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Cannibalism, the act of killing and consumption of conspecifics, is generally considered to be a stabilising process in ODE models
of predator-prey systems. On the other hand, Sun et al. were the first to show that cannibalism can cause Turing instability, in the
classical Rosenzweig-McArthur two-species PDE model, which is an impossibility without cannibalism. Magnússon’s classic work
is the first to show that cannibalism in a structured three-species predator-prey ODE model can actually be destabilising. In the
current manuscript we consider the PDE form of the three-species model proposed in Magnússon’s classic work. We prove that, in
the absence of cannibalism, Turing instability is an impossibility in this model, for any range of parameters. However, the inclusion
of cannibalism can cause Turing instability. Thus, to the best of our knowledge, we report the first cannibalism induced Turing
instability result, in spatially explicit three-species age structured predator-prey systems. We also show that, in the classical ODE
model proposed by Magnússon, cannibalism can act as a life boat mechanism, for the prey.

1. Introduction

Background. Cannibalism is defined as the act of killing and
at least partial consumption of conspecifics. It is ubiquitous
in natural predator-prey communities [1] and is observed in
more than 1300 species in nature [2]. It occurs as a socioan-
thropological as well as ecological phenomenon [3, 4], in
many varied forms. For example, a sect of ascetics in North-
ern India, called “Aghoris,” consume corpses in the belief
that such ritualistic practice, or endocannibalism, will enable
them to attain immortality [5]. Cannibalism is also rampant
amongst certain insects. Many arachnid species practice
sexual cannibalism, where the female cannibalises her mate,
before, during, or after copulation. In population models,
the inclusion of cannibalism can bring about interesting and
sometimes counter intuitive dynamics, such as the life boat
mechanism.Therein the act of cannibalism causes persistence
in a population, otherwise doomed to go extinct [6]. The
effects of climate change induced cannibalism have also been
intensely investigated recently [7–9].

A detailed survey of the current and past mathemat-
ical literature on cannibalism shows that various types of

predator-preymodels have been investigated [6, 10–16]. Most
works in the literature consider cannibalism in the predator
species. However, there are a few works that involve canni-
balism among prey as well [17]. In most models, cannibalism
is seen to have a strong stabilising influence [11, 14]. But
some works do report that it can destabilize as well [18].
Since species disperse in space in search of food, shelter,
and mates and to avoid predators, spatially dispersing pop-
ulations are often modeled via partial differential equations
(PDE)/spatially explicitmodels of interacting species [19–22].
Of particular interest to many is the phenomenon of Turing
instability, first introduced by Turing [23], which shows that
diffusion in a system can lead to pattern forming instabilities.
In the context of cannibalism, there are very few works in the
literature that consider spatially explicit models and investi-
gate Turing instability therein. Sun et al. [24] were the first to
show that cannibalism in the classical diffusive Rosenzweig-
McArthur model can bring about Turing patterns. This is an
impossibility in the system without cannibalism. Fasani and
Rinaldi [25] generalised the cannibalism term from [24] and
found that cannibalism can still bring about Turing patterns.
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The above models consider cannibalism amongst the preda-
tors. In [17] we found that cannibalism amongst prey can also
bring about Turing patterns, in the spatially explicit Holling-
Tanner model, with ratio dependent functional response.

One approach in the literature, when considering ODE
models, has been to structure the predator class into adults
and juveniles and allow cannibalism of the juvenile predator
by the adult predator. This essentially yields a three-species
age structured ODE model. The reader is referred to [12,
14, 27], and again therein cannibalism is seen to provide a
stabilising influence, depending on parameter regime. How-
ever, depending on model structure and parameter regimes,
cannibalism can also destabilize [1, 17, 18]. To the best of our
knowledge, there is a complete lack of investigation of the
effects of cannibalism, on the stability of spatially explicit/
PDE three-species predator-prey models, with age structure
(or without).

