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Network-structured optimization problems are found widely in engineering applications. In this paper, we investigate a nonconvex
distributed optimization problem with inequality constraints associated with a time-varying multiagent network, in which each
agent is allowed to locally access its own cost function and collaboratively minimize a sum of nonconvex cost functions for all
the agents in the network. Based on successive convex approximation techniques, we first approximate locally the nonconvex
problem by a sequence of strongly convex constrained subproblems. In order to realize distributed computation, we then exploit
the exact penalty function method to transform the sequence of convex constrained subproblems into unconstrained ones. Finally,
a fully distributed method is designed to solve the unconstrained subproblems. The convergence of the proposed algorithm is
rigorously established, which shows that the algorithm can converge asymptotically to a stationary solution of the problem under
consideration. Several simulation results are illustrated to show the performance of the proposed method.

1. Introduction

Network-structured problems have drawn recently consider-
able attention in various applications, such as mobile ad hoc
networks, wireless sensor networks, and Internet networks
[1–3]. The absence of centralized access to information and
time-varying network connectivity are common features of
network-structured problems. For this reason, distributed
optimization methods associated with multiagent networks
should be designed on the base of local communication and
computation and the change of network topology. Dis-
tributed computing allows each agent to only utilize its own
cost function and communicate with its direct neighbors,
which has the potential advantage on protecting agents’
privacy. In recent years, there is an increasing trend to develop
distributed optimization by integrating the communication
and computation cooperation (see, e.g., [4, 5] and references
therein).

The methods designed to solve distributed convex prob-
lems have been widely studied in the literature. Based on

the consensus averaging mechanism, there are several useful
approaches, including primal consensus distributed meth-
ods, dual consensus distributed methods, and primal-dual
consensus distributed methods. Nedic and Ozdaglar in [5]
originally developed a distributed subgradient-based algo-
rithm, in which every agent optimizes its own objective and
locally exchanges information with neighboring agents in a
network. The convergence rate of their proposed algorithm
has been obtained. But, only unconstrained distributed prob-
lemswere investigated. In [6], Nedic et al. generalized the dis-
tributed method in [5] to solve constrained convex optimiza-
tion. Later, many researchers proposed various extensions
based on primal (sub)gradient-based methods in, for exam-
ple, [7–12]. In [13], Duchi et al. extended the centralized
dual averaging algorithm to the distributed setting and then
proposed a distributed dual averaging algorithm. The con-
vergence result of their algorithm shows that the number of
iterations is dependent on the underlying network sizes and
spectral gaps.The primal-dual consensus distributedmethod
was designed for solving distributed convex problems
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with global inequality constraints under the framework of
Lagrangian duality. By finding the corresponding saddle-
points of the Lagrangian function, Zhu and Martinez [14]
first proposed a primal-dual consensus distributed algorithm
and established the convergence results. The authors in [15]
obtained the explicit convergence rate of the algorithm under
the strong connectivity of networks.

However, the methods mentioned above are not suitable
for the general nonconvex distributed optimization prob-
lems.Until recently, there are some references designing algo-
rithms for distributed nonconvex problems, such as [16, 17].
In [16], Lorenzo and Scutari developed a novel distributed
algorithm for solving unconstrained nonconvex optimization
problems which associated a multiagent network with time-
varying connectivity. They combined a successive convex
approximation technique and a dynamic consensus mecha-
nism to realize distributed computation as well as local infor-
mation exchange in the network. For nonconvex optimiza-
tion problems with constraints, Scutari et al. [17] proposed
a successive convex approximation method by solving a
sequence of strongly convex subproblems while maintaining
feasibility. They have shown that their proposed method can
converge to a stationary solution of the original constrained
nonconvex problem under consideration. However, the
method proposed in [17] is not suitable in the distributed
setting. Additionally, the Lagrange dual method is utilized to
solve the sequence of strongly convex subproblems, which
may largely enlarge the dimension of the problem due
to introducing the dual variables. Thus, the computational
difficulty and cost may be increased.

In this paper, we investigate a distributed nonconvex
problem with inequality constraints. The main contributions
of this paper are twofold: (i) based on the penalty function
method, a distributed algorithm for solving the nonconvex
problem with global inequality constraints is proposed; (ii)
the convergence of the proposed algorithm is rigorously
proved. More specifically, we first transform the nonconvex
problem to a sequence of strongly convex subproblems based
on successive convex approximation techniques. In order to
realize distributed computation, we then exploit the exact
penalty function method to transform the sequence of
strongly convex constrained subproblems into unconstrained
ones. Finally, we propose a fully distributed method to solve
these unconstrained subproblems. We obtain the conver-
gence results of the proposed algorithm and demonstrate
several numerical simulations.

The work in this paper is closely related to the previous
works [16–19]. Our method is based on the algorithm pro-
posed in [16], but the problem we consider in this paper is
different from the one in [16], since we investigate a noncon-
vex problemwith global inequality constraints.The proposed
algorithm is different from [17], since our algorithm exploits
the exact penalty function method to solve the related sub-
problems possibly reducing the dimensionality of the prob-
lem.However, the algorithm in [17] utilized the Lagrange dual
method to solve the subproblems, in which the computation
is not implemented in a distributed manner. Our algorithm
is an extension of the algorithm in [18] to handle with
the nonconvex case. By comparison, we solve a constrained

distributed nonconvex optimization in this paper, while the
authors in [19] solved the unconstrained one.

The remainder of this paper is organized as follows.
Section 2 provides the problem statement and related prepa-
rations. Section 3 gives the algorithm development. Section 4
proposes the distributed algorithm and establishes the results
of convergence. Numerical simulations are given in Section 5.
Finally, the conclusions are obtained in Section 6.

2. Problem Statement and Preparations

In the section, we state the optimization problem under
consideration and give the assumptions and definitions that
will be used in the sequel.

2.1. Problem Statement. Consider the following distributed
nonconvex optimization problem:

min
x∈K

𝐹 (x) fl 𝑁∑
𝑖=1

𝑓𝑖 (x)
s.t. g (x) ≤ 0,

(1)

where 𝑓𝑖(x) : R𝑑 → R is a nonconvex smooth cost function,
only known by agent 𝑖 for 𝑖 = 1, . . . , 𝑁; g(x) fl (𝑔1(x), . . . ,𝑔𝑝(x))𝑇, 𝑔𝑠(x) : R𝑑 → R is a convex smooth function for 𝑠 =1, . . . , 𝑝; and K ⊆ R𝑑 is a closed, convex set. The constraint
g(x) and the setK are known by all the agents. Let

𝜒 fl {x ∈ R
𝑑 | g (x) ≤ 0, x ∈ K} (2)

be the feasible set of problem (1). We assume that Slater’s
condition [20] is satisfied for problem (1).

