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This paper focuses on the multiattribute group decision making problems with linguistic intuitionistic fuzzy information. Firstly
the concept of linguistic intuitionistic fuzzy numbers (LIFNs) is introduced, and then based on the LIFNs, some new aggregation
operators based on Bonferroni mean and power operator are proposed, such as linguistic intuitionistic fuzzy power Bonferroni
mean (LIFPBM) operator, linguistic intuitionistic fuzzy weighted power Bonferroni mean (LIFWPBM) operator, linguistic
intuitionistic fuzzy geometric power Bonferroni mean (LIFGPBM) operator, and linguistic intuitionistic fuzzy weighted geometric
power Bonferroni mean (LIFWGPBM) operator. Then, some properties are proved such as idempotency, permutation, and
boundedness. Besides, some special situations of the operators are explored. After that, an approach based of the LIFWGPBM
and LIFWGPBM operators is proposed. Finally an example is used to illustrate the validity of the developed method.

1. Introduction

Multiple attributes group decision making (MAGDM) plays
an important role in the field of decision sciences. It aims
to select the most satisfied one from the finite alterna-
tives according to the evaluation information for different
attributes given by decision makers [1–8]. Because of the
complexity of the real decision problems, sometimes it is
more suitable to express the evaluation information by fuzzy
numbers rather than crisp numbers, for instance, interval
numbers [9], intuitionistic fuzzy numbers [10], hesitant fuzzy
numbers [11], and interval-valued hesitant uncertain linguis-
tic variables [12]. Intuitionistic fuzzy set (IFS) [10] is com-
posed of amembership degree and a nonmembership degree,
respectively. The membership degree indicates the epistemic
positiveness, while the nonmembership degree reveals the
epistemic negativeness. Because of this advantage, IFSs have
been widely applied to solve the fuzzy decision making prob-
lems. However, the membership degree and nonmembership
degree in the form of crisp numbers are not always adequate
to express the fuzzy and uncertain information in practice,
especially for qualitative aspects; however it is easy to provide

the evaluation information by the linguistic variables. So a
possible solution is that membership degree and nonmem-
bership degree are represented by linguistic variables, which
is called the linguistic intuitionistic fuzzy numbers (LIFNs)
firstly developed by Chen et al. [13]. Since then, Yager [14]
developed the ordinal based intuitionistic fuzzy set.

In order to obtain the best choice more precisely, we
need to not only consider the existing evaluation information,
but also take the relationship between them into account.
Yager [15] developed the power average (PA) operator and the
power OWA (POWA) operator, which can avoid the effect of
too large or too small data by the inputting different weights.
Then, Xu and Yager [16] proposed some power geometric
operators. Zhou and Chen [17] developed the generalized
power average (GPA) operator and extended it to the lin-
guistic information. Zhang [18] extended the PA operators
to hesitant fuzzy numbers. Yu et al. [19] extended GPA
to the interval numbers and intuitionistic fuzzy numbers.
Afterwards Liu and Wang [20] extended GPA to the two-
dimension linguistic variables.

The Bonferroni mean (BM) operator is another aggrega-
tion tool which can catch the interrelationship of individual
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input arguments. Since it was firstly defined by Bonferroni
[21], BM has been applied to many fields and has attracted
increasing attentions from researchers. Zhu et al. [22] further
developed the geometric Bonferroni mean (GBM) operator.
Xu and Yager [23] extended the BM operator to IFSs. Zhou
and He [24] developed a normalized weighted Bonferroni
mean (IFNWBM) operator for intuitionistic fuzzy num-
bers. Liu and Wang [25] introduced a normalized weighted
Bonferroni mean (SVNNWBM) operator for single-valued
neutrosophic numbers. Beliakov and James [26] extended
the generalized BM to Atanassov orthopairs. Liu et al. [27]
introduced an intuitionistic uncertain linguistic weighted
Bonferroni OWA operator.

As mentioned above, because of the complexity of the
decision making problems and environment, the linguistic
intuitionistic fuzzy numbers (LIFNs) can easily express the
fuzzy information by combined intuitionistic fuzzy numbers
(IFNs) with linguistic information, and PA can relieve the
effect of too large or too small data by the inputting different
weights and BM can catch the interrelationship of individual
input arguments. However, the study on the MAGDM prob-
lems with LIFNs is less; particularly the PA and BM operators
cannot deal with the LIFNs. Obviously, it is necessary to
extend the PA and BM operators to the LIFNs. Motivated
by GIFPA [19] and IFNWBM [24], this paper is to develop
the linguistic intuitionistic fuzzy power Bonferroni mean
(LIFPBM) operator and the linguistic intuitionistic fuzzy
geometric power Bonferroni mean (LIFGPBM) operator by
combined PA with BM operators and extended it to the
LIFNs, which can fully make use of the advantages of the PA
operator, BM operator, and the LIFNs.

The rest of this paper is organized as follows: In Section 2,
we briefly review some basic concepts, operational rules, and
characters of linguistic information, IFNs, the PA, and BM
operators. Section 3 firstly develops the linguistic intuition-
istic fuzzy numbers and then combines the PA with the BM
operator and extends them to linguistic intuitionistic fuzzy
numbers. So linguistic intuitionistic fuzzy power Bonfer-
roni mean (LIFPBM) operator, linguistic intuitionistic fuzzy
weighted power Bonferroni mean (LIFWPBM) operator,
linguistic intuitionistic fuzzy geometric power Bonferroni
mean (LIFGPBM) operator, and linguistic intuitionistic fuzzy
weighted geometric power Bonferroni mean (LIFWGPBM)
operator are introduced later followed by properties and
special cases of these operators. Section 4 puts forward a
method for MAGDM problems based on the LIFWGPBM
operator and gives the detail procedures. In Section 5, an
illustrative example is given to verify the developed approach.
In Section 6, this paper ends up with conclusion and future
research scopes.

2. Preliminaries

2.1. Linguistic Terms Set

Definition 1 (see [28]). The linguistic terms set 𝑆 = (𝑠0, 𝑠1, . . .,𝑠𝑡−1) is made up of odd numbers of elements; that is, 𝑡 should
be odd positive integers. 𝑠𝑖 denotes a possible value for a

linguistic variable. In practice, 𝑡 can take the values of 3, 5,
7, 9, and so on. For example, when 𝑡 = 7, a set 𝑆 can be given
as follows:𝑆 = (𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6) = {very low, low, slightly low,
fair, slightly high, high, very high}.

For all linguistic terms sets, they should meet the condi-
tions as follows:

(1) if 𝑖 > 𝑗, then 𝑠𝑖 ≻ 𝑠𝑗 (i.e., 𝑠𝑖 is superior to 𝑠𝑗);
(2) there exists negative operator neg(𝑠𝑖) = 𝑠𝑗; let 𝑗 = 𝑡 −1 − 𝑖;
(3) if 𝑠𝑖 ≥ 𝑠𝑗 (which means 𝑠𝑖 is not inferior to 𝑠𝑗),

max(𝑠𝑖, 𝑠𝑗) = 𝑠𝑖;
(4) if 𝑠𝑖 ≤ 𝑠𝑗 (which means 𝑠𝑖 is not inferior to 𝑠𝑗),

min(𝑠𝑖, 𝑠𝑗) = 𝑠𝑖.
In order to relieve the loss of information in the calcula-

tion process of linguistic variables, the discrete linguistic set𝑆 = (𝑠0, 𝑠1, . . . , 𝑠𝑡−1) is extended to a continuous scale 𝑆 ={𝑠𝛼 | 𝛼 ∈ 𝑅+}. It still satisfies the relationship of strict
monotonic increasing and has the operational laws as fol-
lows:

𝛽 × 𝑠𝑖 = 𝑠𝛽×𝑖, 𝛽 ≥ 0, (1)

𝑠𝑖 ⊕ 𝑠𝑗 = 𝑠𝑖+𝑗, (2)

𝑠𝑖 ⊗ 𝑠𝑗 = 𝑠𝑖×𝑗, (3)

(𝑠𝑖)𝛽 = 𝑠𝑖𝛽 , 𝛽 ≥ 0, (4)

2.2. Intuitionistic Fuzzy Numbers. Atanassov [10] proposed
the intuitionistic fuzzy set (IFS) which is defined as follows.

Definition 2 (see [10]). Let𝑋 be a given fixed set; an IFS in𝑋
is an expression: 𝐴 = {⟨𝑥, 𝜇𝐴(𝑥), V𝐴(𝑥)⟩ | 𝑥 ∈ 𝑋}, where 𝜇𝐴 :𝑋 → [0, 1] and V𝐴 : 𝑋 → [0, 1] are the membership function
and the nonmembership function of the element ∀𝑥 ∈ 𝑋 to𝐴, respectively, and 0 ≤ 𝜇𝐴(𝑥) + V𝐴(𝑥) ≤ 1. In addition, 𝜋𝐴(𝑥) =1 − 𝜇𝐴(𝑥) − V𝐴(𝑥) represents the indeterminacy or hesitation
degree of 𝑥 to 𝐴.

For convenience, for an IFS 𝐴 and a given 𝑥, we denote
an intuitionistic fuzzy number (IFN) by 𝛼 = (𝜇𝛼, V𝛼).

Some operational laws of IFNs are defined as follows.

Definition 3 (see [29]). Let 𝛼 = (𝜇𝛼, V𝛼) and 𝛽 = (𝜇𝛽, V𝛽) be
any two IFNs; then

𝛼 ⊕ 𝛽 = (𝜇𝛼 + 𝜇𝛽 − 𝜇𝛼𝜇𝛽, V𝛼V𝛽) ; (5)

𝛼 ⊗ 𝛽 = (𝜇𝛼𝜇𝛽, V𝛼 + V𝛽 − V𝛼V𝛽) ; (6)

𝛾𝛼 = (1 − (1 − 𝜇𝛼)𝛾 , V𝛾𝛼) , 𝛾 > 0; (7)

𝛼𝛾 = (𝜇𝛾𝛼, 1 − (1 − V𝛼)𝛾) , 𝛾 > 0. (8)
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2.3. The PA Operator. The PA operator, proposed by Yager
[15], is defined as follows.

Definition 4 (see [15]). For all real numbers 𝛼𝑖 (𝑖 = 1, 2,. . . , 𝑛), a power aggregation (PA) operator of dimension 𝑛 is
a mapping PA: 𝑅𝑛 → 𝑅, such that

PA (𝛼1, 𝛼2, . . . , 𝛼𝑛) = ∑𝑛𝑖=1 (1 + 𝑇 (𝛼𝑖)) ⋅ 𝛼𝑖∑𝑛𝑖=1 (1 + 𝑇 (𝛼𝑖)) , (9)

where 𝑇(𝛼𝑖) = ∑𝑛𝑗=1,𝑗 ̸=𝑖 sup(𝛼𝑖, 𝛼𝑗) and sup(𝛼𝑖, 𝛼𝑗) is the
degree to which 𝛼𝑗 supports 𝛼𝑖. It satisfies some rules as
below:

(1) sup(𝛼𝑖, 𝛼𝑗) = sup(𝛼𝑗, 𝛼𝑖);
(2) sup(𝛼𝑖, 𝛼𝑗) ∈ [0, 1];
(3) sup(𝛼𝑖, 𝛼𝑗) ≥ sup(𝛼𝑚, 𝛼𝑛), if |𝛼𝑖 − 𝛼𝑗| ≤ |𝛼𝑚 − 𝛼𝑛|.

2.4. The BM Operator. The BM operator, proposed by Bon-
ferroni [21], was defined as follows.

Definition 5 (see [21]). Let 𝑎𝑖 (𝑖 = 1, 2, . . . , 𝑛) be a set of
nonnegative numbers, 𝑝, 𝑞 ≥ 0; a Bonferroni mean operator
(BM) of dimension 𝑛 is a mapping BM: 𝑅𝑛 → 𝑅, such that

BM𝑝,𝑞 (𝑎1, 𝑎2, . . . , 𝑎𝑛)
= ( 1𝑛 (𝑛 − 1) 𝑛∑𝑖=1

𝑛∑
𝑗=1,𝑗 ̸=𝑖

𝑎𝑖𝑝𝑎𝑗𝑞)1/(𝑝+𝑞) . (10)

This operator ignores the situation that decision makers may
give different weight to each input argument according to
their interest.Thus, aweightedBonferronimean operatorwas
introduced by Zhou and He [24].