Classical Model of Magnússon. To this end we investigate the
spatially explicit version of the model first proposed in [18]
by Magnússon and further analyzed by Kaewmanee et al.
[26, 28]. Magnússon proposed and investigated the following
structured three-species predator-prey model, where 𝑋(𝑡),𝑌(𝑡), and𝑍(𝑡) are the biomass of an adult predator, a juvenile
predator, and prey, at a given time 𝑡. The interaction between
these three classes is described below:

𝑑𝑋𝑑𝑡 = −𝑀1𝑋 + 𝐴𝑌 + 𝐶𝑋𝑍 + 𝛾󸀠𝑆𝑋𝑌
𝑑𝑌𝑑𝑡 = 𝑅𝑋 − 𝐴𝑌 −𝑀2𝑌 − 𝑆𝑋𝑌
𝑑𝑍𝑑𝑡 = 𝑇𝑍 − 𝑈𝑍2 − 𝑉𝑋𝑍.

(1)

Essentially the predator species is structured into adults𝑋(𝑡) and juveniles 𝑌(𝑡), with the adult predators feeding on a
prey species 𝑍(𝑡). Note all parameters are positive constants,
and the system goes along with suitable positive initial
conditions. 𝑀1 is the death rate of adult predators, 𝑀2 is
the death rate of juvenile predators, 𝐴 is the growth rate of
adults predators (juveniles grow into adults), 𝑅 is the growth
rate of juveniles due to adults, 𝐶 is the predators growth
rate due to preying, 𝑇 is the birth rate of prey, and 𝑉 is the
predators attack rate on prey. 𝑆 is the cannibalism rate, and𝛾󸀠 is the conversion efficiency of eaten juveniles into adults.
For further details see [18]. Magnússon finds that, in this
particular model, the effect of including cannibalism is to
destabilise the interior equilibrium, leading to limit cycle
dynamics, through a Hopf bifurcation. This result is contrary
to many others in the literature, where cannibalism is found
to be stabilising. Note one of the problematic issues in [18]
is the scaling of the predator attack rate parameter, 𝑉, which
scales like𝑉 ≈ 1/𝑆, where 𝑆 is the cannibalism rate parameter.
A possible reasoning here is that if 𝑉 ≈ 1/𝑆, then 𝑆 ≈ 1/𝑉.
So if predation/attack rate on regular prey is high, or 𝑉 ≫ 1,
there is almost no need for cannibalism, and 𝑆 ≪ 1. A closer
examination of the model reveals two causes for concern:

(i) This scaling does not permit one to consider the lim-
iting case of no cannibalism (𝑆 = 0), in a tractable
way.

(ii) There is a prey free equilibrium or no “cost” to the
adult as he cannibalises the juvenile.

RescaledModel of Tang. Part of these issueswas first addressed
in [26], where a more refined form of scaling is introduced.

𝑢1 = 𝑉𝑀1𝑋,
V1 = 𝑉𝐴𝑀21 𝑌,
𝑟1 = 𝐶𝑀1𝑍,
𝜏 = 𝑀1𝐶 𝑡,

(2)

where 𝑡1 = 𝑇/𝑀1,𝑚 = (𝐴 +𝑀2)/𝑀1, 𝑟 = 𝑅𝐴/𝑀21 , 𝑢 = 𝑈/𝐶,𝛾 = 𝛾󸀠𝑀1/𝐴, 𝑠 = 𝑆/𝑉.
This yields the following nondimensionalised system,

with fewer parameters

𝑑𝑢1𝑑𝜏 = −𝑢1 + V1 + 𝑢1𝑟1 + 𝛾𝑠𝑢1V1
𝑑V1𝑑𝜏 = 𝑟𝑢1 − 𝑚V1 − 𝑠𝑢1V1
𝑑𝑟1𝑑𝜏 = 𝑡1𝑟1 − 𝑢 (𝑟1)2 − 𝑢1𝑟1.