Problem (1) is ubiquitous that arises inmany applications,
such as networking, wireless communications, and machine
learning. Therefore, it is meaningful to solve the problem.

2.2. Assumption and Definition. We first give the description
of the network topology. Time is assumed to be discrete.
At each time slot 𝑘, the network is modeled as a directed
graph G[𝑘] = (V,E[𝑘]), where V = {1, . . . , 𝑁} is the set
of nodes with𝑁 agents, and E[𝑘] represents the set of time-
varying directed edges. The neighborhood of agent 𝑖 at time𝑘 is defined as N𝑖𝑛𝑖 [𝑘] = {𝑗 | (𝑗, 𝑖) ∈ E[𝑘]} ∪ {𝑖}. The
communication pattern between neighbors is set as follows:
agent 𝑗 ̸= 𝑖 inN𝑖𝑛𝑖 [𝑘] can communicate with node 𝑖 at time 𝑘.
We assign time-varying weights (𝑎𝑖𝑗[𝑘]) to match the digraph
G[𝑘] and define the weight matrix 𝐴[𝑘] = (𝑎𝑖𝑗[𝑘])𝑁𝑖,𝑗=1.
Assumption 1 (see [5]). (A1) The graph sequence {G[𝑘]} is B-
strongly connected; that is, there is an integer 𝐵 > 0 such
that the graph G[𝑛] = (V,E[𝑛]), with the edge set E[𝑛] =∪(𝑛+1)𝐵−1
𝑘=𝑛𝐵

E[𝑘], is strongly connected, for all 𝑛 ≥ 0.
(A2) There is a scalar 𝜗 with 0 < 𝜗 < 1, for all 𝑖 ∈{1, 2, . . . , 𝑁}: (i) 𝑎𝑖𝑖[𝑘] ≥ 𝜗 for all 𝑘 ≥ 0; (ii) 𝑎𝑖𝑗[𝑘] ≥ 𝜗 for

all 𝑘 ≥ 0 and all agents 𝑗 communicate directly with agent 𝑖;
(iii) otherwise, all agents 𝑗 cannot communicate directly with
agent 𝑖, 𝑎𝑖𝑗[𝑘] = 0 for all 𝑘 ≥ 0.
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(A3) Each weight matrix 𝐴[𝑘] satisfies
𝐴 [𝑘] 1 = 1,
1𝑇𝐴 [𝑘] = 1𝑇,

∀𝑘 ≥ 0.
(3)

Assumption 1 shows that, at any time 𝑘, any agent 𝑗 will
receive the information from agent 𝑖 within the next 𝐵 time
slots. Moreover, the weigh matrix 𝐴[𝑘] is double-stochastic.
Assumption 2. (B1) The setK is nonempty, closed, and con-
vex.

(B2) For 𝑖 ∈ {1, . . . , 𝑁}, each local function 𝑓𝑖 is continu-
ously differentiable onK, and ∇𝑓𝑖 is Lipschitz continuous on
K with constant 𝐿 𝑖; let 𝐿max = max𝑖{𝐿 𝑖}.

(B3) ∇𝐹 is bounded onK; that is, there is a finite number𝐿𝐹 > 0 such that ‖∇𝐹(x)‖ ≤ 𝐿𝐹, for all x ∈ K.
(B4) For 𝑠 ∈ {1, . . . , 𝑝}, each function ∇𝑔𝑠 is bounded on

K; that is, there is a finite number 𝐿𝑔𝑠 such that ‖∇𝑔𝑠‖ ≤ 𝐿𝑔𝑠 ;
let 𝐿𝐺 = max𝑠{𝐿𝑔𝑠}.

(B5) 𝐹 is coercive onK; that is, limx∈K,‖x‖→∞𝐹(x) = +∞.

The above assumptions are quite general, which can be
satisfied by a large class of problems in practical applications.
Assumption (B5) can make sure that problem (1) has a solu-
tion.

The goal in this paper is to design a method that can find
a stationary solution of problem (1). Moreover, the method is
implemented in the distributed scenario satisfying Assump-
tions 1 and 2.

Next we introduce several definitions, which will be used
in the convergence analysis of our method.

Definition 3 (regularity [21]). A point x ∈ 𝜒 is called regular
for problem (1) if the Mangasarian-Fromovitz Constraint
Qualification (MFCQ) holds at x, that is, if the following
implication is satisfied:

0 ∈ ∑
𝑠∈𝐼

𝜌𝑠∇𝑔𝑠 (x) + 𝑁K (x) ,
𝜌𝑠 ≥ 0, ∀𝑠 ∈ 𝐼 󳨐⇒ 𝜌𝑠 = 0, ∀𝑠 ∈ 𝐼,

(4)

where

𝑁K (x) = {d ∈ R
𝑑 : d𝑇 (y − x) ≤ 0, ∀y ∈ K} (5)

is the normal cone to K at x and 𝐼 = {𝑠 ∈ {1, 2, . . . , 𝑝} :𝑔𝑠(x) = 0} is the index set of convex constraints that are active
at x.

Definition 4 (stationary point [17]). A point x ∈ 𝜒 is a
stationary point of problem (1), if it satisfies the following
KKT system:

0 ∈ ∇𝐹 (x) + ∑
𝑠∈𝐼

𝜌𝑠∇𝑔𝑠 (x) + 𝑁K (x) , 𝜌𝑠 ≥ 0, ∀𝑠 ∈ 𝐼, (6)

where 𝜌𝑠 ∈ 𝐼 are Lagrange multipliers chosen suitably.

As pointed out by [17], a regular (local)minimumpoint of
problem (1) is also a stationary point. It is well known that the
traditional goal for solving nonconvex problems is actually to
find stationary points. To simplify the discussion, we assume
that all feasible points of problem (1) are regular throughout
the rest of this paper.

3. Development of Algorithm

Designing an effective distributedmethod for problem (1), we
had to face three main challenges: (i) the nonconvexity of the
objective function 𝐹; (ii) the unavailability of global knowl-
edge on𝐹; and (iii) the presence of inequality constraints g. In
order to deal with the difficulties, we utilize successive convex
approximation (SCA) techniques, exact penalty function
methods, and dynamic consensus mechanisms to develop
our algorithm.

3.1. Local SCA Approximation. In a distributed setting, the
computational cost for directly solving problem (1) is con-
siderably high and even infeasible. We would prefer to
suitably approximate problem (1), in the sense of local convex
approximation.