Definition 6 (see [24]). Let 𝑎𝑖 (𝑖 = 1, 2, . . . , 𝑛) be a set of
nonnegative numbers; 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛) is the weight
vector of 𝑎𝑖, satisfying 𝜔𝑖 ≥ 0 and ∑𝑛𝑖=1 𝜔𝑖 = 1, 𝑝, 𝑞 ≥ 0. A
weighted Bonferroni mean (WBM) operator of dimension 𝑛
is a mapping WBM: 𝑅𝑛 → 𝑅, such that

WBM𝑝,𝑞 (𝑎1, 𝑎2, . . . , 𝑎𝑛)
= ( 𝑛∑
𝑖=1

𝑛∑
𝑗=1,𝑗 ̸=𝑖

𝜔𝑖𝜔𝑗1 − 𝜔𝑖 𝑎𝑖𝑝𝑎𝑗𝑞)
1/(𝑝+𝑞) . (11)

The properties of theWBMoperator are shown as follows
[24].

Theorem 7 (reducibility). Let 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)𝑇 be the
weight vector of 𝑎𝑖 (𝑖 = 1, 2, . . . , 𝑛); then

𝑊𝐵𝑀𝑝,𝑞 (𝑎1, 𝑎2, . . . , 𝑎𝑛)
= ( 1𝑛 (𝑛 − 1) 𝑛∑𝑖=1

𝑛∑
𝑗=1,𝑗 ̸=𝑖

𝑎𝑖𝑝𝑎𝑗𝑞)1/(𝑝+𝑞)
= 𝐵𝑀𝑝,𝑞 (𝑎1, 𝑎2, . . . , 𝑎𝑛) .

(12)

Theorem 8 (idempotency). Let 𝑎𝑗 = 𝑎 (𝑗 = 1, 2, . . . , 𝑛); then𝑊𝐵𝑀𝑝,𝑞(𝑎1, 𝑎2, . . . , 𝑎𝑛) = 𝑎.
Theorem 9 (permutation). Let (𝑎1, 𝑎2, . . . , 𝑎𝑛) be any permu-
tation of (𝑎1, 𝑎2, . . . , 𝑎𝑛); then
𝑊𝐵𝑀𝑝,𝑞 (𝑎1, 𝑎2, . . . , 𝑎𝑛) = 𝑊𝐵𝑀𝑝,𝑞 (𝑎1, 𝑎2, . . . , 𝑎𝑛) . (13)

Theorem 10 (monotonicity). If 𝑎𝑗 ≥ 𝑏𝑗 (𝑗 = 1, 2, . . . , 𝑛), then𝑊𝐵𝑀𝑝,𝑞(𝑎1, 𝑎2, . . . , 𝑎𝑛) ≥ 𝑊𝐵𝑀𝑝,𝑞(𝑏1, 𝑏2, . . . , 𝑏𝑛).
Theorem 11 (boundedness). The 𝑊𝐵𝑀𝑝,𝑞 operator lies
between the max and min operators; that is,

min (𝑎1, 𝑎2, . . . , 𝑎𝑛) ≤ 𝑊𝐵𝑀𝑝,𝑞 (𝑎1, 𝑎2, . . . , 𝑎𝑛)≤ max (𝑎1, 𝑎2, . . . , 𝑎𝑛) . (14)

In the same way, the geometric BM (GBM) operator also
has the characters of considering correlations of the input
arguments.

Definition 12 (see [30]). Let 𝑎𝑖 (𝑖 = 1, 2, . . . , 𝑛) be a set of
nonnegative numbers, and𝑝, 𝑞 ≥ 0; a geometric BM operator
of dimension 𝑛 is a mapping GBM: 𝑅𝑛 → 𝑅, such that

GBM𝑝,𝑞 (𝑎1, 𝑎2, . . . , 𝑎𝑛)
= 1𝑝 + 𝑞 𝑛∏𝑖=1

𝑛∏
𝑗=1,𝑗 ̸=𝑖

(𝑝𝑎𝑖 + 𝑞𝑎𝑗)1/𝑛(𝑛−1) . (15)

The GBM operator does not take the weights of aggre-
gated arguments into account. Sun and Liu [31] further
introduced the weighted GBM (WGBM) operator, since the
extension process is similar to the WBM operator from the
BM operator, so it is omitted here.

3. Some Power Bonferroni Mean
Operators Based on Linguistic Intuitionistic
Fuzzy Numbers

Now, theWBM andWGBM operators have not been applied
to linguistic intuitionistic fuzzy numbers. In order to make
up for this gap, in this section, we will extend the WBM
andWGBMoperators to deal with the linguistic intuitionistic
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fuzzy numbers and propose linguistic intuitionistic fuzzy
power BM (LIFPBM) operator, linguistic intuitionistic fuzzy
weighted power BM (LIFWPBM) operator, linguistic intu-
itionistic fuzzy geometric power BM (LIFGPBM) operator,
and linguistic intuitionistic fuzzy weighted geometric power
BM (LIFWGPBM) operator, which can be defined as follows.

3.1. Linguistic Intuitionistic Fuzzy Numbers (LIFNs). In prac-
tice, sometimes it is difficult to use crisp numbers to depict
the membership function and nonmembership function of
IFSs. So we introduce the concept of LIFNs where both
membership and nonmembership are denoted by linguistic
terms.

Definition 13 (see [13]). Let linguistic terms 𝑠𝛼, 𝑠𝛽 ∈ 𝑆[0,𝑡]
and 𝛾 = (𝑠𝛼, 𝑠𝛽); 𝑠𝛼 and 𝑠𝛽 denote the membership and
nonmembership, respectively. If 𝛼+𝛽 ≤ 𝑡, then one can call 𝛾
the linguistic intuitionistic fuzzy number (LIFN) defined on𝑆[0,𝑡]. For convenience, one uses Γ[0, 𝑡] to express the set of all
LIFNs.

In order tomeasure the deviation between any twoLIFNs,
we define the following distance formula.

Definition 14. Let 𝛾1 = (𝑠𝛼1 , 𝑠𝛽1) and 𝛾2 = (𝑠𝛼2 , 𝑠𝛽2) be any two
LIFNs; then the distance 𝑑 between 𝛾1 and 𝛾2 is expressed by

𝑑 (𝛾1, 𝛾2) = 𝛼1 − 𝛼2 + 𝛽1 − 𝛽22𝑡 . (16)

Obviously, 𝑑(𝛾1, 𝛾2) satisfies
(1) 𝑑(𝛾1, 𝛾2) ≥ 0, 𝑑(𝛾2, 𝛾1) ≥ 0;
(2) 𝑑(𝛾1, 𝛾2) = 𝑑(𝛾2, 𝛾1);
(3) suppose 𝛾3 = (𝑠𝛼3 , 𝑠𝛽3) is any one LIFN; then𝑑(𝛾1, 𝛾3) ≤ 𝑑(𝛾1, 𝛾2) + 𝑑(𝛾2, 𝛾3).

Definition 15 (see [13]). Let (𝑠𝛼, 𝑠𝛽), (𝑠𝛼1, 𝑠𝛽1), (𝑠𝛼2, s𝛽2) ∈Γ[0, 𝑡], 𝜆 > 0; then the operational laws for LIFNs are shown
as follows:

(𝑠𝛼1 , 𝑠𝛽1) ⊕ (𝑠𝛼2 , 𝑠𝛽2) = (𝑠𝛼1+𝛼2−𝛼1𝛼2/𝑡, 𝑠𝛽1𝛽2/𝑡) ; (17)

(𝑠𝛼1 , 𝑠𝛽1) ⊗ (𝑠𝛼2 , 𝑠𝛽2) = (𝑠𝛼1𝛼2/𝑡, 𝑠𝛽1+𝛽2−𝛽1𝛽2/𝑡) ; (18)

𝜆 (𝑠𝛼, 𝑠𝛽) = (𝑠𝑡−𝑡(1−𝛼/𝑡)𝜆, 𝑠𝑡(𝛽/𝑡)𝜆) ; (19)

(𝑠𝛼, 𝑠𝛽)𝜆 = (𝑠𝑡(𝛼/𝑡)𝜆 , 𝑠𝑡−𝑡(1−𝛽/𝑡)𝜆) . (20)

Theorem 16. Let (𝑠𝛼, 𝑠𝛽), (𝑠𝛼1 , 𝑠𝛽1), (𝑠𝛼2 , 𝑠𝛽2) ∈ Γ[0, 𝑡], 𝜆 > 0,𝜆1 > 0, 𝜆2 > 0; then
(𝑠𝛼1 , 𝑠𝛽1) ⊕ (𝑠𝛼2 , 𝑠𝛽2) = (𝑠𝛼2 , 𝑠𝛽2) ⊕ (𝑠𝛼1 , 𝑠𝛽1) ; (21)

(𝑠𝛼1 , 𝑠𝛽1) ⊗ (𝑠𝛼2 , 𝑠𝛽2) = (s𝛼2 , 𝑠𝛽2) ⊗ (𝑠𝛼1 , 𝑠𝛽1) ; (22)

(𝑠𝛼, 𝑠𝛽) ⊕ ((𝑠𝛼1 , 𝑠𝛽1) ⊕ (𝑠𝛼2 , 𝑠𝛽2))
= ((𝑠𝛼, 𝑠𝛽) ⊕ (𝑠𝛼1 , 𝑠𝛽1)) ⊕ (𝑠𝛼2 , 𝑠𝛽2) ; (23)

(𝑠𝛼, 𝑠𝛽) ⊗ ((𝑠𝛼1 , 𝑠𝛽1) ⊗ (𝑠𝛼2 , 𝑠𝛽2))
= ((𝑠𝛼, 𝑠𝛽) ⊗ (𝑠𝛼1 , 𝑠𝛽1)) ⊗ (𝑠𝛼2 , 𝑠𝛽2) ; (24)

𝜆 ((𝑠𝛼1 , 𝑠𝛽1) ⊕ (𝑠𝛼2 , 𝑠𝛽2)) = 𝜆 (𝑠𝛼1 , 𝑠𝛽1) ⊕ 𝜆 (𝑠𝛼2 , 𝑠𝛽2) ; (25)

((𝑠𝛼1 , 𝑠𝛽1) ⊗ (𝑠𝛼2 , 𝑠𝛽2))𝜆 = (𝑠𝛼1 , 𝑠𝛽1)𝜆 ⊗ (𝑠𝛼2 , 𝑠𝛽2)𝜆 ; (26)

𝜆1 (𝑠𝛼, 𝑠𝛽) ⊕ 𝜆2 (𝑠𝛼, 𝑠𝛽) = (𝜆1 + 𝜆2) (𝑠𝛼, 𝑠𝛽) ; (27)

(𝑠𝛼, 𝑠𝛽)𝜆1 ⊗ (𝑠𝛼, 𝑠𝛽)𝜆2 = (𝑠𝛼, 𝑠𝛽)(𝜆1+𝜆2) ; (28)

𝜆1 (𝜆2 (𝑠𝛼, 𝑠𝛽)) = 𝜆1𝜆2 (𝑠𝛼, 𝑠𝛽) ; (29)

((𝑠𝛼, 𝑠𝛽)𝜆2)𝜆1 = (𝑠𝛼, 𝑠𝛽)𝜆1𝜆2 . (30)

The proof is easy, so it is omitted here.

Next, we will introduce the comparison method of two
LIFNs.

Definition 17 (see [13]). Let 𝛾 = (𝑠𝛼, 𝑠𝛽), 𝛾1 = (𝑠𝛼1 , 𝑠𝛽1), 𝛾2 =(𝑠𝛼2 , 𝑠𝛽2) ∈ Γ[0, 𝑡], and
𝐿𝑠 (𝛾) = 𝛼 − 𝛽,
𝐿ℎ (𝛾) = 𝛼 + 𝛽; (31)

then one calls 𝐿𝑠(𝛾) the score function of 𝛾 and 𝐿ℎ(𝛾) the
accuracy function of 𝛾.

