses and typically employ large FAs. One method
by Sacolick introduced the Bloch–Siegert shift method as an
alternative to the composite RF pulse methods [18]. Te
Bloch–Siegert shift method provides a detectable phase shift
in FA mapping, enabling the use of sufciently long of-
resonance RF pulses with amplitudes compatible with various
clinical applications. Te efciency of the Bloch–Siegert shift
method is insufcient due to the long RF pulse that requires
a long echo time. Onemethod by Chang requires a regular 3D
GRE sequence with a magnetization preparation RF pulse of
the same FA but orthogonal in phase to the excitation RF
pulse for mapping the amplitude of the B1 of a transmit RF
coil in 3D [17].

2.2. Multislice B1 Mapping Using a Pair of Composite RF
Pulses and SER Technique. Figure 1 shows the pulse se-
quence diagram for the proposed B1 mapping scheme. Te
pulse sequences begin with temporally sequential slice-
selective RF pulses with selection gradients to produce
signals in multiple adjacent slices. After temporally se-
quential selective RF pulses, a nonselective composite RF
pulse of 90y

° − 180x° − 90y° for sequence 1 and nonselective
composite RF pulse of 90y

° − 0x° − 90y° for sequence 2 are
applied to generate the SE signals. Encoding gradients are
also applied. Let us assume that the resulting magnetization
for k-th slice-selective RF pulse is represented by
Mk

re(B1; t) + iMk
im(B1; t). Te resulting complex-numbered

signal can be expressed as follows [19]:

S
k

B1; t(  � S
k
re B1; t(  + iS

k
im B1; t( , (1)

and Sk
seq1(B1; t) and Sk

seq2(B1; t) are the resulting signals
generated by the k-th slice-selective RF pulse with selection
gradient of sequences 1 and 2, respectively.

Tese SE signals are acquired within each readout period
and provide phase information that is dependent on the B1
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feld strength. Te resulting phase of the k-th slice, ϕk
B1, can

be obtained by calculating the phase diference of two pulse
sequences:

ϕk
B1 � phase S

k
seq1 B1; t(  ∙ conj S

k
seq1 B1; t(   , (2)

where phase( ∘ ) is the phase of argument and conj( ∘ ) is the
complex conjugate of argument. Because the phase difer-
ence between sequences 1 and 2 is identical except the RF-
dependent phase change due to the 180x° RF pulse, the
proposed B1 mapping method efectively eliminates all
possible phase errors caused by other sources (e.g., RF coil-
dependent phase delays). Although the phase change is
directly proportional to the B1 strength in frst-order ap-
proximation, an B0 inhomogeneity afects the application of
nonselective composite RF pulse. Terefore, computational
simulations are required to properly analyze the detailed
spin behavior during the nonselective composite RF pulse.
Practically, since B0 inhomogeneity is dependent on the
length of nonselective composite RF pulse, this length
should be minimized. In this study, the Bloch equation for
detailed spin behavior was solved using the fourth-order
Runge–Kutta method [19]. After predicting the B1feld-
dependent phase changes for a given B0 inhomogeneity,
the resulting phase behavior can be used to correct B0 in-
homogeneity of the proposed B1 mapping method. An
experimental B0 inhomogeneity can be calculated using the
echo-shifting method [19]. Terefore, two MR images were
acquired with RF pulses of 90y

° − 180x° − 90y° and 90y
° −

180x° − 90y° with a shift of 1ms. B0 inhomogeneity efects in
the resulting phase can be corrected based on the compu-
tational simulations.

3. Materials and Methods

Te proposed B1 mapping method is based on a phase-
sensitive method and capable of acquiring multislice images.
To evaluate the performance of the proposed B1 mapping
method, computational simulations were conducted, and it
was compared with three other B1 mapping methods:

Morrell’s method [16], double angle method (DAM) [11],
and Yarnykh’s method [14] (see Figure 2). For DAM based
on the SE sequence, a simulation parameter was selected
with two given FA values (90° and 180° for α and 2 α, re-
spectively), to obtain two signal intensity maps (see
Figure 2(a)), which involves 1% white Gaussian noise. Ten,
two signal intensity maps were calculated using equation (1),
and the actual FA maps were measured at angles from 0° to
360°. For Yarnykh’s method, the simulation parameters were
selected with TR1/TR2 � 100ms/400ms and T1 � 600ms,
and 1% white Gaussian noise was also used (see Figure 2(b)).
Morrell’s method was generalized to arbitrary FAs (2αx and
αx) (see Figure 2(c)). If two orthogonal pulses of arbitrary,
identical FAs are applied in quick succession, the FA would
be estimated by α� arccos (tan(θ)), where θ is the resulting
phase. Te proposed B1 mapping method was based on the
phase sensitivity map (see Figure 2(d)).Te phase maps were
obtained using the Bloch equations [19].Te actual FAmaps
were calculated in a manner similar to Morrell’s methods
(i.e., FA(θ) � I2(θ)−I1(θ)) using two-phase maps. In com-
putational simulation, the signal-to-noise ratio (SNR) ef-
ciency, which is indicated as the angle-to-noise ratio (ANR),
was defned as the SNR in the FA map. For initial simulation
comparison, readout acceleration along the phase encoding
was not considered, and the optimal parameters that rely on
the T1 value of the tissue, target FA value, and T2 efects were
also ignored.

Te study protocol was approved by the Institutional
Review Board of the Korea University, and all procedures
used in the study were conducted in accordance with the
International Ethics Standards and the Declaration of
Helsinki. Written informed consent was obtained from one
participant (sex, male; age, 30 years) after a full explanation
of the study procedures.Te RF pulse sequence was designed
with sequence secure data transfer software (Phillips
Healthcare, Netherlands). To validate the signal intensity of
the proposed B1 mapping method, all MR experiments were
performed in a 3-Tesla MRI scanner (Achieva TX, Philips
Healthcare, Te Netherlands) using two B1 mapping
methods: proposed B1 mapping method and multislice ISI
mapping method [6].

Tese methods were compared with the following
parameters: TR/TEs � 500ms/20ms, 40ms, and 60ms;
feld of view � 240 × 240mm2; matrix size � 560 × 560;
number of slices � 3; slice thickness � 5mm; FAs of tem-
porally sequential excitations � 90°(α); and scan time � 4 :
01.5 per RF pulse (total acquisition time � 8 : 03). Te
multislice ISI mapping method was conducted by
changing the FA of the refocusing pulse from 5° to 145° on
the multislice SE with the same parameter resulting in
scan time � 4 : 01.5 per FA (total acquisition time � 116 :
43.5), and the FA with the maximum signal was obtained
via spatial mapping of the image. A water phantom
consisting of CuSO4 and distilled water (1 g/1 L) with
a diameter and height of 200mm was used in the phantom
experiment. A commercial quadrature transmit/receive
volume coil (Philips Healthcare, Te Netherlands) was
used in all MR experiments.
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Figure 1: Multislice B1 mapping method using RF pulses of 90y
° −

180x° − 90y° for sequence 1 and 90y
° − 0x° − 90y° for sequence 2.
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4. Results

Te resulting phase of the proposed B1 mapping method
from the numerical result for each RF feld strength, B0
inhomogeneity, and composite RF pulse duration is shown
in Figure 3. Without B0 and B1 feld inhomogeneities, the
applied RF feld strength and resulting phase are identical
(180°). Without B0 inhomogeneity, the obtained results show
the quite linear RF feld and resulting phase relationship
within the given RF feld strength range of [120°, 240°]
without afecting the composite RF pulse duration. For
a given B0 inhomogeneity, the nonlinearity of the re-
lationship between the resulting phase and RF feld strength
increased with increasing B0 inhomogeneity. By considering
RF power and B0 inhomogeneity, a reasonable composite RF
pulse duration for the phantom and in vivo human ex-
periments is 300 μs, which makes the linear RF feld and
resulting phase relationship within the given RF feld
strength range of [120°, 240°].

Figure 4 shows the simulation results of ANR profles for
four B1 mapping methods, including DAM, multislice
composite RF pulse (proposed B1 mapping method),
Morrell’s method, and Yarnykh’s method. Te ANR dis-
tribution of Yarnykh’s method shows a bell-shaped curve,
and the noise value changed at an FA of 180°. Te ANR
distributions of the DAM and Morrell’s method show that
their noise values increase at FAs of 47° and 3°, respectively.
For the proposed B1 mapping method, the noise value in-
creases at an FA of 21°. Although the proposed B1 mapping
method did not create a large diference compared with
Morrell’s method (see Figure 4), these results clearly show
that the ANR distribution of the proposed B1 mapping
method is more uniformly distributed compared to that of
other B1 mapping methods, indicating that the proposed B1

mapping method could provide a more accurate FA value
over a wider FA range. Moreover, in terms of scan efciency,
it should be noted that the proposed method performs 93.1%
better than the multislice ISI mapping method.