By copying the global variable x, each agent 𝑖maintains a
local estimate x𝑖 that needs to be updated at each iteration.We
rewrite𝐹(x𝑖) = 𝑓𝑖(x𝑖)+∑𝑗 ̸=𝑖 𝑓𝑗(x𝑖) and consider a convexifica-
tion of𝐹 as follows: at each iteration, we use a strongly convex
function 𝑓𝑖(⋅; x𝑖[𝑘]) to replace the nonconvex function 𝑓𝑖 and
linearize the ∑𝑗 ̸=𝑖 𝑓𝑗(x𝑖) at x𝑖[𝑘]; that is,

𝐹𝑖 (x𝑖; x𝑖 [𝑘]) = 𝑓𝑖 (x𝑖; x𝑖 [𝑘])
+ 𝜋𝑖 (x𝑖 [𝑘])𝑇 (x𝑖 − x𝑖 [𝑘]) , (7)

where 𝑓𝑖(⋅; x𝑖[𝑘]) : K → R is a strongly convex surrogate of
the nonconvex 𝑓𝑖 and 𝜋𝑖(x𝑖[𝑘]) is the gradient for the term∑𝑗 ̸=𝑖 𝑓𝑗(x𝑖) at x𝑖[𝑘]; that is,

𝜋𝑖 (x𝑖 [𝑘]) = ∑
𝑗 ̸=𝑖

∇x𝑓𝑗 (x𝑖 [𝑘]) . (8)

At each iteration 𝑘, a strongly convex problem is solved
by agent 𝑖

x̂𝑖 (x𝑖 [𝑘]) = argmin
x𝑖∈𝜒

𝐹𝑖 (x𝑖; x𝑖 [𝑘]) . (9)

Note that x̂𝑖(x𝑖[𝑘]) in (9) is well defined, since subproblem (9)
has a unique solution.

We give the following assumptions on the approximation
of 𝑓𝑖.
Assumption 5. Each 𝑓𝑖 satisfies the following:

(C1) 𝑓𝑖(⋅; x) is uniformly strongly convex onK×𝜒with a
strongly convex parameter 𝜏𝑖 > 0.

(C2) 𝑓𝑖(x; ⋅) is uniformly Lipschitz continuous onK × 𝜒.
(C3) ∇𝑓𝑖(x; x) = ∇𝑓𝑖(x), for all x ∈ 𝜒.
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Assumption 5 is quite natural. The function 𝑓𝑖 is viewed
as a strongly convex, local approximation of 𝑓𝑖 around x that
inherits the first-order properties of 𝑓𝑖. Assumption 5(C2)
is the requirement of Lipschitzianity that is surely satisfied,
for example, if the set K is bounded. For a given 𝑓𝑖, several
feasible choices are provided in [16, 22, 23].

3.2. Exact Penalty Function Method. Subproblem (9) is not
easy to solve due to the presence of the global constraints
g and the local accessibility of 𝑓𝑖; thus, the exact penalty
functionmethod is utilized to transform subproblem (9) into
an unconstrained problem, given by

x̂𝑖 (x𝑖 [𝑘]) = argmin
x𝑖∈K

{𝐹𝑖 (x𝑖; x𝑖 [𝑘]) + 𝑐𝑖𝑝 (x𝑖)} , (10)

where 𝑝(x𝑖) = max{0, 𝑔1(x𝑖), . . . , 𝑔𝑝(x𝑖)}, 𝑐𝑖 > 0 is a penalty
parameter. We can obtain that 𝑝(x𝑖) is convex on K, and‖𝑆𝑝(x𝑖)‖ ≤ 𝐿𝐺 for all 𝑆𝑝(x𝑖) ∈ 𝜕𝑝(x𝑖), where 𝑆𝑝(x𝑖) stands
for the subgradient of 𝑝 at x𝑖.

Under suitable conditions [24], the solution set of the
penalized problem (10) coincides with the solution set of the
constrained problem (9). In order to explain the fact in detail,
we introduce the Lagrangian function of problem (9):

L𝑖 (x𝑖; 𝜆𝑖) = 𝐹𝑖 (x𝑖; x𝑖 [𝑘]) + 𝜆𝑇𝑖 g (x𝑖) , (11)

where 𝜆𝑖 = (𝜆𝑖1, 𝜆𝑖2, . . . , 𝜆𝑖𝑝)𝑇 ∈ R
𝑝
+ is the vector of dual

variable corresponding to the constraints g(x𝑖) ≤ 0. The dual
problem of problem (9) is

max
𝜆𝑖∈R
𝑝
+

𝑑 (𝜆𝑖) with 𝑑 (𝜆𝑖) = min
x𝑖∈K

L𝑖 (x𝑖; 𝜆𝑖) . (12)

It can be proved that no duality gap exists between sub-
problem (9) and its dual problem (12) if Slater’s condition is
satisfied (see Proposition 5.3.1 in [20]). In addition, the set
of dual optimal solutions is nonempty bounded. Thus, based
on Proposition 1 in [24], there is a penalty parameter satisfied𝑐𝑖 > ∑𝑝𝑠=1 𝜆𝑖,𝑠 such that the solutions of penalized problem (10)
are the same as those of subproblem (9). Thus, throughout
the rest of this paper, we can always select a finite penalty
parameter 𝑐𝑖 such that 𝑐𝑖 ≥ 𝑐𝑖.
3.3. ConsensusUpdate. Wenow introduce a consensusmech-
anism to ensure that each local estimate x𝑖 gradually coincides
among all agents. A consensus-based step is used on x̂𝑖(x𝑖[𝑘])
and each agent 𝑖 updates its state as follows:

x𝑖 [𝑘 + 1] = ∑
𝑗∈N𝑖𝑛𝑖 [𝑘]

𝑎𝑖𝑗 [𝑘] x̂𝑗 (x𝑗 [𝑘]) , (13)

where 𝑎𝑖𝑗[𝑘] is the weight satisfying Assumption 1.
Since the evaluation of 𝜋𝑖(x𝑖[𝑘]) in (8) requires the

quantity of all ∇𝑓𝑗(x𝑖[𝑘]), 𝑗 ̸= 𝑖, which is not feasible at agent𝑖. In order to deal with the issue, we need a local estimation of𝜋𝑖(x𝑖[𝑘]) in (8), eventually converging to ∑𝑗 ̸=𝑖 ∇𝑓𝑗(x𝑖[𝑘]). We
rewrite 𝜋𝑖(x𝑖[𝑘]) in (8) as follows:

𝜋𝑖 (x𝑖 [𝑘]) = 𝑁 ⋅ ( 1𝑁
𝑁∑
𝑗=1

∇𝑓𝑗 (x𝑖 [𝑘])) − ∇𝑓𝑖 (x𝑖 [𝑘]) , (14)

and let ∇𝑓(x𝑖[𝑘]) = (1/𝑁)∑𝑁𝑗=1 ∇𝑓𝑗(x𝑖[𝑘]). Then, we replace𝜋𝑖(x𝑖[𝑘]) in (14) by 𝜋𝑖(x𝑖[𝑘])
𝜋𝑖 (x𝑖 [𝑘]) = 𝑁 ⋅ y𝑖 [𝑘] − ∇𝑓𝑖 (x𝑖 [𝑘]) , (15)

where y𝑖[𝑘] is a locally auxiliary variable updated by agent𝑖, asymptotically tracking ∇𝑓(x𝑖[𝑘]). By using the dynamic
averaging consensus strategy [25], we can update y𝑖[𝑘] in (15)
via the following formula:

y𝑖 [𝑘 + 1] = 𝑁∑
𝑗=1

𝑎𝑖𝑗 [𝑘] y𝑗 [𝑘]
+ (∇𝑓𝑖 (x𝑖 [𝑘 + 1]) − ∇𝑓𝑖 (x𝑖 [𝑘])) ,

(16)

where y𝑖[0] = ∇𝑓𝑖(x𝑖[0]).
Note that the update of y𝑖[𝑘] in (16), and thus 𝜋̃𝑖(x𝑖[𝑘])) in

(15), can be now performed locally with message exchanges
with the agents in the neighborhood N𝑖𝑛𝑖 [𝑘]. By the above
description, problem (10) can be converted into the following
problem:

x̃𝑖 [𝑘] = argmin
x𝑖∈K

𝑈̃𝑖 (x𝑖; x𝑖 [𝑘] , 𝜋̃𝑖 (x𝑖 [𝑘])) , (17)

where 𝑈̃𝑖(x𝑖; x𝑖[𝑘], 𝜋̃𝑖(x𝑖[𝑘])) = 𝑓𝑖(x𝑖; x𝑖[𝑘]) + 𝜋̃𝑖(x𝑖[𝑘])𝑇(x𝑖 −
x𝑖[𝑘]) + 𝑐𝑖𝑝(x𝑖).
4. Algorithm and Convergence Results

Based on the previous algorithmdevelopment, we propose an
exact penalty function based distributed algorithm (EPDA,
for short) to solve problem (1), presented in Algorithm 1.

In order to obtain the convergence results of the proposed
algorithm, we first give Lemma 6, which shows the relation-
ship between the solutions of problem (1) and the solutions of
subproblem (9). Note that the following conditions (18) and
(19) can be satisfied; please see the proof of relation (A.32).

Lemma 6. Suppose that Assumptions 1, 2, and 5 hold. Let{x𝑖[𝑘]} be the sequence generated by Algorithm 1; the following
results hold:

(i) If

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩x̂𝑖 (x𝑖 [𝑘]) − x𝑖 [𝑘]󵄩󵄩󵄩󵄩 = 0, ∀𝑖 = 1, . . . , 𝑁, (18)

then at least one regular limit point of {x𝑖[𝑘]} is a stationary
solution of problem (1).

(ii) If

lim
𝑘→∞

󵄩󵄩󵄩󵄩x̂𝑖 (x𝑖 [𝑘]) − x𝑖 [𝑘]󵄩󵄩󵄩󵄩 = 0, ∀𝑖 = 1, . . . , 𝑁, (19)

then every regular limit point of {x𝑖[𝑘]} is a stationary solution
of problem (1).

Proof. See Appendix (2).
We are now in the position to give the convergence

properties of Algorithm 1.
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(1) Initialization: x𝑖[0] ∈ K, y𝑖[0] = ∇𝑓𝑖[0], 𝜋𝑖(x𝑖[0]) = 𝑁 ⋅ y𝑖[0] − ∇𝑓𝑖[0], for all 𝑖 = 1, . . . , 𝑁.
Choose the weigh matrix (𝑎𝑖𝑗[𝑘]) satisfied Assumption 1 and the step-size 𝛼[𝑘] satisfied (20).
Select a penalty parameter 𝑐𝑖 > 0. Set 𝑘 fl 0;

(2) repeat
(3) for each agent 𝑖 = 1, . . . , 𝑁 do
(4) Local SCA optimization: compute x̃𝑖[𝑘] by solving problem (17);
(5) Update z𝑖[𝑘] = x𝑖[𝑘] + 𝛼[𝑘](x̃𝑖[𝑘] − x𝑖[𝑘]);
(6) Consensus update:

(a) x𝑖[𝑘 + 1] = ∑𝑁𝑗=1 𝑎𝑖𝑗[𝑘]z𝑗[𝑘];
(b) y𝑖[𝑘 + 1] = ∑𝑁𝑗=1 𝑎𝑖𝑗[𝑘]y𝑗[𝑘] + (∇𝑓𝑖(x[𝑘 + 1]) − ∇𝑓𝑖(x[𝑘]));
(c) 𝜋̃𝑖(x𝑖[𝑘 + 1]) = 𝑁 ⋅ y𝑖[𝑘 + 1] − ∇𝑓𝑖(x[𝑘 + 1]);

(7) end for
(8) Set 𝑘 fl 𝑘 + 1;
(9) until x𝑖[𝑘] satisfies a termination criterion.

Algorithm 1: Exact penalty function based distributed algorithm.

Theorem 7. Let {x[𝑘]} = {(x𝑖[𝑘])𝑁𝑖=1} be the sequence gener-
ated by Algorithm 1 and let {x[𝑘]} = {(1/𝑁)∑𝑁𝑖=1 x𝑖[𝑘]} be the
average. Suppose that (a) Assumptions 1, 2, and 5 hold; and (b)
the step-size sequence {𝛼[𝑘]} is selected such that 𝛼[𝑘] ∈ (0, 1],
for all 𝑘,

∞∑
𝑘=0

𝛼 [𝑘] = ∞,
∞∑
𝑘=0

𝛼 [𝑘]2 < ∞.
(20)

Then, (i) the sequence {x[𝑘]} is bounded and all its limit points
are stationary solutions of problem (1); (ii) all the sequences{x𝑖[𝑘]} asymptotically agree; that is, ‖x𝑖[𝑘] − x[𝑘]‖ → 0 as𝑘 → ∞, for all 𝑖 = 1, . . . , 𝑁.

Proof. See Appendix (3).
Remark 8. (1) On the choice of surrogate functions, we only
present several instances to show how to choose the surrogate
function 𝑓𝑖; also see [16, 19, 22, 23].

(i) If any convex structure of 𝑓𝑖 is unavailable, the
linearization of 𝑓𝑖 at x𝑖[𝑘] is the most plain choice; that is,

𝑓𝑖 (x𝑖; x𝑖 [𝑘]) = 𝑓𝑖 (x𝑖 [𝑘]) + ∇𝑓𝑖 (x𝑖 [𝑘])𝑇 (x𝑖 − x𝑖 [𝑘])
+ 𝜏𝑖2 󵄩󵄩󵄩󵄩x𝑖 − x𝑖 [𝑘]󵄩󵄩󵄩󵄩2 .