If 𝐿𝑠(𝛾1) < 𝐿𝑠(𝛾2), then 𝛾1 is smaller than 𝛾2, denoted
by 𝛾1 < 𝛾2.
If 𝐿𝑠(𝛾1) > 𝐿𝑠(𝛾2), then 𝛾1 is bigger than 𝛾2, denoted
by 𝛾1 > 𝛾2.
If 𝐿𝑠(𝛾1) = 𝐿𝑠(𝛾2), and if

(1) 𝐿ℎ(𝛾1) = 𝐿ℎ(𝛾2), then 𝛾1 and 𝛾2 represent the
same information, denoted by 𝛾1 = 𝛾2;

(2) 𝐿ℎ(𝛾1) < 𝐿ℎ(𝛾2), then 𝛾1 is smaller than 𝛾2,
denoted by 𝛾1 < 𝛾2;

(3) 𝐿ℎ(𝛾1) > 𝐿ℎ(𝛾2), then 𝛾1 is bigger than 𝛾2,
denoted by 𝛾1 > 𝛾2.

It is obvious that (𝑠0, 𝑠𝑡) ≤ (𝑠𝛼, 𝑠𝛽) ≤ (𝑠𝑡, 𝑠0) for any(𝑠𝛼, 𝑠𝛽) ∈ Γ[0, 𝑡] andif 𝛼1 ≤ 𝛼2 and 𝛽1 ≥ 𝛽2, then 𝛾1 ≤ 𝛾2.
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3.2. Some Linguistic Intuitionistic Fuzzy Numbers
Power BM Operators

3.2.1. The Linguistic Intuitionistic Fuzzy Power BM Operator

Definition 18. Let 𝛾𝑖 = (𝑠𝛼𝑖 , 𝑠𝛼𝑗) (𝑖 = 1, 2, . . . , 𝑛) be a set of
LIFNs, 𝑝, 𝑞 ≥ 0. If

LIFPBM𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛)
= ( 1𝑛 (𝑛 − 1) ( 𝑛⊕

𝑖,𝑗=1
𝑖 ̸=𝑗

(( 𝑛 (1 + 𝑇 (𝛾𝑖))∑𝑛𝑡=1 (1 + 𝑇 (𝛾𝑡))𝛾𝑖)
𝑝

⊗ ( 𝑛 (1 + 𝑇 (𝛾𝑗))∑𝑛𝑡=1 (1 + 𝑇 (𝛾𝑡))𝛾𝑗)
𝑞)))

1/(𝑝+𝑞)

(32)

then LIFPBM𝑝,𝑞 is called the linguistic intuitionistic fuzzy
power BM operator, where 𝑇(𝛾𝑖) = ∑𝑛𝑗=1,𝑖 ̸=𝑗 sup(𝛾𝑖, 𝛾𝑗), and
sup(𝛾𝑖, 𝛾𝑗) is the support for 𝛾𝑖 from 𝛾𝑗, which satisfies the
following three properties:

(1) sup(𝛾𝑖, 𝛾𝑗) ∈ [0, 1];
(2) sup(𝛾𝑖, 𝛾𝑗) = sup(𝛾𝑗, 𝛾𝑖);
(3) if 𝑑(𝛾𝑖, 𝛾𝑗) ≤ 𝑑(𝛾𝑙, 𝛾𝑟),

and then sup(𝛾𝑖, 𝛾𝑗) ≥ sup(𝛾𝑙, 𝛾𝑟), where 𝑑(𝑎, 𝑏) is the distance
between the LIFNs 𝑎 and 𝑏.
Theorem 19. Let 𝛾𝑖 = (𝑠𝛼𝑖 , 𝑠𝛽𝑖) (𝑖 = 1, 2, . . . , 𝑛) be a set of
LIFNs, 𝑝, 𝑞 ≥ 0; the aggregated value by Definition 18 is still
a LIFN and can be denoted as𝐿𝐼𝐹𝑃𝐵𝑀𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛)

= [[[
1𝑛 (𝑛 − 1) ( 𝑛⊕

𝑖,𝑗=1
𝑖 ̸=𝑗

(( 𝑛 (1 + 𝑇 (𝛾𝑖))∑𝑛𝑡 (1 + 𝑇 (𝛾𝑡))𝛾𝑖)
𝑝

⊗ ( 𝑛 (1 + 𝑇 (𝛾𝑗))∑𝑛𝑡 (1 + 𝑇 (𝛾𝑡))𝛾𝑗)
𝑞))]]]

1/(𝑝+𝑞)

= (𝑠
𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(1−(1−(1−𝛼𝑖/𝑡)
𝑢𝑖 )𝑝(1−(1−𝛼𝑖/𝑡)

𝑢𝑗 )𝑞)
1/𝑛(𝑛−1)
]1/(𝑝+𝑞)

,
𝑠𝑡−𝑡[1−(∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(1−(1−(𝛽𝑖/𝑡)
𝑢𝑖 )𝑝(1−(𝛽𝑖/𝑡)

𝑢𝑗 )𝑞))1/𝑛(𝑛−1)]1/(𝑝+𝑞)) ,

(33)

where 𝑇(𝛾𝑖) = ∑𝑛𝑗=1,𝑖 ̸=𝑗 sup(𝛾𝑖, 𝛾𝑗) and 𝑢𝑖 = 𝑛(1 + 𝑇(𝛾𝑖))/∑𝑛𝑡=1(1 + 𝑇(𝛾𝑡)) (𝑖 = 1, 2, . . . , 𝑛).
Proof. By the operational laws of the LIFNs, we can easily
deduce that 𝑢𝑖𝛾i = (𝑠𝑡−𝑡(1−𝛼𝑖/𝑡)𝑢𝑖 , 𝑠𝑡(𝛽𝑖/𝑡)𝑢𝑖 ) ,(𝑢𝑖𝛾𝑖)𝑝 = (𝑠𝑡(1−(1−𝛼𝑖/𝑡)𝑢𝑖 )𝑝 , 𝑠𝑡−𝑡(1−(𝛽𝑖/𝑡)𝑢𝑖 )𝑝) . (34)

Similarly, we have

(𝑢𝑗𝛾𝑗)𝑞 = (𝑠𝑡(1−(1−𝛼𝑗/𝑡)𝑢𝑗 )𝑝 , 𝑠𝑡−𝑡(1−(𝛽𝑗/𝑡)𝑢𝑗 )𝑝) ; (35)

then

(𝑢𝑖𝛾𝑖)𝑝 ⊗ (𝑢𝑗𝛾𝑗)𝑞 = (s𝑡(1−(1−𝛼𝑖/𝑡)𝑢𝑖 )𝑝(1−(1−𝛼𝑗/𝑡)𝑢𝑗 )𝑞 ,
𝑠𝑡−𝑡(1−(𝛽𝑖/𝑡)𝑢𝑖 )𝑝(1−(𝛽𝑗/𝑡)𝑢𝑗 )𝑞) ,
𝑛⊕
𝑖,𝑗=1
𝑖 ̸=𝑗

((𝑢𝑖𝛾𝑖)𝑝 ⊗ (𝑢𝑗𝛾𝑗)𝑞)
= (𝑠𝑡−𝑡∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(1−(1−𝛼𝑖/𝑡)
𝑢𝑖 )𝑝(1−(1−𝛼𝑗/𝑡)

𝑢𝑗 )𝑞 ,
𝑠𝑡∏𝑛𝑖,𝑗=1(1−(1−(𝛽𝑖/𝑡)𝑢𝑖 )𝑝(1−(𝛽𝑖/𝑡)𝑢𝑖 )𝑞)) .

(36)

Further we have

1𝑛 (𝑛 − 1) ( 𝑛⊕
𝑖,𝑗=1
𝑖 ̸=𝑗

((𝑢𝑖𝛾𝑖)𝑝 ⊗ (𝑢𝑗𝛾𝑗)𝑞))
= (𝑠𝑡−𝑡(∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(1−(1−𝛼𝑖/𝑡)
𝑢𝑖 )𝑝(1−(1−𝛼𝑗/𝑡)

𝑢𝑗 )𝑞)1/𝑛(𝑛−1) ,
𝑠𝑡(∏𝑛𝑖,𝑗=1(1−(1−(𝛽𝑖/𝑡)𝑢𝑖 )𝑝(1−(𝛽𝑖/𝑡)𝑢𝑖 )𝑞))1/𝑛(𝑛−1)) .

(37)

Finally, we have

[[[
1𝑛 (𝑛 − 1) ( 𝑛⊕

𝑖,𝑗=1
𝑖 ̸=𝑗

(( 𝑛 (1 + 𝑇 (𝛾𝑖))∑𝑛𝑡 (1 + 𝑇 (𝛾𝑡))𝛾𝑖)
𝑝

⊗ ( 𝑛 (1 + 𝑇 (𝛾𝑗))∑𝑛𝑡 (1 + 𝑇 (𝛾𝑡))𝛾𝑗)
𝑞))]]]

1/(𝑝+𝑞)

= (𝑠
𝑡[1−∏𝑛𝑖,𝑗=1
𝑖 ̸=𝑗

(1−(1−(1−𝛼𝑖/𝑡)
𝑢𝑖 )𝑝(1−(1−𝛼𝑖/𝑡)

𝑢𝑗 )𝑞)
1/𝑛(𝑛−1)
]1/(𝑝+𝑞)

,
𝑠𝑡−𝑡[1−(∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(1−(1−(𝛽𝑖/𝑡)
𝑢𝑖 )𝑝(1−(𝛽𝑖/𝑡)

𝑢𝑗 )𝑞))1/𝑛(𝑛−1)]1/(𝑝+𝑞))

(38)

which ends the proof of Theorem 19.

Theorem 20 (idempotency). Let 𝛾𝑖 = (𝑠𝛼𝑖 , 𝑠𝛽𝑖) (𝑖 = 1, 2, . . . ,𝑛) be a set of LIFNs, and 𝑝, 𝑞 ≥ 0; if for all 𝑖, 𝛾𝑖 = 𝛾 = (𝑠𝛼, 𝑠𝛽),
then 𝐿𝐼𝐹𝑃𝐵𝑀𝑝,𝑞(𝛾1, 𝛾2, . . . , 𝛾𝑛) = 𝛾.
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Proof. Since for all 𝑖, 𝛾𝑖 = 𝛾 = (𝑠𝛼, 𝑠𝛽), then we have

𝑢𝑖 = 𝑛 (1 + 𝑇 (𝛾))∑𝑛𝑡=1 (1 + 𝑇 (𝛾)) = 1
LIFPBM𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛) = LIFPBM𝑝,𝑞 (𝛾, 𝛾, . . . , 𝛾)

= (𝑠
𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(1−(1−(1−𝛼𝑖/𝑡)
𝑢𝑖 )𝑝(1−(1−𝛼𝑖/𝑡)

𝑢𝑗 )𝑞)
1/𝑛(𝑛−1)
]1/(𝑝+𝑞)

,
𝑠𝑡−𝑡[1−(∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(1−(1−(𝛽𝑖/𝑡)
𝑢𝑖 )𝑝(1−(𝛽𝑖/𝑡)

𝑢𝑗 )𝑞))1/𝑛(𝑛−1)]1/(𝑝+𝑞))
= (𝑠
𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(1−(1−(1−𝛼/𝑡)1)𝑝(1−(1−𝛼/𝑡)1)𝑞)
1/𝑛(𝑛−1)
]1/(𝑝+𝑞)

,
𝑠𝑡−𝑡[1−(∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(1−(1−(𝛽/𝑡)1)𝑝(1−(𝛽/𝑡)1)𝑞))1/𝑛(𝑛−1)]1/(𝑝+𝑞))
= (𝑠
𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(1−(𝛼/𝑡)𝑝+
𝑞
)
1/𝑛(𝑛−1)
]1/(𝑝+𝑞)

,
𝑠𝑡−𝑡[1−(∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(1−(1−𝛽/𝑡)𝑝+
𝑞
))1/𝑛(𝑛−1)]1/(𝑝+𝑞))

= (𝑠𝑡[1−(1−(𝛼/𝑡)𝑝+𝑞)]1/(𝑝+𝑞) , 𝑠𝑡−𝑡[1−(1−(1−𝛽/𝑡)𝑝+𝑞)]1/(𝑝+𝑞))
= (𝑠𝑡(𝛼/𝑡) , 𝑠𝑡−𝑡(1−𝛽/𝑡)) = (𝑠𝛼 , 𝑠𝛽)

(39)

so this theorem is proved.