(3)

Here typically 𝛾 < 1, but not necessarily. Now the can-
nibalism parameter 𝑠 can be followed closely. In fact one can
tractably take the limit as 𝑠 → 0, to obtain the model without
cannibalism,

𝑑𝑢1𝑑𝜏 = −𝑢1 + V1 + 𝑢1𝑟1
𝑑V1𝑑𝜏 = 𝑟𝑢1 − 𝑚V1

𝑑𝑟1𝑑𝜏 = 𝑡1𝑟1 − 𝑢 (𝑟1)2 − 𝑢1𝑟1.
(4)

The results that Kaewmanee and Tang find are in accor-
dance with Magnússon; that is increasing the cannibalism
parameter can lead to the stable interior equilibrium losing
stability, leading to limit cycle dynamics. Kaewmanee and
Tang’s results, unlike Magnússon, are not limited to the
case where there is high juvenile mortality and/or low adult
recruitment. However, the Hopf bifurcation analysis as
worked out in [26] is incorrect.

Our primary contributions in the current manuscript are
the following:

(i) We explore the spatially explicit forms of the models,
(3) and (4), and show global existence of solutions via
Theorem 2 and Corollary 3.
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(ii) We show that the spatially explicit model without
cannibalism does not possess Turing instability in
any parameter regime viaTheorem 4. However, intro-
ducing cannibalism can certainly bring about Turing
instability, via Theorem 14. To the best of our knowl-
edge, this is the first cannibalism induced Turing
instability result, in age structured three-species PDE
models.

(iii) We derive the correct form of Hopf bifurcation in the
classic ODE model proposed in [18] via Theorem 15.
Note again that the previousHopf bifurcation analysis
as worked out in [26] is incorrect.

(iv) Wenumerically show that cannibalism can act as a life
boat mechanism in the prey and conjecture that it can
act as a life boatmechanism in both predator and prey
via Conjectures 16 and 18.

(v) We discuss ecological interpretations, based on our
work.

We relegate the details of the ODE stability analysis, as
well as generic Turing instability conditions, to the Appendix.
Some of these are also readily available in the literature [19,
26], so they are included in the Appendix only for complete-
ness and benefit of the reader.

2. Spatially Explicit Model

Since species disperse in space in search of food, shelter,
and mates and to avoid predators, spatially dispersing pop-
ulations are often modeled via partial differential equations
(PDE)/spatially explicitmodels of interacting species [19–22].
In this section we shall investigate the effects of diffusion
induced instability in the models (4) and (3). We state the
form of the one-dimensional spatially explicit model with no
cannibalism,

𝑢1𝑡 = 𝑑1𝑢1𝑥𝑥 − 𝑢1 + V1 + 𝑢1𝑟1
V1𝑡 = 𝑑2V1𝑥𝑥 + 𝑟𝑢1 − 𝑚V1

𝑟1𝑡 = 𝑑3𝑟1𝑥𝑥 + 𝑡1𝑟1 − 𝑢 (𝑟1)2 − 𝑢1𝑟1,
(5)

𝛾 < 1, and our domainΩ = [0, 𝜋].
We prescribe Neumann boundary conditions

𝑢1𝑥 = V1𝑥 = 𝑟1𝑥 = 0 (6)

and suitable positive initial conditions

𝑢1 (𝑥, 0) > 0,
V1 (𝑥, 0) > 0,
𝑟1 (𝑥, 0) > 0.

(7)

Here 𝑢1(𝑥, ⋅), V1(𝑥, ⋅), 𝑟1(𝑥, ⋅) are the concentrations/
population densities of the prey, the juvenile predator, and the
adult predator, at any given time 𝑡, respectively. We next state
the form of the one-dimensional spatially explicit model with
cannibalism

𝑢1𝑡 = 𝑑1𝑢1𝑥𝑥 − 𝑢1 + V1 + 𝑢1𝑟1 + 𝛾𝑠𝑢1V1 (8)

V1𝑡 = 𝑑2V1𝑥𝑥 + 𝑟𝑢1 − 𝑚V1 − 𝑠𝑢1V1 (9)

𝑟1𝑡 = 𝑑3𝑟1𝑥𝑥 + 𝑡1𝑟1 − 𝑢 (𝑟1)2 − 𝑢1𝑟1, (10)

𝛾 < 1, and our domainΩ = [0, 𝜋].
We prescribe Neumann boundary conditions

𝑢1𝑥 = V1𝑥 = 𝑟1𝑥 = 0 (11)

and suitable positive initial conditions

𝑢1 (𝑥, 0) > 0,
V1 (𝑥, 0) > 0,
𝑟1 (𝑥, 0) > 0.