(21)

(ii) If 𝑓𝑖 is convex, one can just set

𝑓𝑖 (x𝑖; x𝑖 [𝑘]) = 𝑓𝑖 (x𝑖 [𝑘]) + 𝜏𝑖2 󵄩󵄩󵄩󵄩x𝑖 − x𝑖 [𝑘]󵄩󵄩󵄩󵄩2 . (22)

(iii) Consider the case where 𝑓𝑖 can be decomposed as𝑓𝑖(x𝑖) = 𝑓(1)𝑖 (x𝑖) + 𝑓(2)𝑖 (x𝑖), where 𝑓(1)𝑖 is convex and 𝑓(2)𝑖 is

nonconvex. We can only linearize 𝑓(2)𝑖 and preserve the con-
vex 𝑓(1)𝑖 as follows:

𝑓𝑖 (x𝑖; x𝑖 [𝑘]) = 𝑓(1)𝑖 (x𝑖) + 𝑓(2)𝑖 (x𝑖 [𝑘])
+ 𝜏𝑖2 󵄩󵄩󵄩󵄩x𝑖 − x𝑖 [𝑘]󵄩󵄩󵄩󵄩2
+ ∇𝑓(2)𝑖 (x𝑖 [𝑘])𝑇 (x𝑖 − x𝑖 [𝑘]) .

(23)

(2) On the choice of step-sizes, condition (20) in Theo-
rem 7 requires that the step-size sequence reduces to zero, but
not too fast. The choice of the step-size 𝛼[𝑘] meeting (20) is
quite flexible [1, 23].The following two choices of step-size are
very effective in our simulations:

(i) 𝛼[𝑘] = 𝛼0/(𝑘 + 1)𝛽, 𝛼0 > 0, 0.5 < 𝛽 ≤ 1;
(ii) 𝛼[𝑘] = 𝛼[𝑘−1](1−𝜇𝛼[𝑘−1]), 𝛼[0] ∈ (0, 1], 𝜇 ∈ (0, 1).
(3) On the choice of weigh matrices, Assumption 1

requires that each communication weigh matrix 𝐴[𝑘] is
doubly stochastic. References [4, 5] provided several choices
of weigh matrices, such as the maximum degree weigh
matrix, the Metropolis-Hastings weigh matrix, and the least-
mean square consensus weight matrix.

5. Numerical Simulations

We consider a distributed nonconvex quadratic problemwith
quadratic inequality constraints (also see Example C in [22]):

min
x∈K

𝐹 (x) fl 𝑁∑
𝑖=1

(󵄩󵄩󵄩󵄩A𝑖x − a𝑖
󵄩󵄩󵄩󵄩2 − 𝑞𝑖 ‖x‖2)

s.t. x𝑇Bx − 𝑏 ≤ 0,
(24)

whereA𝑖 ∈ R𝑑×𝑑, a𝑖 ∈ R𝑑,B ∈ R𝑑×𝑑, 𝑞𝑖 and 𝑏 are nonnegative
constants, and K is a box constraint in R𝑑. Note that the
function 𝑓𝑖(x) fl ‖A𝑖x − a𝑖‖2 − 𝑞𝑖‖x‖2 is locally accessible,
only known by agent 𝑖. The local function 𝑓𝑖 is differentiable,
and its gradient ∇𝑓𝑖 is 𝐿 𝑖-Lipschitz continuous with 𝐿 𝑖 =‖(A𝑇𝑖 A𝑖 − 𝑞𝑖 ⋅ I)𝑇(A𝑇𝑖 A𝑖 − 𝑞𝑖 ⋅ I)‖, where I is a unit matrix.
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The corresponding penalized problem for problem (24) is
given by

min
x∈K

𝐹𝑐 (x)
fl
𝑁∑
𝑖=1

(󵄩󵄩󵄩󵄩A𝑖x − a𝑖
󵄩󵄩󵄩󵄩2 − 𝑞𝑖 ‖x‖2) + 𝑐

⋅max {0, x𝑇Bx − 𝑏} ,
(25)

where the penalty parameter 𝑐 > 0 is chosen suitably. In gen-
eral, there are two ways to choose 𝑐 such that it satisfies
the requirement. One way is by solving the unconstrained
optimization problem defined in (12), and the other one is
by heuristic. In order to imitate the time-varying weight
matrix, a pool of 50 weight matrices from connected random
graphs are generated, in which each weight matrix is satisfied
(Assumption 1). The time-varying weight matrices required
in Steps 6(a) and 6(b) of Algorithm 1 are randomly drawn
from the above pool. To compare, we use the distributed
Lagrangian primal-dual subgradient (DLPDS, for short)
algorithm proposed in [14] to solve the corresponding sub-
problem (9).

For simplicity, we assume that eachA𝑖 is a diagonalmatrix
with elements generated randomly in (0, 1], a𝑖 is a vector
with elements generated randomly in (0, 1], 𝑞𝑖 is generated
randomly in [1, 2], B is a diagonal matrix with elements
generated randomly in (0, 1], 𝑏 is generated randomly in(0, 10], and the initial points x𝑖[0] are generated randomly
in K, where the box constraint is set as K = [−2, 2]𝑑. In
the numerical experiments, we heuristically select the penalty
parameter 𝑐 = 10.

Some experimental results are presented to illustrate the
convergence behavior of the proposed Algorithm EPDA. All
the curves are averaged over 20 independent realizations.
Some comparisons with existing Algorithm DLPDS are also
given.

Figures 1(a) and 2(a) depict the value of max error
max𝑖{‖x𝑖[𝑘] − x̃𝑖[𝑘]‖/‖x̃𝑖[𝑘]‖} versus the number of iterations
with different nodes and dimensions. It can be observed that
both algorithms have the potential to converge to the same
stationary solution. However, our Algorithm EPDA is much
faster than Algorithm DLPDS [14]. As can be seen from
Figure 1(a), AlgorithmEPDA can reach higher precision than
Algorithm DLPDS after 400 iterations. Figure 2(a) shows the
similar results when𝑁 = 100 and 𝑑 = 10.

Figures 1(b) and 2(b) depict the value of function 𝐹(x[𝑘])
versus the number of iterations with different nodes and
dimensions. For two tested cases, the value of the objective
function gradually decreases when the number of iterations
increases, but the value of the objective function for Algo-
rithm EPDA reduces faster than that of Algorithm DLPDS.

6. Conclusions

In this paper, a distributed algorithm was proposed to solve
the nonconvex distributed optimization with global inequal-
ity constraints over time-varying multiagent networks. The

proposed algorithm was based on the successive convex
approximation technique, exact penalty function method,
and dynamic averaging consensus. The convergence of the
proposed algorithm was proved. Several numerical results
showed the effectiveness of the proposed method.