Theorem 21 (permutation). If (𝛾1, 𝛾2, . . . , 𝛾𝑛) is any permuta-
tion of (𝛾1, 𝛾2, . . . , 𝛾𝑛), then one can get

𝐿𝐼𝐹𝑃𝐵𝑀𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛)= 𝐿𝐼𝐹𝑃𝐵𝑀𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛) . (40)

Proof. According toTheorem 19 andDefinition 18, we can get

[[[
1𝑛 (𝑛 − 1) ( 𝑛⊕

𝑖,𝑗=1
𝑖 ̸=𝑗

(( 𝑛 (1 + 𝑇 (𝛾𝑖 ))∑𝑛𝑡=1 (1 + 𝑇 (𝛾𝑡 ))𝛾𝑖)
𝑝

⊗ ( 𝑛 (1 + 𝑇 (𝛾𝑗))∑𝑛𝑡=1 (1 + 𝑇 (𝛾𝑡 ))𝛾𝑗)
𝑞))]]]

1/(𝑝+𝑞)

= [[[
1𝑛 (𝑛 − 1) ( 𝑛⊕

𝑖,𝑗=1
𝑖 ̸=𝑗

(( 𝑛 (1 + 𝑇 (𝛾𝑖))∑𝑛𝑡=1 (1 + 𝑇 (𝛾𝑡))𝛾𝑖)
𝑝

⊗ ( 𝑛 (1 + 𝑇 (𝛾𝑗))∑𝑛𝑡=1 (1 + 𝑇 (𝛾𝑡))𝛾𝑗)
𝑞))]]]

1/(𝑝+𝑞)

(41)

so LIFPBM𝑝,𝑞(𝛾1, 𝛾2, . . . , 𝛾𝑛) = LIFPBM𝑝,𝑞(𝛾1, 𝛾2, . . . , 𝛾𝑛)
which ends the proof of this theorem.

Theorem 22 (boundedness). Let 𝛾𝑖 (𝑖 = 1, 2, . . . , 𝑛) be a
collection of LIFNs, �̃� = min(𝛾1, 𝛾2, . . . , 𝛾𝑛) = (𝑠�̃�, 𝑠�̃�), �̂� =
max(𝛾1, 𝛾2, . . . , 𝛾𝑛) = (𝑠�̂�, 𝑠�̂�), and the 𝐿𝐼𝐹𝑃𝐵𝑀𝑝,𝑞 operator lies
at

�̃� ≤ 𝐿𝐼𝐹𝑃𝐵𝑀𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛) ≤ �̂�, (42)

where

�̃� = (𝑠
𝑡[1−∏𝑛𝑖,𝑗=1
𝑖 ̸=𝑗

(1−(1−(1−�̃�/𝑡)𝑢𝑖 )𝑝(1−(1−�̃�/𝑡)𝑢𝑗 )𝑞)
1/𝑛(𝑛−1)
]1/(𝑝+𝑞)

,
𝑠𝑡−𝑡[1−(∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(1−(1−(�̂�/𝑡)𝑢𝑖 )𝑝(1−(�̂�/𝑡)𝑢𝑗 )𝑞))1/𝑛(𝑛−1)]1/(𝑝+𝑞))
�̂� = (𝑠

𝑡[1−∏𝑛𝑖,𝑗=1
𝑖 ̸=𝑗

(1−(1−(1−�̂�/𝑡)𝑢𝑖 )𝑝(1−(1−�̂�/𝑡)𝑢𝑗 )𝑞)
1/𝑛(𝑛−1)
]1/(𝑝+𝑞)

,
𝑠𝑡−𝑡[1−(∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(1−(1−(�̂�/𝑡)𝑢𝑖 )𝑝(1−(�̂�/𝑡)𝑢𝑗 )𝑞))1/𝑛(𝑛−1)]1/(𝑝+𝑞))
𝑢𝑖 = 𝑛 (1 + 𝑇 (𝛾𝑖))∑𝑛𝑡 (1 + 𝑇 (𝛾𝑡)) .

(43)

Proof. Since 1 − (1 − �̃�/𝑡)𝑢𝑖 ≤ 1 − (1 − 𝛼𝑖/𝑡)𝑢𝑖 ,
1 − (1 − (1 − �̃�𝑡 )𝑢𝑖)𝑝 (1 − (1 − �̃�𝑡 )𝑢𝑗)𝑞

≥ 1 − (1 − (1 − 𝛼𝑖𝑡 )𝑢𝑖)𝑝 (1 − (1 − 𝛼𝑗𝑡 )𝑢𝑗)𝑞
(44)

then

1 − 𝑛∏
𝑖,𝑗=1
𝑖 ̸=𝑗

(1 − (1 − (1 − �̃�𝑡 )𝑢𝑖)𝑝 (1 − (1 − �̃�𝑡 )𝑢𝑗)𝑞)
1/𝑛(𝑛−1)

≤ 1
− 𝑛∏
𝑖,𝑗=1
𝑖 ̸=𝑗

(1 − (1 − (1 − 𝛼𝑖𝑡 )𝑢𝑖)𝑝 (1 − (1 − 𝛼𝑗𝑡 )𝑢𝑗)𝑞)
1/𝑛(𝑛−1),

(45)

and finally we have
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𝑡 [1 − 𝑛∏
𝑖

(1 − (1 − (1 − �̃�𝑡 )𝑢𝑖)𝑝 (1 − (1 − �̃�𝑡 )𝑢𝑗)𝑞)
1/𝑛(𝑛−1)]1/(𝑝+𝑞)

≤ 𝑡 [1 − 𝑛∏
𝑖

(1 − (1 − (1 − 𝛼𝑖𝑡 )𝑢𝑖)𝑝 (1 − (1 − 𝛼𝑗𝑡 )𝑢𝑗)𝑞)
1/𝑛(𝑛−1)]1/(𝑝+𝑞) .

(46)

Similarly, we have

𝑡 − 𝑡 [[1 − (
𝑛∏
𝑖

(1 − (1 − (�̃�𝑡 )
𝑢𝑖)𝑝(1 − (�̃�𝑡 )

𝑢𝑗)𝑞))1/𝑛(𝑛−1)]]
1/(𝑝+𝑞) ≤ 𝑡

− 𝑡[[1 − (
𝑛∏
𝑖

(1 − (1 − (𝛽𝑖𝑡 )𝑢𝑖)𝑝 (1 − (𝛽𝑗𝑡 )
𝑢𝑗)𝑞))1/𝑛(𝑛−1)]]

1/(𝑝+𝑞) .
(47)

Further, we have

�̃� ≤ LIFPBM𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛) . (48)

In the same way, we can get

LIFPBM𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛) ≤ �̂�. (49)

So this theorem is proved.

Definition 23. Let 𝛾𝑖 = (𝑠𝛼𝑖 , 𝑠𝛼𝑗) (𝑖 = 1, 2, . . . , 𝑛) be a set of
LIFNs, 𝑝, 𝑞 ≥ 0, and 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛) is the associated
weight vector of 𝛾𝑖 (𝑖 = 1, 2, . . . , 𝑛). If
LIFWPBM𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛)

= [[[
1𝑛 (𝑛 − 1) ( 𝑛⊕

𝑖,𝑗=1
𝑖 ̸=𝑗

(( 𝜔𝑖𝑛 (1 + 𝑇 (𝛾𝑖))∑𝑛𝑡=1 𝜔𝑡 (1 + 𝑇 (𝛾𝑡))𝛾𝑖)
𝑝

⊗ ( 𝜔𝑗𝑛 (1 + 𝑇 (𝛾𝑗))∑𝑛𝑡=1 𝜔𝑡 (1 + 𝑇 (𝛾𝑡))𝛾𝑗)
𝑞))]]]

1/(𝑝+𝑞)

(50)

then LIFWPBM𝑝,𝑞 is called the linguistic intuitionistic fuzzy
weighted power BM operator.

Theorem 24. Let 𝛾𝑖 = (𝑠𝛼𝑖 , 𝑠𝛽𝑖) (𝑖 = 1, 2, . . . , 𝑛) be a set of
LIFNs, 𝑝, 𝑞 ≥ 0, and 𝐿𝐼𝐹𝑁𝑠𝑛 → 𝐿𝐼𝐹𝑁𝑠. So the aggregated
value by Definition 23 is still a LIFN and can be denoted as

𝐿𝐼𝐹𝑊𝑃𝐵𝑀𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛)
= [[[

1𝑛 (𝑛 − 1) ( 𝑛⊕
𝑖,𝑗=1
𝑖 ̸=𝑗

(( 𝜔𝑖𝑛 (1 + 𝑇 (𝛾𝑖))∑𝑛𝑡=1 𝜔𝑡 (1 + 𝑇 (𝛾𝑡))𝛾𝑖)
𝑝

⊗ ( 𝜔𝑗𝑛 (1 + 𝑇 (𝛾𝑗))∑𝑛𝑡=1 𝜔𝑡 (1 + 𝑇 (𝛾𝑡))𝛾𝑗)
𝑞))]]]

1/(𝑝+𝑞)

= (𝑠
𝑡[1−∏𝑛𝑖,𝑗=1
𝑖 ̸=𝑗

(1−(1−𝜂
𝑢𝑖
𝛼𝑖 )
𝑝(1−𝜂

𝑢𝑗
𝛼𝑗 )
𝑞)
1/𝑛(𝑛−1)
]1/(𝑝+𝑞)

,

𝑠
𝑡−𝑡[1−(∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(1−(1−𝜇
𝑢𝑖
𝛽𝑖
)𝑝(1−𝜇

𝑢𝑗

𝛽𝑗
)𝑝))1/𝑛(𝑛−1)]1/(𝑝+𝑞)

),

(51)

where 𝜂𝛼𝑖 = 1 − 𝛼𝑖/𝑡, 𝜂𝛼𝑗 = 1 − 𝛼𝑗/𝑡, 𝜇𝛽𝑖 = 𝛽𝑖/𝑡, 𝜇𝛽𝑗 = 𝛽𝑗/𝑡,
and 𝑇(𝛾𝑖) = ∑𝑛𝑗=1,𝑖 ̸=𝑗 sup(𝛾𝑖, 𝛾𝑗),

𝑢𝑖 = 𝜔𝑖𝑛 (1 + 𝑇 (𝛾𝑖))∑𝑛𝑡=1 𝜔𝑡 (1 + 𝑇 (𝛾𝑖)) (𝑖 = 1, 2, . . . , 𝑛) . (52)

The proof is similar to that of LIFPBM, so it is omitted here.

It is easy to prove that the LIFWPBM operator has the
character of boundedness; it is omitted here.

In the following, we will discuss some special cases of the
LIFWPBM operator about the parameters 𝑝 and 𝑞.
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(1) If 𝑞 = 0, then
LIFWPBM𝑝,0 (𝛾1, 𝛾2, . . . , 𝛾𝑛)

= (𝑠
𝑡[1−∏𝑛𝑖,𝑗=1
𝑖 ̸=𝑗

(1−(1−(1−𝛼𝑖/𝑡)
𝑢𝑖 )𝑝)
1/𝑛(𝑛−1)
]1/𝑝
,

𝑠𝑡−𝑡[1−(∏𝑛𝑖,𝑗=1
𝑖 ̸=𝑗

(1−(1−(𝛽𝑖/𝑡)
𝑢𝑖 )𝑝))1/𝑛(𝑛−1)]1/𝑝) .