(12)

Here 𝑢1(𝑥, ⋅), V1(𝑥, ⋅), 𝑟1(𝑥, ⋅) are the concentrations/
population densities of the prey, the juvenile predator, and the
adult predator, at any given time 𝑡, respectively.
2.1. Functional Preliminaries and Local Solutions. We now
present various function space notations and definitions that
will be used frequently.The usual norms in the spaces L𝑝(Ω),
L∞(Ω), and C(Ω) are, respectively, denoted by

|𝑢|𝑝𝑝 = 1|Ω| ∫Ω |𝑢 (𝑥)|𝑝 𝑑𝑥,
|𝑢|∞ = max

𝑥∈Ω
|𝑢 (𝑥)| . (13)

It is well known that, under the “regularizing effect
principle” to prove global existence of solutions to (8)–(10),
[29], it suffices to derive uniform estimates on 𝐿𝑝, norms of
the reaction terms, on [0, 𝑇max[, for some 𝑝 > 𝑛/2, where 𝑛
is the spatial dimension of the domain Ω, and the reaction
terms in our setting are given in (8)–(10). Here 𝑇max denotes
the eventual blowing-up time in L∞(Ω). The following local
existence result is well known [30].

Lemma 1. System (8)–(10) admits a unique, classical solution(𝑢1, V1, 𝑟1) on [0, 𝑇max[×Ω. If 𝑇max < ∞ then

lim
𝑡↗𝑇max

{󵄩󵄩󵄩󵄩󵄩𝑢1 (𝑡, ⋅)󵄩󵄩󵄩󵄩󵄩∞ + 󵄩󵄩󵄩󵄩󵄩V1 (𝑡, ⋅)󵄩󵄩󵄩󵄩󵄩∞ + 󵄩󵄩󵄩󵄩󵄩𝑟1 (𝑡, ⋅)󵄩󵄩󵄩󵄩󵄩∞} = ∞. (14)

Proof. Since the reaction terms are continuously differen-
tiable in the positive octant, then for any initial data in C(Ω)
or L𝑝(Ω), 𝑝 ∈ (1, +∞), it is easy to check directly their
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Lipschitz continuity on bounded subsets of the domain of
a fractional power of the operator 𝐼3(𝑑1, 𝑑2, 𝑑3)𝑡Δ, where 𝐼3
is the three-dimensional identity matrix, Δ is the Laplacian
operator, and ( )𝑡 denotes the transposition.
2.2. Control of Mass and 𝐿1(Ω) Estimates. Note, in order to
derive global existence via application of [29], we are required
to derive uniform in time 𝐿𝑝 estimates on the reaction terms
in (8)–(10), for 𝑝 > 1/2. We will restrict ourselves to the case𝑛 = 1. To this end (8) poses a difficulty via the 𝛾𝑠𝑢1V1 term.
We proceed by multiplying (9) by 𝛾 and adding up equations
(8) and (9) to yield

𝑢1t + 𝛾V1𝑡 = 𝑑1𝑢1𝑥𝑥 + 𝑑2𝛾V1𝑥𝑥 + (𝑟𝛾 − 1) 𝑢1
+ (1 − 𝛾𝑚) V1 + 𝑢1𝑟1. (15)

We now define the grouped variable 𝑊 = 𝑢1 + 𝛾V1 and
integrate the above equation in space to obtain