Appendix

(1) Preliminaries. We present some preliminary results that
will be used to prove our main results. For ease of notation,
we need to give the following:

x [𝑘] = 1𝑁
𝑁∑
𝑖=1

x𝑖 [𝑘] , (A.1)

∇𝑓𝑎V𝑖 [𝑘] = ∇𝑓𝑖 (x [𝑘]) , (A.2)

y𝑎V𝑖 [𝑘 + 1] = ∑
𝑗∈N𝑖𝑛𝑖 [𝑘]

𝑎𝑖𝑗 [𝑘] y𝑎V𝑖 [𝑘]
+ (∇𝑓𝑎V𝑖 [𝑘 + 1] − ∇𝑓𝑎V𝑖 [𝑘]) ,

(A.3)

𝜋̃𝑎V𝑖 [𝑘] = 𝑁 ⋅ y𝑎V𝑖 [𝑘] − ∇𝑓𝑎V𝑖 [𝑘] , (A.4)

x̃𝑎V𝑖 [𝑘] = argmin
x𝑖∈K

𝑈̃𝑖 (x𝑖; x [𝑘] ; 𝜋̃𝑎V𝑖 [𝑘]) , (A.5)

where y𝑎V𝑖 [0] = ∇𝑓𝑎V𝑖 [0].
Lemma A.1 (see [6]). Let {𝑌[𝑘]}, {𝑋[𝑘]}, and {𝑍[𝑘]} be three
sequences of numbers such that𝑋[𝑘] ≥ 0 for all 𝑘 > 0. Suppose
that

𝑌 [𝑘 + 1] ≤ 𝑌 [𝑘] − 𝑋 [𝑘] + 𝑍 [𝑘] , ∀𝑘 = 1, 2, . . . , (A.6)

and ∑∞𝑘=1 𝑍[𝑘] < ∞. Then, either 𝑌[𝑘] → −∞ or {𝑌[𝑘]} con-
verges to a finite value and ∑∞𝑘=1𝑋[𝑘] < ∞.

Similar to the proof of Proposition 9 in [16], we can obtain
the following lemma.

Lemma A.2. Let {(x𝑖[𝑘])𝑁𝑖=1} be the sequence generated by
Algorithm 1. Then, for all 𝑘 > 0 and for all 𝑖 = 1, . . . , 𝑁, the
following results hold:

(i) Bounded disagreement:󵄩󵄩󵄩󵄩x̃𝑖 [𝑘] − x𝑖 [𝑘]󵄩󵄩󵄩󵄩 ≤ 𝑚, (A.7)

where𝑚 > 0 is a finite constant.
(ii) Asymptotic agreement on x𝑖[𝑘]:

lim
𝑘→∞

󵄩󵄩󵄩󵄩x𝑖 [𝑘] − x [𝑘]󵄩󵄩󵄩󵄩 = 0. (A.8)

(iii) Asymptotically vanishing tracking error:
∞∑
𝑘=1

𝛼 [𝑘] 󵄩󵄩󵄩󵄩x̃𝑎V𝑖 [𝑘] − x̂𝑖 (x [𝑘])󵄩󵄩󵄩󵄩 < ∞. (A.9)

(iv) Asymptotic agreement on best-responses:
∞∑
𝑘=1

𝛼 [𝑘] 󵄩󵄩󵄩󵄩x̃𝑖 [𝑘] − x̃𝑎V𝑖 [𝑘]󵄩󵄩󵄩󵄩 < ∞. (A.10)
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Figure 1: Numerical results for nodes of the network𝑁 = 50 and dimensions of the problem 𝑑 = 5.
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Figure 2: Numerical results for nodes of the network𝑁 = 100 and dimensions of problem 𝑑 = 10.
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(2) Proof of Lemma 6. We only prove statement (i) of
Lemma 6; then statement (ii) of Lemma 6 is proved by
applying statement (i) to every convergence subsequence of{x𝑖[𝑘]}.

Assuming that x𝑖 is a regular accumulation point of
subsequence {x𝑖[𝑘]}M of {x𝑖[𝑘]} satisfied (18); therefore, there
is 𝑀󸀠 ⊆ 𝑀 such that limM󸀠∋𝑘→∞x𝑖[𝑘] = x𝑖. Next, we prove
that x𝑖 is a KKT point of problem (1). Let

𝐼 = {𝑠 ∈ {1, . . . , 𝑝} : 𝑔𝑠 (x𝑖) = 0} ,
𝐼𝑘 = {𝑠 ∈ {1, . . . , 𝑝} : 𝑔𝑠 (x̂𝑖 (x𝑖 [𝑘])) = 0} ,

for 𝑘 ∈ 𝑀󸀠.
(A.11)

Using lim𝑀󸀠∋𝑘→∞‖x̂𝑖(x𝑖[𝑘]) − x𝑖[𝑘])‖ = 0 together with the
continuity of 𝑔𝑠, we have

lim
𝑀󸀠∋𝑘→∞

𝑔𝑠 (x̂𝑖 (x𝑖 [𝑘])) = 𝑔𝑠 (x𝑖) , 𝑠 = 1, . . . , 𝑝. (A.12)

The limit in (A.12) means that there is a positive integer 𝑘̃ ∈𝑀󸀠 such that

𝐼𝑘 ⊆ 𝐼, ∀𝑘 ≥ 𝑘̃, 𝑘 ∈ 𝑀󸀠. (A.13)

Since the functions ∇𝐹𝑖 and ∇𝑔𝑠 are continuous, by Assump-
tion 5(C3), we obtain

lim
𝑀󸀠∋𝑘→∞

∇𝐹𝑖 (x̂𝑖 (x𝑖 [𝑘]) ; x𝑖 [𝑘]) = ∇𝐹𝑖 (x𝑖; x𝑖)
= ∇𝐹 (x𝑖) , (A.14)

and, for 𝑠 = 1, . . . , 𝑝,
lim
𝑀󸀠∋𝑘→∞

∇𝑔𝑠 (x̂𝑖 (x𝑖 [𝑘])) = ∇𝑔𝑠 (x𝑖) . (A.15)

We now prove that, for sufficiently large 𝑘 ∈ 𝑀󸀠, the
MFCQ holds at x̂𝑖(x𝑖[𝑘]) ∈ 𝜒. By contradiction, suppose
that the following relation does not hold for infinitely many𝑘 ∈ 𝑀󸀠:
− ∑
𝑠∈𝐼𝑘

𝜌𝑘𝑠 ∇𝑔𝑠 (x̂𝑖 (x𝑖 [𝑘])) ∈ 𝑁K (x̂𝑖 (x𝑖 [𝑘])) ,
𝜌𝑘𝑠 ≥ 0, ∀𝑠 ∈ 𝐼𝑘 󳨐⇒ 𝜌𝑘𝑠 = 0, ∀𝑠 ∈ 𝐼𝑘.