(53)

(2) If 𝑝 = 1 and 𝑞 = 0, then
LIFWPBM1,0 (𝛾1, 𝛾2, . . . , 𝛾𝑛)

= (𝑠𝑡−𝑡∏𝑛𝑖,𝑗=1
𝑖 ̸=𝑗

(1−𝛼𝑖/𝑡)
𝑢𝑖/𝑛(𝑛−1) , 𝑠𝑡(∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(𝛽𝑖/𝑡)
𝑢𝑖 )1/𝑛(𝑛−1)) . (54)

(3) If 𝑝 = 1/2 and 𝑞 = 1/2, then
LIFWPBM1/2,1/2 (𝛾1, 𝛾2, . . . , 𝛾𝑛)

= (𝑠
𝑡−𝑡∏𝑛𝑖,𝑗=1
𝑖 ̸=𝑗

(1−(1−(1−𝛼𝑖/𝑡)
𝑢𝑖 )1/2(1−(1−𝛼𝑗/𝑡)

𝑢𝑗 )1/2)
1/𝑛(𝑛−1) ,

𝑠𝑡(∏𝑛𝑖,𝑗=1
𝑖 ̸=𝑗

(1−(1−(𝛽𝑖/𝑡)
𝑢𝑖 )1/2(1−(𝛽𝑗/𝑡)

𝑢𝑗 )1/2))1/𝑛(𝑛−1)).
(55)

(4) If 𝑝 = 1 and 𝑞 = 1, then
LIFWPBM (𝛾1, 𝛾2, . . . , 𝛾𝑛)

= (𝑠
𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(1−(1−(𝛼𝑖/𝑡))
𝑢𝑖 (1−(𝛼𝑗/𝑡))

𝑢𝑗 )
1/𝑛(𝑛−1)
]1/2
,

𝑠𝑡−𝑡[1−(∏𝑛𝑖,𝑗=1
𝑖 ̸=𝑗

(1−(1−(𝛽𝑖/𝑡)
𝑢𝑖 )(1−(𝛽𝑗/𝑡)

𝑢𝑗 )))1/𝑛(𝑛−1)]1/2).
(56)

3.2.2. The Linguistic Intuitionistic Fuzzy Geometric
Power BM Operator

Definition 25. Let 𝛾𝑖 = (𝑠𝛼𝑖 , 𝑠𝛼𝑗) (𝑖 = 1, 2, . . . , 𝑛) be a set of
LIFNs, and 𝑝, 𝑞 ≥ 0. If

LIFGPBM𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛)
= 1𝑝 + 𝑞 [[[

𝑛⊗
𝑖,𝑗=1
𝑖 ̸=j

(𝑝𝛾𝑖𝑛(1+𝑇(𝛾𝑖))/∑𝑛𝑡=1(1+𝑇(𝛾𝑡))

⊕ 𝑞𝛾𝑗𝑛(1+𝑇(𝛾𝑗))/∑𝑛𝑡=1(1+𝑇(𝛾𝑡)))1/𝑛(𝑛−1)]]]

(57)

then LIFGPBM𝑝,𝑞 is called the linguistic intuitionistic fuzzy
geometric power BM (LIFGPBM) operator.

Theorem 26. Let 𝛾𝑖 = (𝑠𝛼𝑖 , 𝑠𝛽𝑖) (𝑖 = 1, 2, . . . , 𝑛) be a set of
LIFNs, 𝑝, 𝑞 ≥ 0; then the aggregated result by Definition 25 is
still a LIFN and can be denoted by

𝐿𝐼𝐹𝐺𝑃𝐵𝑀𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛)
= 1𝑝 + 𝑞 [[[

𝑛⊗
𝑖,𝑗=1
𝑖 ̸=𝑗

(𝑝𝛾𝑖𝑛(1+𝑇(𝛾𝑖))/∑𝑛𝑡=1(1+𝑇(𝛾𝑡))

⊕ 𝑞𝛾𝑗𝑛(1+𝑇(𝛾𝑗))/∑𝑛𝑡=1(1+𝑇(𝛾𝑡)))1/𝑛(𝑛−1)]]]
= (𝑠𝑡−𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

[1−(1−(𝛼𝑖/𝑡)
𝑢𝑖 )𝑝(1−(𝛼𝑗/𝑡)

𝑢𝑗 )𝑞]1/𝑛(𝑛−1)]1/(𝑝+𝑞) ,
𝑠𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

[1−(1−(1−𝛽𝑖/𝑡)
𝑢𝑖 )𝑝(1−(1−𝛽𝑗/𝑡)

𝑢𝑗 )𝑞]1/𝑛(𝑛−1)]1/(𝑝+𝑞)) ,

(58)

where 𝑇(𝛾𝑖) = ∑𝑛𝑗=1,𝑖 ̸=𝑗 sup(𝛾𝑖, 𝛾𝑗) 𝑢𝑖 = 𝑛(1 + 𝑇(𝛾𝑖))/∑𝑛𝑡=1(1 +𝑇(𝛾𝑡)) (𝑖 = 1, 2, . . . , 𝑛).
Proof. By the operational laws of the LIFNs, we have

𝑝𝛾𝑢𝑖𝑖 ⊕ 𝑝𝛾𝑢𝑗𝑗 = (𝑠𝑡−𝑡(1−(𝛼𝑖/𝑡)𝑢𝑖 )𝑝(1−(𝛼𝑗/𝑡)𝑢𝑗 )𝑞 ,
𝑠𝑡(1−(1−𝛽𝑖/𝑡)𝑢𝑖 )𝑝(1−(1−𝛽𝑗/𝑡)𝑢𝑗 )𝑞) ,

(𝑝𝛾𝑢𝑖𝑖 ⊕ 𝑝𝛾𝑢𝑗𝑗 )1/𝑛(𝑛−1)
= (𝑠(𝑡−𝑡(1−(𝛼𝑖/𝑡)𝑢𝑖 )𝑝(1−(𝛼𝑗/𝑡)𝑢𝑗 )𝑞)1/𝑛(𝑛−1) ,
𝑠𝑡−𝑡(1−(1−(1−𝛽𝑖/𝑡)𝑢𝑖 )𝑝(1−(1−𝛽𝑗/𝑡)𝑢𝑗 )𝑞)1/𝑛(𝑛−1)) ,

(59)

then

𝑛⊗
𝑖,𝑗=1

(𝑝𝛾𝑢𝑖𝑖 ⊕ 𝑝𝛾𝑢𝑗𝑗 )1/𝑛(𝑛−1)
= (𝑠𝑡∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(1−(1−(𝛼𝑖/𝑡)
𝑢𝑖 )𝑝(1−(𝛼𝑗/𝑡)

𝑢𝑗 )𝑞)1/𝑛(𝑛−1) ,
𝑠𝑡(1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

(1−(1−𝛽𝑖/𝑡)
𝑢𝑖 )𝑝(1−(1−𝛽𝑗/𝑡)

𝑢𝑗 )𝑞)1/𝑛(𝑛−1))
(60)
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and as a result

1𝑝 + 𝑞 [[[
𝑛⊗
𝑖,𝑗=1
𝑖 ̸=𝑗

(𝑝𝛾𝑖𝑛(1+𝑇(𝛾𝑖))/∑𝑛𝑡=1(1+𝑇(𝛾𝑡))

⊕ 𝑞𝛾𝑗𝑛(1+𝑇(𝛾𝑗))/∑𝑛𝑡=1(1+𝑇(𝛾𝑡)))1/𝑛(𝑛−1)]]]
= (𝑠𝑡−𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

[1−(1−(𝛼𝑖/𝑡)
𝑢𝑖 )𝑝(1−(𝛼𝑗/𝑡)

𝑢𝑗 )𝑞]1/𝑛(𝑛−1)]1/(𝑝+𝑞) ,
𝑠𝑡[1−∏n

𝑖,𝑗=1
𝑖 ̸=𝑗

[1−(1−(1−𝛽𝑖/𝑡)
𝑢𝑖 )𝑝(1−(1−𝛽𝑗/𝑡)

𝑢𝑗 )𝑞]1/𝑛(𝑛−1)]1/(𝑝+𝑞))

(61)

so the theorem is proved.

Theorem 27 (idempotency). Let 𝛾𝑖 = (𝑠𝛼𝑖 , 𝑠𝛼𝑗) (𝑖 =1, 2, . . . , 𝑛) be a set of LIFNs, and 𝑝, 𝑞 ≥ 0; if for all 𝑖, 𝛾𝑖 =𝛾 = (𝑠𝛼, 𝑠𝛽), then 𝐿𝐼𝐹𝐺𝑃𝐵𝑀𝑝,𝑞(𝛾1, 𝛾2, . . . , 𝛾𝑛) = 𝛾.
Proof. Since for all 𝑖, 𝛾𝑖 = 𝛾 = (𝑠𝛼, 𝑠𝛽), then we have

𝑢𝑖 = 𝑛 (1 + 𝑇 (𝛾))∑𝑛𝑡=1 (1 + 𝑇 (𝛾)) = 1. (62)

So

LIFGPBM𝑝,𝑞 (𝛾, 𝛾, . . . , 𝛾)
= (𝑠𝑡−𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

[1−(1−(𝛼/𝑡)1)𝑝(1−(𝛼/𝑡)1)𝑞]1/𝑛(𝑛−1)]1/(𝑝+𝑞) ,
𝑠𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

[1−(1−(1−𝛽/𝑡)1)𝑝(1−(1−𝛽/𝑡)1)𝑞]1/𝑛(𝑛−1)]1/(𝑝+𝑞))
= (𝑠𝑡−𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

[1−(1−𝛼/𝑡)𝑝+𝑞]1/𝑛(𝑛−1)]1/(𝑝+𝑞) ,
𝑠𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

[1−(𝛽/𝑡)𝑝+𝑞]1/𝑛(𝑛−1)]1/(𝑝+𝑞))
= (𝑠𝑡−𝑡[(1−𝛼/𝑡)𝑝+𝑞]1/(𝑝+𝑞) , 𝑠𝑡[(𝛽/𝑡)𝑝+𝑞]1/(𝑝+𝑞))
= (𝑠𝑡−𝑡(1−𝛼/𝑡) , 𝑠𝑡(𝛽/𝑡)) = (𝑠𝛼 , 𝑠𝛽) = 𝛾

(63)

so this theorem is proved.

Theorem 28 (permutation). If (𝛾1, 𝛾2, . . . , 𝛾𝑛) is any permuta-
tion of (𝛾1, 𝛾2, . . . , 𝛾𝑛), 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛) is the weight vector
of 𝛾𝑖 (𝑖 = 1, 2, . . . , 𝑛); then one can get

𝐿𝐼𝐹𝐺𝑃𝐵𝑀𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛)= 𝐿𝐼𝐹𝐺𝑃𝐵𝑀𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛) . (64)

Proof. According to Theorem 26 and Definition 25, we can
get

1𝑝 + 𝑞 [[[
𝑛⊗
𝑖,𝑗=1
𝑖 ̸=𝑗

(𝑝𝛾𝑖 𝜔𝑖 𝑛(1+𝑇(𝛾𝑖 ))/∑𝑛𝑡=1 𝜔𝑡 (1+𝑇(𝛾𝑡 ))

⊕ 𝑞𝛾𝑗𝜔𝑗𝑛(1+𝑇(𝛾𝑗))/∑𝑛𝑡=1 𝜔𝑡 (1+𝑇(𝛾𝑡 )))1/𝑛(𝑛−1)]]]
= 1𝑝 + 𝑞 [[[

𝑛⊗
𝑖,𝑗=1
𝑖 ̸=𝑗

(𝑝𝛾𝑖𝜔𝑖𝑛(1+𝑇(𝛾𝑖))/∑𝑛𝑡=1 𝜔𝑡(1+𝑇(𝛾𝑡))

⊕ 𝑞𝛾𝑗𝜔𝑗𝑛(1+𝑇(𝛾𝑗))/∑𝑛𝑡=1 𝜔𝑡(1+𝑇(𝛾𝑡)))1/𝑛(𝑛−1)]]]

(65)

so LIFGPBM𝑝,𝑞(𝛾1, 𝛾2, . . . , 𝛾𝑛) = LIFGPBM𝑝,𝑞(𝛾1, 𝛾2, . . . , 𝛾𝑛)
which ends the proof of this theorem.