Figure 5 shows MR magnitude images for three echo
signals (RF1, RF2, and RF3) obtained from the composite RF
pulses in the phantom. Especially, the frst row represents
MR images by the RF sequence using a composite RF pulse
(90y

° − 0x° − 90y°), the second row shows MR images by the
same RF sequence using a composite RF pulse
(90y

° − 180x° − 90y°) under the phase shift of 180° RF pulse
on the x-axis, and the third row presents MR images by the
RF sequence using a composite RF pulse
(90y

° − 180x° − 90y°) with 1ms shift. Additionally, slices 1,
2, and 3 were obtained at diferent TEs of 30ms, 20ms, and
10ms, respectively.

Figure 6 shows the FA distributions of the proposed B1
mapping method and multislice ISI mapping method with
the phantom. Figure 6(a) shows B0 inhomogeneity maps
estimated by RF sequence 1 using a composite RF pulse with
1ms shift and RF sequence 1 using a composite RF pulse.
Te B1 map estimated by the proposed B1 mapping method
with the no-correction method is shown in Figure 6(b).
Based on computational simulations, phase maps generated
by the proposed B1 mapping method (see Figure 6(b)) are
corrected with B0 inhomogeneity (see Figure 6(c)). Te
diference between the values after and before correcting B0
inhomogeneity is shown in Figure 6(d). Furthermore, the B1
map estimated by a reference method, multislice ISI map-
ping method, is presented in Figure 6(e). Errors between the
proposed B1 mapping method and multislice ISI method are
shown in Figure 6(f). Tere was no remarkable diference
between the twomethods regarding the FA distribution with
the phantom (<10%). Te main diferences between the two
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Figure 2: Computational simulation studies to evaluate the proposed B1 mapping method using a composite RF pulse (d) and other B1
mapping methods, such as the double angle method (a), Yarnykh’s method (b), and Morrell’s method (c).
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methods are caused by the discrete patterns, which are
created because the images are acquired at intervals of 5° in
the multislice ISI mapping method.

To verify the performance of the proposed B1 mapping
method in an in vivo human brain, MR experiments were
performed, and all analyses conducted with the phantom,
except for B0 correction, were repeated. Figure 7 shows the FA
maps of the proposed B1 mapping method, multislice ISI
mapping method, and FA error maps for three slices. In the
region-of-interest analysis, diferences among the twomethods
and FA errors were −3.2%, 4.8%, and 6.7%, respectively.

5. Discussion

A novel B1 mapping method using a pair of composite RF
pulses and SER techniques is presented in this study. Tis B1

mapping method could improve 3D spatial coverage of B1
mapping with long TR to reduce the efect of T1, and its
characteristics were confrmed with computational simu-
lations and phantom and in vivo human experiments on the
3-Tesla MRI scanner.

In computational simulations, the results revealed that
the ANR distribution of the proposed B1 mapping method is
more uniform compared to that of Morrell’s method [16],
DAM [11], and Yarnykh’s method [14].Tese results suggest
that the proposed B1 mapping method could provide more
accurate B1 feld strength measurements over a wider B1 feld
strength range. Additionally, our proposed B1 mapping
method has more acquisition time efciency compared with
Morrell’s method [16] by having multiple excitation RF
pulses with diferent RF frequency ofsets on the single TR
for multislice MR imaging. Such strength of the proposed B1
mapping method can be applied to Morrell’s method [16]
because its methodology is similar to that of Morrell’s
method [16].

In the phantom experiment, the results showed that
there was no signifcant diference in the B1 feld distribution
(<10%) between the proposed B1 mapping method and
multislice ISI mapping method. In addition to phantom
experiments, the results of the in vivo human brain study
revealed that the diferences between the proposed B1
mapping method and multislice ISI mapping method were
noted at the Gaussian noise level in the FA distribution
(<10%). Here, the multislice ISI mapping method was used
as a reference method for performance evaluation of the
proposed B1 mapping method due to its accuracy by re-
peated measurements of signal intensity [8]. Based on these
results, the proposed B1 mapping method facilitates FA
distribution with high accuracy and temporal resolution
within a single TR, regardless of the tissue characteristics.