(A.16)

Then, there is a nonempty index set 𝐼 ⊆ 𝐼 such that, after a
suitable remuneration, for each 𝑘 ∈ 𝑀󸀠, we have
−∑
𝑠∈𝐼

𝜌𝑘𝑠 ∇𝑔𝑠 (x̂𝑖 (x𝑖 [𝑘])) ∈ 𝑁K (x̂𝑖 (x𝑖 [𝑘])) ;
𝜌𝑘𝑠 ≥ 0, ∀𝑠 ∈ 𝐼;

∑
𝑠∈𝐼

𝜌𝑘𝑠 = 1.
(A.17)

Without loss of generality, we assume that, for every 𝑠 ∈ 𝐼,
the sequence {𝜌𝑘𝑠 } converges to a limit 𝜌𝑠 such that ∑

𝑠∈𝐼
𝜌𝑠 =1. By 𝐼 ⊆ 𝐼 and taking the limit 𝑀󸀠 ∋ 𝑘 → ∞ in (A.17),

and invoking (A.15) along with the outer semicontinuity of
the mapping𝑁K(⋅) (see Proposition 6.6 in [21]), we obtain

−∑
𝑠∈𝐼

𝜌𝑠∇𝑔𝑠 (x𝑖) ∈ 𝑁K (x𝑖) ; 𝜌𝑠 ≥ 0, ∀𝑠 ∈ 𝐼;
∑
𝑠∈𝐼

𝜌𝑠 = 1, (A.18)

which is contradicted with the regularity of x𝑖. Thus, (A.16)
must hold for sufficiently large 𝑘 ∈ 𝑀󸀠, implying that theKKT
system of subproblem (9) has a solution for each sufficiently
large 𝑘 ∈ 𝑀󸀠. Therefore, there exist (𝜌𝑘𝑠 )𝑝𝑠=1 such that

− [∇𝐹𝑖 (x̂𝑖 (x𝑖 [𝑘]) ; x𝑖 [𝑘]) + 𝑝∑
𝑠=1

𝜌𝑘𝑠 ∇𝑔𝑠 (x̂𝑖 (x𝑖 [𝑘]))]
∈ 𝑁K (x̂𝑖 (x𝑖 [𝑘]))

0 ≤ 𝜌𝑘𝑠 ⊥ 𝑔𝑠 (x̂𝑖 (x𝑖 [𝑘])) ≤ 0, 𝑠 = 1, . . . , 𝑝.
(A.19)

From (A.13) and the complementarity slackness in (A.19),
we have 𝜌𝑘𝑠 = 0 for all 𝑠 ∉ 𝐼 and large 𝑘 ∈ 𝑀󸀠. Moreover,
the sequence of nonnegative multipliers {𝜌𝑘 = (𝜌𝑘𝑠 )𝑠∈𝐼}𝑘∈𝑀󸀠
must be bounded. By contradiction, assuming that
lim𝑀󸀠∋𝑘→+∞‖𝜌𝑘‖ = +∞ for some {x̂𝑖(x𝑖[𝑘])}𝑀󸀠 , dividing both
sides of (A.19) by ‖𝜌𝑘‖, and taking the limit 𝑀󸀠 ∋ 𝑘 → ∞,
we can obtain

−∑
𝑠∈𝐼

𝜌𝑠∇𝑔𝑠 (x𝑖) ∈ 𝑁K (x𝑖) ;
0 ≤ 𝜌𝑠 ⊥ 𝑔𝑠 (x𝑖) ≤ 0, 𝑠 ∈ 𝐼,

(A.20)

for some 𝜌 = (𝜌𝑠)𝑠∈𝐼 ̸= 0, in contradiction with Definition 3.
Therefore, the sequence {𝜌𝑘 = (𝜌𝑘𝑠 )𝑠∈𝐼}𝑘∈𝑀󸀠 must have a

limit. Let (𝜌𝑠)𝑠∈𝐼 be such a limit (after a suitable remunera-
tion). Taking the limit𝑀󸀠 ∋ 𝑘 → ∞ in (A.19), and combining
(A.14) and (A.15) along with the outer semicontinuity of the
mapping𝑁K(⋅), we have
− [
[∇𝐹 (x𝑖) +∑

𝑠∈𝐼

𝜌𝑠∇𝑔𝑠 (x𝑖)]] ∈ 𝑁K (x𝑖) ;
0 ≤ 𝜌𝑠 ⊥ 𝑔𝑠 (x𝑖) ≤ 0, 𝑠 ∈ 𝐼.

(A.21)

By (A.21), x𝑖 is a stationary solution of problem (1).

(3) Proof ofTheorem 7.Using the descent lemma on𝐹, Steps 5
and 6(a) of Algorithm 1 and (A.1), we obtain

𝐹 (x [𝑘 + 1])
≤ 𝐹 (x [𝑘])

+ 𝛼 [𝑘]𝑁 ∇𝐹 (x [𝑘])𝑇 𝑁∑
𝑖=1

(x̃𝑖 [𝑘] − x [𝑘])
+ 𝐿max2𝑁 (𝛼 [𝑘])2 𝑁∑

𝑖=1

󵄩󵄩󵄩󵄩x̃𝑖 [𝑘] − x𝑖 [𝑘]󵄩󵄩󵄩󵄩2 .
(A.22)

Summing and subtracting (𝛼[𝑘]/𝑁)∇𝐹(x[𝑘])𝑇∑𝑁𝑖=1(x̃𝑎V𝑖 [𝑘] +
x̂𝑖(x[𝑘])) to the right side of inequality (A.22), we have
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𝐹 (x [𝑘 + 1]) ≤ 𝐹 (x [𝑘])
+𝛼 [𝑘]𝑁 ∇𝐹 (x [𝑘])𝑇 𝑁∑

𝑖=1

(x̃𝑎V𝑖 [𝑘] − x̂𝑖 (x [𝑘])) + 𝛼 [𝑘]𝑁 ∇𝐹 (x [𝑘])𝑇 𝑁∑
𝑖=1

(x̂𝑖 (x [𝑘]) − x [𝑘])
+𝛼 [𝑘]𝑁 ∇𝐹 (x [𝑘])𝑇 𝑁∑

𝑖=1

(x̃𝑖 [𝑘] − x̃𝑎V𝑖 [𝑘]) + 𝐿max2𝑁 (𝛼 [𝑘])2 𝑁∑
𝑖=1

󵄩󵄩󵄩󵄩x̃𝑖 [𝑘] − x𝑖 [𝑘]󵄩󵄩󵄩󵄩2 .
(A.23)