Theorem 29 (boundedness). Let 𝛾𝑖 (𝑖 = 1, 2, . . . , 𝑛) be a
collection of LIFNs, �̃� = min(𝛾1, 𝛾2, . . . , 𝛾𝑛) = (𝑠�̃�, 𝑠�̃�), �̂� =
max(𝛾1, 𝛾2, . . . , 𝛾𝑛) = (𝑠�̂�, 𝑠�̂�), and the 𝐿𝐼𝐹𝑃𝐵𝑀𝑝,𝑞 operator lies
at

�̃� ≤ 𝐿𝐼𝐹𝐺𝑃𝐵𝑀𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛) ≤ �̂�, (66)

where

�̃� = (𝑠𝑡−𝑡[1−∏𝑛𝑖,𝑗=1
𝑖 ̸=𝑗

[1−(1−(�̃�/𝑡)𝑢𝑖 )𝑝(1−(�̃�/𝑡)𝑢𝑗 )𝑞]1/𝑛(𝑛−1)]1/(𝑝+𝑞) ,
𝑠𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

[1−(1−(1−�̃�/𝑡)𝑢𝑖 )𝑝(1−(1−�̃�/𝑡)𝑢𝑗 )𝑞]1/𝑛(𝑛−1)]1/(𝑝+𝑞))
�̂� = (𝑠𝑡−𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

[1−(1−(�̂�/𝑡)𝑢𝑖 )𝑝(1−(�̂�/𝑡)𝑢𝑗 )𝑞]1/𝑛(𝑛−1)]1/(𝑝+𝑞) ,
𝑠𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

[1−(1−(1−�̂�/𝑡)𝑢𝑖 )𝑝(1−(1−�̂�/𝑡)𝑢𝑗 )𝑞]1/𝑛(𝑛−1)]1/(𝑝+𝑞))
𝑢𝑖 = 𝑛 (1 + 𝑇 (𝛾𝑖))∑𝑛𝑡 (1 + 𝑇 (𝛾𝑡)) .

(67)

Proof. Since 1 − (�̃�/𝑡)𝑢𝑖 ≥ 1 − (𝛼𝑖/𝑡)𝑢𝑖 ,
1 − (1 − (�̃�𝑡 )𝑢𝑖)𝑝 (1 − (�̃�𝑡 )𝑢𝑗)𝑞

≤ 1 − (1 − (𝛼𝑖𝑡 )𝑢𝑖)𝑝 (1 − (𝛼𝑗𝑡 )𝑢𝑗)𝑞
(68)
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and then

1 − 𝑛∏
𝑖,𝑗=1
𝑖 ̸=𝑗

[1 − (1 − (�̂�𝑡 )𝑢𝑖)𝑝 (1 − (�̂�𝑡 )𝑢𝑗)𝑞]
1/𝑛(𝑛−1)

≥ 1 − 𝑛∏
𝑖,𝑗=1
𝑖 ̸=𝑗

[1
− (1 − (𝛼𝑖𝑡 )𝑢𝑖)𝑝 (1 − (𝛼𝑗𝑡 )𝑢𝑗)𝑞]1/𝑛(𝑛−1) .

(69)

Further, we have

𝑡 − 𝑡 [[[[
1 − 𝑛∏
𝑖,𝑗=1
𝑖 ̸=𝑗

[1

− (1 − (�̂�𝑡 )𝑢𝑖)𝑝 (1 − (�̂�𝑡 )𝑢𝑗)𝑞]
1/𝑛(𝑛−1)]]]]

1/(𝑝+𝑞)

≤ 𝑡 − 𝑡[[[[
1 − 𝑛∏
𝑖,𝑗=1
𝑖 ̸=𝑗

[1

− (1 − (𝛼𝑖𝑡 )𝑢𝑖)𝑝 (1 − (𝛼𝑗𝑡 )𝑢𝑗)𝑞]1/𝑛(𝑛−1)]]]]
1/(𝑝+𝑞)

.

(70)

Similarly, we have

𝑡 [[[[
1 − 𝑛∏
𝑖,𝑗=1
𝑖 ̸=𝑗

[[1 − (1 − (1 −
�̃�𝑡 )
𝑢𝑖)𝑝

⋅ (1 − (1 − �̃�𝑡 )
𝑢𝑗)𝑞]]

1/𝑛(𝑛−1)]]]]
1/(𝑝+𝑞)

≤ 𝑡[[[[
1

− 𝑛∏
𝑖,𝑗=1
𝑖 ̸=𝑗

[1 − (1 − (1 − 𝛽𝑖𝑡 )𝑢𝑖)𝑝

⋅ (1 − (1 − 𝛽𝑗𝑡 )
𝑢𝑗)𝑞]1/𝑛(𝑛−1)]]]]

1/(𝑝+𝑞)

.

(71)

Finally, we have

�̃� ≤ LIFGPBM𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛) . (72)

In the same way, we can get

LIFGPBM𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛) ≤ �̂�. (73)

So this theorem is proved.

In the LIFGPBM operator, we think all arguments have
the same importance. In order to consider the different
weights of input arguments, the linguistic intuitionistic fuzzy
weighted geometric power BM (LIFWGPBM) operator can
be defined as follows.

Definition 30. Let 𝛾𝑖 = (𝑠𝛼𝑖 , 𝑠𝛽𝑖) (𝑖 = 1, 2, . . . , 𝑛) be a set of
LIFNs, and 𝑝, 𝑞 ≥ 0; 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛) is the associated
weight of 𝛾𝑖. If

LIFWGPBM𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛)
= 1𝑝 + 𝑞 [[[

𝑛⊗
𝑖,𝑗=1
𝑖 ̸=𝑗

(𝑝𝛾𝑖𝜔𝑖𝑛(1+𝑇(𝛾𝑖))/∑𝑛𝑡=1 𝜔𝑡(1+𝑇(𝛾𝑡))

⊕ 𝑞𝛾𝑗𝜔𝑗𝑛(1+𝑇(𝛾𝑗))/∑𝑛𝑡=1 𝜔𝑡(1+𝑇(𝛾𝑡)))1/𝑛(𝑛−1)]]]

(74)

then LIFWGPBM𝑝,𝑞 is called the linguistic intuitionistic
fuzzy weighted geometric power BM operator.

Theorem 31. Let 𝛾𝑖 = (𝑠𝛼𝑖 , 𝑠𝛽𝑖) (𝑖 = 1, 2, . . . , 𝑛) be a set of
LIFNs, 𝑝, 𝑞 ≥ 0, and 𝐿𝐼𝐹𝑁𝑠𝑛 → 𝐿𝐼𝐹𝑁𝑠. Then the aggregated
result according to Definition 30 is still a LIFN, and it can be
denoted by

𝐿𝐼𝐹𝑊𝐺𝑃𝐵𝑀𝑝,𝑞 (𝛾1, 𝛾2, . . . , 𝛾𝑛)
= (𝑠𝑡−𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

[1−(1−(𝛼𝑖/𝑡)
𝑢𝑖 )𝑝(1−(𝛼𝑗/𝑡)

𝑢𝑗 )𝑞]1/𝑛(𝑛−1)]1/(𝑝+𝑞) ,
𝑠𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

[1−(1−(1−𝛽𝑖/𝑡)
𝑢𝑖 )𝑝(1−(1−𝛽𝑗/𝑡)

𝑢𝑗 )𝑞]1/𝑛(𝑛−1)]1/(𝑝+𝑞)) ,
(75)

where 𝑇(𝛾𝑖) = ∑𝑛𝑗=1,𝑖 ̸=𝑗 sup(𝛾𝑖, 𝛾𝑗), 𝑢𝑖 = 𝜔𝑖𝑛(1 + 𝑇(𝛾𝑖))/∑𝑛𝑡=1 𝜔𝑡(1 + 𝑇(𝛾𝑡)) (𝑖 = 1, 2, . . . , 𝑛).
The LIFWGPBM operator still has the character of bound-

edness; it is omitted here.

Next we will discuss some special cases of the
LIFWGPBM operator about different parameters 𝑝 and𝑞.

(1) If 𝑞 = 0, then
LIFWGPBM𝑝,0 (𝛾1, 𝛾2, . . . , 𝛾𝑛)= (𝑠𝑡−𝑡[1−∏𝑛𝑖 [1−(1−(𝛼𝑖/𝑡)𝑢𝑖 )𝑝]1/𝑛(𝑛−1)]1/𝑝 ,𝑠𝑡[1−∏𝑛𝑖 [1−(1−(1−𝛽𝑖/𝑡)𝑢𝑖 )𝑝]1/𝑛(𝑛−1)]1/𝑝) .

(76)
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(2) If 𝑝 = 1 and 𝑞 = 0, then
LIFWGPBM1,0 (𝛾1, 𝛾2, . . . , 𝛾𝑛)= (𝑠𝑡∏𝑛𝑖 (𝛼𝑖/𝑡)𝑢𝑖/𝑛(𝑛−1) , 𝑠𝑡−𝑡∏𝑛𝑖 (1−𝛽𝑖/𝑡)𝑢𝑖/𝑛(𝑛−1)) . (77)

(3) If 𝑝 = 1/2 and 𝑞 = 1/2, then
LIFWGPBM1/2,1/2 (𝛾1, 𝛾2, . . . , 𝛾𝑛)

= (𝑠𝑡−𝑡[1−∏𝑛𝑖,𝑗=1
𝑖 ̸=𝑗

[1−(1−(𝛼𝑖/𝑡)
𝑢𝑖 )1/2(1−(𝛼𝑗/𝑡)

𝑢𝑗 )1/2]1/𝑛(𝑛−1)] ,
𝑠𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

[1−(1−(1−𝛽𝑖/𝑡)
𝑢𝑖 )1/2(1−(1−𝛽𝑗/𝑡)

𝑢𝑗 )1/2]1/𝑛(𝑛−1)]) .
(78)

(4) If 𝑝 = 1 and 𝑞 = 1, then
LIFWGPBM1,1 (𝛾1, 𝛾2, . . . , 𝛾𝑛)

= (𝑠𝑡−𝑡[1−∏𝑛𝑖,𝑗=1
𝑖 ̸=𝑗

[1−(1−(𝛼𝑖/𝑡)
𝑢𝑖 )(1−(𝛼𝑗/𝑡)

𝑢𝑗 )]1/𝑛(𝑛−1)]1/2 ,
𝑠𝑡[1−∏𝑛𝑖,𝑗=1

𝑖 ̸=𝑗

[1−(1−(1−𝛽𝑖/𝑡)
𝑢𝑖 )(1−(1−𝛽𝑗/𝑡)

𝑢𝑗 )]1/𝑛(𝑛−1)]1/2) .
(79)

4. The MAGDM Method Based on LIFNs

This section proposes one method to cope with MAGDM
problems with LIFNs by the LIFWGPBM operator and the
LIFWPBM operator.

For a MAGDM problem with LIFNs, let 𝑋 = {𝑥1,𝑥2, . . . , 𝑥𝑚} be the collection of alternatives, 𝐴 = {𝑎1, 𝑎2,. . . , 𝑎𝑛} be a discrete set of 𝑛 attributes, and 𝐷 = {𝑑1, 𝑑2,. . . , 𝑑𝑡} be a set of 𝑡 decision makers, and expert 𝑑𝑘 provides
his/her assessment information of an alternative 𝑥𝑖 on an
attribute 𝑎𝑗 as a LIFN 𝛾𝑘𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛)
according to a given linguistic term set 𝑆. In consequence,
the decision matrices can be expressed as 𝑅𝑘 = (𝛾𝑘𝑖𝑗)𝑚×𝑛 (𝑘 =1, 2, . . . , 𝑡). Suppose that 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛)𝑇 is the weight
vector of attributes with 𝜔𝑗 ≥ 0, ∑𝑛𝑗=1 𝜔𝑗 = 1 and 𝑤 =(𝑤1, 𝑤2, . . . , 𝑤𝑡)𝑇 is the weight vector of decisionmakers such
that 𝑤𝑗 ≥ 0, ∑𝑡𝑗=1 𝑤𝑗 = 1. The aim of this MAGDM problem
is to select the most desirable alternative based on above
information.