However, the proposed B1 mapping method has several
limitations in terms of its narrow bandwidth and restricted
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TR in connection with the slice selectivity and number of RF
excitation pulses. Tese limitations can be overcome using
a high-power RF amplifer and parallel RF excitation, but the
proposed B1 mapping method can increase the SAR in such
situations. Moreover, a multichannel transmission RF coil
should be used for parallel excitation in the proposed B1
mapping method; however, this application is limited in
commercial 3-Tesla MRI scanners.

In addition to limitation of the proposed B1 mapping
method, this study has some limitations. First, B0 correction
was not performed in data processing procedure for in vivo
human brain due to the diferences in signal intensity be-
tween the proposed B1 mapping method and multislice ISI
mapping method observed at the Gaussian noise level.
Moreover, the proposed B1 mapping method was evaluated
in brain region only in this work at 3-Tesla MRI scanners.
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Error values before and after B0 inhomogeneity corrections for the proposed B1 mappingmethod. (e) B1 maps calculated using the multislice
ISI mapping method. (f ) Error values between the proposed B1 mapping method and multislice ISI mapping method.
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However, in a recent report, the proposed B1 mapping
method had been successfully implemented for the whole-
body imaging in the 1.5-Tesla MRI scanners, showing the
robustness and feasibility of the proposed method [29].

Te B1 mapping method proposed in this study is based
on phase-sensitive B1 mapping methods. Since both double
angle and phase-sensitive B1 mapping methods require
moderately long TRs, the imaging speed using one of these
methods depends primarily on the acquisition scheme used.
Presaturated double angle B1 mapping with reduced scan
time has been achieved using slice-selective excitation and
rapid spiral data acquisition [16]. Tis rapid readout scheme
could be applied to the phase-sensitive technique to have
a similar efect as reducing acquisition time.

Furthermore, the phase-sensitive B1 mapping methods
could only be applied to 3D imaging, as the RF pulses are
nonselective. Nonselective excitation is used to minimize the
duration of excitation to allow B1 mapping over a wide range
of B0 inhomogeneity. Moreover, nonselective excitation
necessitates large imaging volumes, which leads to low
resolution or long acquisition time. Slab selective excitation
with high bandwidth pulses for spatially localized 3D im-
aging could be implemented in the phase-sensitive method
for greater ease and fexibility of scan volume prescription.
Tis would cause some increase in RF pulse length, with
some resulting narrowing of the range of B0 inhomogeneity
over which the method is valid [16].Tis may be investigated
in future work.

For some B1 mapping applications, severe imaging time
constraints may make slice-selective excitation desirable to
allow rapid B1 mapping over a single slice. Implementation
of slice-selective excitation in the phase-sensitive B1 map-
ping methods would more severely restrict the range of B0
inhomogeneity over which the method is valid and may not

be feasible. Tus, there may be some applications requiring
extremely short imaging times where the double angle
techniques implemented with slice-selective excitation may
be more useful than the phase-sensitive B1 mapping
methods. When there are no signifcant time constraints,
a precise B1 mapping is performed using a 3D acquisition
method, because any slice-selective method of B1 mapping
will include signal from the transition bands of the slice
profle, thus causing systematic errors in the estimation
of B1.

In this study, the B1 mapping method based on phase-
sensitive technique using a pair of composite RF pulses
and SER techniques can be applied to clinical applications,
such as echo-planar imaging and parallel imaging, along
with shorter acquisition time. Moreover, this proposed B1
mapping method does not need to increase T1 efect by
reducing the TR for shorter acquisition time and is
suitable for clinical application due to its wide 3D spatial
coverage and long TR, so it is possible to obtain an ac-
curate B1 mapping even if RF spoiling is unstable. Ad-
ditionally, this proposed B1 mapping method allows
calibration of the receive delivery and enables accurate B1
mapping.

6. Conclusions

We demonstrated that the proposed B1 mapping method
using a pair of composite RF pulses and SER techniques can
reliably measure RF B1 propagation in a multislice imaging
and SER technique, providing the efect of acquisition time
reduction and wider 3D spatial coverage of B1 mapping with
long T1, respectively. Particularly, this B1 mapping method
may be suitable for the B1 mapping required for accurate FA
analysis using high-feld MRI scanners.
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Figure 7: FA maps of the proposed B1 mapping method and multislice ISI mapping method for an in vivo human brain and FA error maps
for three echo signals (RF1, RF2, and RF3).
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