Nextwe evaluate the third termon the right side of (A.23).
For a given x[𝑘] ∈ 𝜒, let x̂𝑖(x[𝑘]) be the unique solution of
subproblem (9). By the optimal condition of subproblem (9),
we have, for all y𝑖 ∈ 𝜒,

(y𝑖 − x̂𝑖 (x [𝑘]))𝑇 ∇𝐹𝑖 (x̂𝑖 (x [𝑘]) ; x [𝑘]) ≥ 0. (A.24)

Adding and subtracting ∇𝐹𝑖(y𝑖; x[𝑘]), and using Assump-
tion 5(C3), we get

(y𝑖 − x̂𝑖 (x [𝑘]))𝑇 ∇𝐹𝑖 (y𝑖; x [𝑘]) ≥ (x̂𝑖 (x [𝑘]) − y𝑖)𝑇
⋅ (∇𝐹𝑖 (x̂𝑖 (x [𝑘]) ; x [𝑘]) − ∇𝐹𝑖 (y𝑖; x [𝑘]))
≥ 𝜏𝑖 󵄩󵄩󵄩󵄩x̂𝑖 (x [𝑘]) − y𝑖

󵄩󵄩󵄩󵄩2 ,
(A.25)

where the second inequality of (A.25) is obtained by Assump-
tion 5(C1) and Lemma 7 in [22].

Letting y𝑖 = x[𝑘] in (A.25) and noting that

∇𝐹𝑖 (x [𝑘] ; x [𝑘]) = ∇𝑓𝑖 (x [𝑘]) + 𝜋 (x [𝑘])
= ∇𝑓𝑖 (x [𝑘]) + 𝜋 (x [𝑘])
= ∇𝐹 (x [𝑘]) ,

(A.26)

we have, for 𝑖 = 1, . . . , 𝑁,

(x [𝑘] − x̂𝑖 (x [𝑘]))𝑇 ∇𝐹 (x [𝑘])
≥ 𝜏 󵄩󵄩󵄩󵄩x̂𝑖 (x [𝑘]) − x [𝑘]󵄩󵄩󵄩󵄩2 ,

(A.27)

where 𝜏 = min𝑖𝜏𝑖. Summing inequality (A.27) from 𝑖 = 1 to𝑁, we can obtain the following relation:

𝛼 [𝑘]𝑁 ∇𝐹 (x [𝑘])𝑇 𝑁∑
𝑖=1

(x̂𝑖 (x [𝑘]) − x [𝑘])

≤ −𝜏𝛼 [𝑘]𝑁
𝑁∑
𝑖=1

󵄩󵄩󵄩󵄩x̂𝑖 (x [𝑘]) − x [𝑘]󵄩󵄩󵄩󵄩2 .
(A.28)

By (A.23), (A.28), (A.7), Assumption 2(B4), and the triangle
inequalities, we can get

𝐹 (x [𝑘 + 1]) ≤ 𝐹 (x [𝑘])
− 𝜏𝛼 [𝑘]𝑁

𝑁∑
𝑖=1

󵄩󵄩󵄩󵄩x̂𝑖 (x [𝑘]) − x [𝑘]󵄩󵄩󵄩󵄩2

+ 𝑚2𝐿max2 𝛼 [𝑘]2
+ 𝐿𝐹𝑁 𝛼 [𝑘] 𝑁∑

𝑖=1

󵄩󵄩󵄩󵄩x̃𝑎V𝑖 [𝑘] − x̂𝑖 (x [𝑘])󵄩󵄩󵄩󵄩
+ 𝐿𝐹𝑁 𝛼 [𝑘] 𝑁∑

𝑖=1

󵄩󵄩󵄩󵄩x̃𝑖 [𝑘] − x̃𝑎V𝑖 [𝑘]󵄩󵄩󵄩󵄩 .

(A.29)

Let

𝑌 [𝑘] = 𝐹 (x [𝑘]) ,
𝑋 [𝑘] = 𝜏𝛼 [𝑘]𝑁

𝑁∑
𝑖=1

󵄩󵄩󵄩󵄩x̂𝑖 (x [𝑘]) − x [𝑘]󵄩󵄩󵄩󵄩2 ,
𝑍 [𝑘] = 𝐿𝐹𝑁 𝛼 [𝑘] 𝑁∑

𝑖=1

󵄩󵄩󵄩󵄩x̃𝑎V𝑖 [𝑘] − x̂𝑖 (x [𝑘])󵄩󵄩󵄩󵄩
+ 𝐿𝐹𝑁 𝛼 [𝑘] 𝑁∑

𝑖=1

󵄩󵄩󵄩󵄩x̃𝑖 [𝑘] − x̃𝑎V𝑖 [𝑘]󵄩󵄩󵄩󵄩
+ 𝑚2𝐿max2 𝛼 [𝑘]2 .

(A.30)

By (A.9), (A.10), (20), and (A.7), we have ∑∞𝑘=1 𝑍[𝑘] < ∞.
Since 𝐹(x[𝑘]) is coercive, it follows from Lemma A.1 that{𝐹(x[𝑘])} is convergent to a finite value, and
∞∑
𝑘=1

𝛼 [𝑘] 󵄩󵄩󵄩󵄩x̂𝑖 (x [𝑘]) − x [𝑘]󵄩󵄩󵄩󵄩2 < ∞, ∀𝑖 = 1, . . . , 𝑁. (A.31)

Combining the inequality above and (20), we have

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩x̂𝑖 (x [𝑘]) − x [𝑘]󵄩󵄩󵄩󵄩 = 0, ∀𝑖 = 1, . . . , 𝑁. (A.32)

By a similar argument as in [22], we can obtain that
limsup𝑘→∞‖x̂𝑖(x[𝑘]) − x[𝑘]‖ = 0, ∀𝑖 = 1, . . . , 𝑁. Thus,
we have lim𝑘→∞‖x̂𝑖(x[𝑘]) − x[𝑘]‖ = 0, ∀𝑖 = 1, . . . , 𝑁.
By Assumption 2(B5) and the convergence of {𝐹(x[𝑘])}, the
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sequence {x[𝑘]} is bounded. Furthermore, the sequence of{x[𝑘]} has at least one limit point x∞ ∈ 𝜒. Owing to the
continuity of any x̂𝑖(⋅) and lim𝑘→∞‖x̂𝑖(x[𝑘]) − x[𝑘]‖ = 0,
x̂𝑖(x∞) = x∞ must exist for all 𝑖; therefore, x∞ is a stationary
solution of problem (1) by (i) of Lemma 6.Thus, statement (i)
of the theorem is proved, and statement (ii) readily follows
from (A.8).
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