The approach based on the proposed operators can be
given as follows.

Step 1. Calculate 𝑇(𝛾𝑘𝑖𝑗) and weight vector of each decision
maker 𝑢𝑘𝑖𝑗.
Step 2. Aggregate all individual decision matrices 𝑅𝑘 =(𝛾𝑘𝑖𝑗)𝑚×𝑛 (𝑘 = 1, 2, . . . , 𝑡) into a collective decision matrix 𝑅 =

(𝛾𝑖𝑗)𝑚×𝑛 on the basis of LIFWGPBM operator or LIFWPBM
operator; that is,

𝛾𝑖𝑗 = LIFWGPBM𝑝,𝑞 (𝛾1𝑖𝑗, 𝛾2𝑖𝑗, . . . , 𝛾𝑡𝑖𝑗)
or 𝛾𝑖𝑗 = LIFWPBM𝑝,𝑞 (𝛾1𝑖𝑗, 𝛾2𝑖𝑗, . . . , 𝛾𝑡𝑖𝑗) . (80)

Step 3. Calculate𝑇(𝛾𝑖𝑗) andweight vector𝑢𝑖𝑗 according to𝑅 =(𝛾𝑖𝑗)𝑚×𝑛 obtained in Step 2.
Step 4. Derive the collective overall linguistic intuitionistic
fuzzy value 𝛾𝑖 of the alternative 𝑥𝑖 (𝑖 = 1, 2, 3, 4) based on the
LIFWGPBM operator or LIFWPBM operator; that is,

𝛾𝑖 = LIFWGPBM𝑝,𝑞 (𝛾𝑖1, 𝛾𝑖2, . . . , 𝛾𝑖𝑛)
or 𝛾𝑖 = LIFWPBM𝑝,𝑞 (𝛾𝑖1, 𝛾𝑖2, . . . , 𝛾𝑖𝑛) . (81)

Step 5. By using (21), we can figure out the score function𝐿𝑠(𝛾𝑖) as well as the accuracy function 𝐿ℎ(𝛾𝑖) of the LIFN𝛾𝑖 (𝑖 = 1, 2, 3, 4).
Step 6. Rank all the alternatives {𝑥1, 𝑥2, 𝑥3, 𝑥4} by values𝐿𝑠(𝛾𝑖) and 𝐿ℎ(𝛾𝑖) in descending order, and then the most
desirable alternative is obtained.

5. A Numerical Example

In this section, a numerical example of seeking for the best
global supplier [13] is used to illustrate the proposed method
to the MAGDM problem with the LIFNs.

A manufacturing company plans to search for the best
global supplier to buy one of its most core products used
in assembling process. Suppose that 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}
is the set of four potential global suppliers, and 𝐴 ={𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5} is a set of attributes whose weight vector
is 𝑤 = (0.25, 0.2, 0.15, 0.18, 0.22). Those attributes are 𝑎1:
overall production cost; 𝑎2: production quality; 𝑎3: supplier’s
service performance; 𝑎4: supplier’s profile; 𝑎5: supplier’s risk.
Four alternatives 𝑥𝑖 (𝑖 = 1, . . . , 4) are evaluated by a
predefined linguistic term set: 𝑆 = {𝑠0 = extremely poor,𝑠1 = very poor, 𝑠2 = poor, 𝑠3 = slightly poor, 𝑠4 = fair,𝑠5 = slightly good, 𝑠6 = good, 𝑠7 = very good, 𝑠8 =
extermely good} by four decision makers 𝑑𝑘 (𝑘 = 1, . . . , 4)
under the above five attributes, and the weight vector of
decision makers is 𝜔 = (0.25, 0.3, 0.2, 0.25)𝑇. The decision
matrices 𝑅𝑘 = (𝛾𝑘𝑖𝑗)4×5 (𝑘 = 1, 2, 3, 4) are listed in Table 1,
respectively.

5.1. Evaluation Steps by the LIFWGPBM Operator

Step 1. Calculate 𝑇(𝛾𝑘𝑖𝑗) and weight vector of each decision
maker 𝑢𝑘𝑖𝑗; we can get the results shown in Tables 2 and 3.

Step 2. Aggregate all individual decision matrices 𝑅𝑘 =(𝛾𝑘𝑖𝑗)𝑚×𝑛 (𝑘 = 1, 2, . . . , 𝑡) into a collective decision matrix 𝑅 =(𝛾𝑖𝑗)𝑚×𝑛 on the basis of LIFWGPBM operator proposed in
Definition 25, and we can get the results shown in Table 4.
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Table 1: Decision matrix 𝑅𝑖 (𝑖 = 1, 2, 3, 4).𝑅1 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5𝑥1 (𝑠7, 𝑠1) (𝑠6, 𝑠2) (𝑠4, 𝑠3) (𝑠7, 𝑠1) (𝑠5, 𝑠2)𝑥2 (𝑠6, 𝑠2) (𝑠5, 𝑠2) (𝑠6, 𝑠1) (𝑠6, 𝑠2) (𝑠7, 𝑠1)𝑥3 (𝑠6, 𝑠1) (𝑠5, 𝑠3) (𝑠7, 𝑠1) (𝑠5, 𝑠1) (𝑠3, 𝑠4)𝑥4 (𝑠5, 𝑠2) (𝑠7, 𝑠1) (𝑠4, 𝑠3) (𝑠6, 𝑠1) (𝑠4, 𝑠4)𝑅2 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5𝑥1 (𝑠7, 𝑠1) (𝑠4, 𝑠4) (𝑠6, 𝑠2) (𝑠5, 𝑠2) (𝑠3, 𝑠5)𝑥2 (𝑠7, 𝑠1) (𝑠5, 𝑠1) (𝑠6, 𝑠1) (𝑠5, 𝑠2) (𝑠4, 𝑠3)𝑥3 (𝑠5, 𝑠2) (𝑠6, 𝑠1) (𝑠7, 𝑠1) (𝑠5, 𝑠3) (𝑠4, 𝑠4)𝑥4 (𝑠6, 𝑠2) (𝑠4, 𝑠3) (𝑠5, 𝑠2) (𝑠7, 𝑠1) (𝑠5, 𝑠3)𝑅3 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5𝑥1 (𝑠6, 𝑠1) (𝑠5, 𝑠2) (𝑠3, 𝑠4) (𝑠7, 𝑠1) (𝑠5, 𝑠2)𝑥2 (𝑠7, 𝑠1) (𝑠6, 𝑠2) (𝑠7, 𝑠1) (𝑠6, 𝑠2) (𝑠5, 𝑠1)𝑥3 (𝑠6, 𝑠1) (𝑠5, 𝑠3) (𝑠7, 𝑠1) (𝑠5, 𝑠1) (𝑠3, 𝑠4)𝑥4 (𝑠5, 𝑠2) (𝑠7, 𝑠1) (𝑠4, 𝑠3) (𝑠6, 𝑠1) (𝑠4, 𝑠4)𝑅4 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5𝑥1 (𝑠5, 𝑠3) (𝑠4, 𝑠4) (𝑠7, 𝑠1) (𝑠5, 𝑠1) (𝑠4, 𝑠2)𝑥2 (𝑠6, 𝑠1) (𝑠7, 𝑠1) (𝑠6, 𝑠1) (𝑠5, 𝑠2) (𝑠6, 𝑠1)𝑥3 (𝑠5, 𝑠2) (𝑠3, 𝑠4) (𝑠6, 𝑠2) (𝑠3, 𝑠3) (𝑠5, 𝑠2)𝑥4 (𝑠4, 𝑠3) (𝑠5, 𝑠1) (𝑠4, 𝑠2) (𝑠6, 𝑠2) (𝑠5, 𝑠2)

Table 2: 𝑇(𝛾𝑘𝑖𝑗) of different decision maker.

𝑇 (𝛾1𝑖𝑗) 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5𝑥1 2.688 2.438 2.375 2.688 2.625𝑥2 2.688 2.688 2.938 2.875 2.5𝑥3 2.563 2.563 2.813 2.438 2.5𝑥4 2.75 2.563 2.625 2.75 2.563𝑇 (𝛾2𝑖𝑗) 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5𝑥1 2.688 2.563 2.375 2.563 2.125𝑥2 2.813 2.688 2.938 2.875 2.25𝑥3 2.813 2.313 2.813 2.688 2.5𝑥4 2.75 2.188 2.75 2.625 2.813𝑇 (𝛾3𝑖𝑗) 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5𝑥1 2.688 2.563 2.125 2.688 2.625𝑥2 2.813 2.688 2.813 2.875 2.625𝑥3 2.688 2.563 2.813 2.688 2.375𝑥4 2.75 2.563 2.625 2.625 2.813𝑇 (𝛾4𝑖𝑗) 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5𝑥1 2.313 2.563 2.125 2.688 2.625𝑥2 2.813 2.563 2.938 2.875 2.625𝑥3 2.813 2.188 2.688 2.563 2.375𝑥4 2.5 2.563 2.75 2.75 2.688
Step 3. Calculate 𝑇(𝛾𝑖𝑗) and weight vector 𝑢𝑖𝑗, and we can get
the results shown in Tables 5 and 6.

Table 3: Weight vector 𝑢𝑘𝑖𝑗 of each decision maker.

𝑢1𝑖𝑗 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5𝑥1 1.026 0.973 1.034 1.01 1.043𝑥2 0.975 1.009 1.006 1 1.005𝑥3 0.956 1.05 1.008 0.957 1.016𝑥4 1.017 1.033 0.981 1.017 0.958𝑢2𝑖𝑗 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5𝑥1 1.231 1.168 1.241 1.212 1.252𝑥2 1.17 1.21 1.208 1.2 1.206𝑥3 1.148 2.26 1.21 1.148 1.22𝑥4 1.22 1.239 1.178 1.22 1.15𝑢3𝑖𝑗 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5𝑥1 0.821 0.779 0.828 0.808 0.835𝑥2 0.78 0.807 0.805 0.8 0.804𝑥3 0.765 0.84 0.807 0.765 0.813𝑥4 0.814 0.826 0.785 0.814 0.766𝑢4𝑖𝑗 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5𝑥1 1.026 0.973 1.034 1.01 1.043𝑥2 0.975 1.009 1.006 1 1.005𝑥3 0.956 1.05 1.008 0.957 1.016𝑥4 1.017 1.033 0.981 1.017 0.958
Table 4: Integrated decision matrix 𝑅 = (𝛾𝑖𝑗)𝑚×𝑛.
𝑎1 𝑎2 𝑎3 𝑎4 𝑎5𝑥1 (𝑠7.63, 𝑠5.32) (𝑠6.72, 𝑠2.91) (𝑠7.08, 𝑠4.14) (𝑠7.48, 𝑠5.77) (𝑠6.11, 𝑠3.63)𝑥2 (𝑠7.72, 𝑠5.59) (𝑠7.4, 𝑠5.4) (𝑠7.58, 𝑠6.13) (𝑠7.19, 𝑠4.49) (𝑠7.27, 𝑠5.41)𝑥3 (𝑠7.13, 𝑠4.46) (𝑠6.57, 𝑠3.83) (𝑠7.73, 𝑠5.66) (𝑠6.35, 𝑠3.65) (𝑠5.8, 𝑠3.52)𝑥4 (𝑠6.98, 𝑠4.14) (𝑠7.34, 𝑠5.51) (𝑠6.47, 𝑠4.42) (𝑠7.54, 𝑠5.35) (𝑠6.76, 𝑠3.01)

Table 5: 𝑇(𝛾𝑖𝑗) under every attribute.
𝑇𝑖𝑗 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5𝑥1 3.446 3.383 3.572 3.389 3.403𝑥2 3.782 3.828 3.708 3.642 3.823𝑥3 3.572 3.646 3.232 3.621 3.494𝑥4 3.646 3.552 3.595 3.545 3.42

Table 6: Weight vector 𝑢𝑖𝑗 of each attribute.

𝑢𝑖𝑗 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5𝑥1 1.234 1.012 0.77 0.892 1.091𝑥2 1.239 1.013 0.747 0.888 1.112𝑥3 1.266 1.027 0.703 0.922 1.081𝑥4 1.268 1.005 0.751 0.893 1.083
Step 4. Derive the collective overall linguistic intuitionistic
fuzzy value 𝛾𝑖 of the alternative 𝑥𝑖 (𝑖 = 1, 2, 3, 4) based on the
LIFWGPBM operator, and get

𝛾𝑖 = (𝑠4.613, 𝑠2.712) (𝑠5.39, 𝑠1.803) (𝑠4.139, 𝑠2.749)(𝑠4.621, 𝑠2.555) . (82)



Complexity 13

Step 5. Calculate the score function 𝐿𝑠(𝛾𝑖) and accuracy
function 𝐿ℎ(𝛾𝑖) of the LIFN 𝛾𝑖 (𝑖 = 1, 2, 3, 4), and we have𝐿𝑠 (𝛾𝑖) = 1.901 3.587 1.391 2.066𝐿ℎ (𝛾𝑖) = 7.326 7.193 6.888 7.176. (83)

Step 6. Rank all the alternatives {𝑥1, 𝑥2, 𝑥3, 𝑥4} by values𝐿𝑠(𝛾𝑖) and 𝐿ℎ(𝛾𝑖) in descending order, and then we can get
the ranking results as follows:𝑥2 ≻ 𝑥4 ≻ 𝑥1 ≻ 𝑥3. (84)

So the best choice is alternative 2.

5.2. Evaluation Steps by the LIFWPBM Operator. We use the
LIFWPBM operator to solve this example; there are the same
steps as Section 5.1, and we can get𝛾𝑖 = (𝑠6.253, 𝑠1.214) (𝑠6.801, 𝑠0.672) (𝑠5.896, 𝑠1.296)(𝑠6.208, 𝑠1.133) . (85)

Then, the score function 𝐿𝑠(𝛾𝑖) and the accuracy function𝐿ℎ(𝛾𝑖) are 𝐿𝑠 (𝛾𝑖) = 5.039 6.129 4.6 5.075𝐿ℎ (𝛾𝑖) = 7.467 7.472 7.192 7.341. (86)

So, we can get the ranking results as follows:𝑥2 ≻ 𝑥4 ≻ 𝑥1 ≻ 𝑥3. (87)

The result reveals that those two operators have the same
ranking results, and the best alternative is 𝑥2.
5.3. Analyze the Effect of Factors 𝑝, 𝑞. In this part, in order to
analyze the influence of parameters 𝑝, 𝑞 on decision making
results, we input different values 𝑝 and 𝑞 in LIFWGPBM
operator to check if the ranking will have a difference. Since𝑝
and 𝑞 are interconvertibility, we only discuss 𝑝 = 1, 𝑞 = 0; the
condition of 𝑝 = 0, 𝑞 = 1 is omitted and similarly for others.
The ordering results are shown in Table 7.

From the results in Table 7, we can conclude:

(1) Whatever values of 𝑝 and 𝑞 are, the best choice is
always 𝑥2.

(2) Different parameters 𝑝 and 𝑞will influence the orders
of alternatives. So decisionmakers can select different
values 𝑝 and 𝑞 according to their interest to obtain a
different optimal alternative. In practical applications,
we may use the parameters 𝑝 = 𝑞 = 1, which is not
only easy and intuitive but also a full capture to the
correlations between criteria.

5.4. Compare with the Exiting Method. Chen et al. [13]
proposed linguistic intuitionistic fuzzy weighted averaging
(LIFWA) operator; we can use it to deal with this example.

The LIFWA operator is expressed by

LIFWA𝜔 (𝛾1, 𝛾2, . . . , 𝛾𝑛) = 𝜔1𝛾1 ⊕ 𝜔2𝛾2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝜔𝑛𝛾𝑛, (88)

where 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛)𝑇 is the weight vector of 𝛾𝑖 (𝑖 =1, 2, . . . , 𝑛) satisfying 0 ≤ 𝜔𝑖 ≤ 1 and ∑𝑛𝑖=1 𝜔𝑖 = 1.
So we can get the aggregated LIFN 𝛾𝑖 (𝑖 = 1, 2, 3, 4) as

follows: 𝛾1 = (𝑠5.61, 𝑠1.921) ,𝛾2 = (𝑠6.092, 𝑠1.31) ,𝛾3 = (𝑠5.082, 𝑠2.004) ,𝛾4 = (𝑠5.372, 𝑠1.92) .
(89)

Then we can get the score function 𝐿𝑠(𝛾𝑖) as follows:𝐿𝑠 (𝛾1) = 3.689,𝐿𝑠 (𝛾2) = 4.782,𝐿𝑠 (𝛾3) = 3.078,𝐿𝑠 (𝛾4) = 3.452.
(90)

So the ranking is 𝑥2 ≻ 𝑥1 ≻ 𝑥4 ≻ 𝑥3. (91)

Obviously, these methods produce the same best alter-
native. However, the ranking is a little different. The reason
causing this differencemaybe is that (1) the proposedmethod
in this paper considered the power weight which can relieve
the influence of unreasonable big or small data, or (2) the pro-
posed method in this paper considered the interrelationship
of individual input arguments. So the results produced by the
proposedmethod in this paper are more reasonable than that
by Chen et al. [13].

6. Conclusion

The LIFNs, in which membership degree and the nonmem-
bership degree were expressed by linguistic terms, can better
express fuzzy evaluation information. In this paper, we firstly
introduce the concept of the LIFNs. In addition, as we all
know, the Bonferroni mean operator takes the relationship
between attribute values into consideration, and the power
operator has the advantage of relieving the effect of too
great or too little data by power weighting vectors produced
from input arguments. So we innovatively combine these
two operators and extend them to the LIFNs and proposed
some linguistic intuitionistic fuzzy power Bonferroni mean
operators as a new tool to process linguistic intuitionistic
fuzzy information. Afterwards, we proposed an approach
on the base of newly developed LIFWPBM operator and
LIFWGPBM operator. Finally, a numerical example is given
to reveal the practicability of this new method. The signifi-
cance of the paper is that we combine the power operator and
the BM operator to cope with the MAGDM problems under
the circumstance of LIFNs, and the developed method can
relieve the effect of too great or too little data and considered
the relationship between attributes. For further research,
other aggregation operators can be applied to combine with
linguistic intuitionistic fuzzy numbers to obtain the best
alternative.
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Table 7: Ranking according to different values of 𝑝, 𝑞.
𝑝, 𝑞 𝐿𝑠 Ranking

𝑝 = 0, 𝑞 = 0.1 𝐿𝑠 (𝛾1) = −4.315 𝐿𝑠 (𝛾2) = −2.712𝐿𝑠 (𝛾3) = −4.544 𝐿𝑠 (𝛾4) = −4.096 𝑥2 ≻ 𝑥4 ≻ 𝑥1 ≻ 𝑥3
𝑝 = 1, 𝑞 = 0 𝐿𝑠 (𝛾1) = 0.097 𝐿𝑠 (𝛾2) = 2.353𝐿𝑠 (𝛾3) = −0.238 𝐿𝑠 (𝛾4) = 0.581 𝑥2 ≻ 𝑥4 ≻ 𝑥1 ≻ 𝑥3
𝑝 = 1, 𝑞 = 6 𝐿𝑠 (𝛾1) = 0.6 𝐿𝑠 (𝛾2) = 2.91𝐿𝑠 (𝛾3) = 0.643 𝐿𝑠 (𝛾4) = 1.519 𝑥2 ≻ 𝑥4 ≻ 𝑥3 ≻ 𝑥1
𝑝 = 2, 𝑞 = 0 𝐿𝑠 (𝛾1) = 0.537 𝐿𝑠 (𝛾2) = 2.865𝐿𝑠 (𝛾3) = 0.327 𝐿𝑠 (𝛾4) = 1.218 𝑥2 ≻ 𝑥4 ≻ 𝑥1 ≻ 𝑥3
𝑝 = 2, 𝑞 = 8 𝐿𝑠 (𝛾1) = 0.497 𝐿𝑠 (𝛾2) = 2.889𝐿𝑠 (𝛾3) = 0.556 𝐿𝑠 (𝛾4) = 1.489 𝑥2 ≻ 𝑥4 ≻ 𝑥3 ≻ 𝑥1
𝑝 = 3, 𝑞 = 0 𝐿𝑠 (𝛾1) = 0.408 𝐿𝑠 (𝛾2) = 2.814𝐿𝑠 (𝛾3) = 0.35 𝐿𝑠 (𝛾4) = 1.275 𝑥2 ≻ 𝑥4 ≻ 𝑥1 ≻ 𝑥3
𝑝 = 3, 𝑞 = 9 𝐿𝑠 (𝛾1) = 0.555 𝐿𝑠 (𝛾2) = 2.96𝐿𝑠 (𝛾3) = 0.543 𝐿𝑠 (𝛾4) = 1.509 𝑥2 ≻ 𝑥4 ≻ 𝑥3 ≻ 𝑥1
𝑝 = 5, 𝑞 = 0 𝐿𝑠 (𝛾1) = −0.116 𝐿𝑠 (𝛾2) = 2.397𝐿𝑠 (𝛾3) = 0.091 𝐿𝑠 (𝛾4) = 1.067 𝑥2 ≻ 𝑥4 ≻ 𝑥3 ≻ 𝑥1
𝑝 = 0, 𝑞 = 10 𝐿𝑠 (𝛾1) = −1.177 𝐿𝑠 (𝛾2) = 1.497𝐿𝑠 (𝛾3) = −0.567 𝐿𝑠 (𝛾4) = 0.514 𝑥2 ≻ 𝑥4 ≻ 𝑥3 ≻ 𝑥1
𝑝 = 1, 𝑞 = 10 𝐿𝑠 (𝛾1) = −0.424 𝐿𝑠 (𝛾2) = 2.161𝐿𝑠 (𝛾3) = −0.015 𝐿𝑠 (𝛾4) = 0.97 𝑥2 ≻ 𝑥4 ≻ 𝑥3 ≻ 𝑥1
𝑝 = 2, 𝑞 = 10 𝐿𝑠 (𝛾1) = 0.059 𝐿𝑠 (𝛾2) = 2.564𝐿𝑠 (𝛾3) = 0.257 𝐿𝑠 (𝛾4) = 1.234 𝑥2 ≻ 𝑥4 ≻ 𝑥3 ≻ 𝑥1
𝑝 = 3, 𝑞 = 10 𝐿𝑠 (𝛾1) = 0.359 𝐿𝑠 (𝛾2) = 2.818𝐿𝑠 (𝛾3) = 0.405 𝐿𝑠 (𝛾4) = 1.392 𝑥2 ≻ 𝑥4 ≻ 𝑥3 ≻ 𝑥1
𝑝 = 4, 𝑞 = 10 𝐿𝑠 (𝛾1) = 0.538 𝐿𝑠 (𝛾2) = 2.981𝐿𝑠 (𝛾3) = 0.493 𝐿𝑠 (𝛾4) = 1.485 𝑥2 ≻ 𝑥4 ≻ 𝑥1 ≻ 𝑥3
𝑝 = 10, 𝑞 = 10 𝐿𝑠 (𝛾1) = 0.688 𝐿𝑠 (𝛾2) = 3.224𝐿𝑠 (𝛾3) = 0.539 𝐿𝑠 (𝛾4) = 1.481 𝑥2 ≻ 𝑥4 ≻ 𝑥1 ≻ 𝑥3
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