𝑑𝑑𝑡 ∫Ω𝑊(𝑥, 𝑡) 𝑑𝑥
= ∫
Ω
((𝑟𝛾 − 1) 𝑢1 + (1 − 𝛾𝑚) V1 + 𝑢1𝑟1) 𝑑𝑥

≤ max ((𝑟𝛾 − 1) , (1 − 𝛾𝑚) , 󵄩󵄩󵄩󵄩󵄩𝑟1󵄩󵄩󵄩󵄩󵄩∞)
⋅ ∫
Ω
(𝑢1 + V1) 𝑑𝑥 ≤ 𝐶

⋅max ((𝑟𝛾 − 1) , (1 − 𝛾𝑚) , 󵄩󵄩󵄩󵄩󵄩𝑟1󵄩󵄩󵄩󵄩󵄩∞)
⋅ ∫
Ω
(𝑢1 + 𝛾V1) 𝑑𝑥 = 𝐶

⋅max ((𝑟𝛾 − 1) , (1 − 𝛾𝑚) , 󵄩󵄩󵄩󵄩󵄩𝑟1󵄩󵄩󵄩󵄩󵄩∞)∫
Ω
𝑊(𝑥, 𝑡) 𝑑𝑥.

(16)

Now the uniform in time 𝐿1 bound on 𝑊 and thus on𝑢1, V1 easily follows via applying Gronwall’s lemma on (16),
on any time interval [0, 𝑇], to yield
󵄩󵄩󵄩󵄩󵄩𝑢1󵄩󵄩󵄩󵄩󵄩𝐿1(Ω) ≤ 󵄩󵄩󵄩󵄩󵄩𝑢10 + 𝛾V10󵄩󵄩󵄩󵄩󵄩𝐿1(Ω) 𝑒(𝐶max((𝑟𝛾−1),(1−𝛾𝑚),‖𝑟1‖∞))𝑇, (17)

󵄩󵄩󵄩󵄩󵄩V1󵄩󵄩󵄩󵄩󵄩𝐿1(Ω)
≤ 󵄩󵄩󵄩󵄩󵄩𝑢10 + 𝛾V10󵄩󵄩󵄩󵄩󵄩𝐿1(Ω) 1𝛾𝑒(𝐶max((𝑟𝛾−1),(1−𝛾𝑚),‖𝑟1‖∞))𝑇

(18)

with the bound depending on only the final time 𝑡 = 𝑇. This
follows as the equation for 𝑟1 is amenable to make essentially
any estimate on 𝑟1, by comparing it to the diffusive logistic
equation. We now deal with the problematic term which is

the 𝑢1V1 term. However, integrating (9) inΩ×[0, 𝑇] = Ω𝑇 we
obtain

∫
Ω
V1 (⋅, 𝑇) 𝑑𝑥 + 𝑠∫

Ω𝑇

𝑢1V1𝑑𝑥 𝑑𝑡
= 𝑟∫
Ω𝑇

𝑢1 − 𝑚∫
Ω𝑇

𝑟V1 + ∫
Ω
V10𝑑𝑥.

(19)

Thus

󵄩󵄩󵄩󵄩󵄩𝑢1V1󵄩󵄩󵄩󵄩󵄩Ω𝑇 ≤ 𝑟𝑠 ∫Ω𝑇 𝑢
1 + 1𝑠 ∫Ω V10𝑑𝑥

≤ 𝑟𝑠 ∫
𝑇

0

󵄩󵄩󵄩󵄩󵄩𝑢10 + 𝛾V10󵄩󵄩󵄩󵄩󵄩𝐿1(Ω) 𝑒(𝐶max((𝑟𝛾−1),(1−𝛾𝑚),‖𝑟1‖∞))𝑡𝑑𝑡
+ 1𝑠 󵄩󵄩󵄩󵄩󵄩V10󵄩󵄩󵄩󵄩󵄩𝐿1(Ω)

= 𝑟𝑠
󵄩󵄩󵄩󵄩󵄩𝑢10 + 𝛾V10󵄩󵄩󵄩󵄩󵄩𝐿1(Ω) 𝑒(𝐶max((𝑟𝛾−1),(1−𝛾𝑚),‖𝑟1‖∞))𝑇

(𝐶max ((𝑟𝛾 − 1) , (1 − 𝛾𝑚) , 󵄩󵄩󵄩󵄩𝑟1󵄩󵄩󵄩󵄩∞))
− 1󵄩󵄩󵄩󵄩𝑢10 + 𝛾V10󵄩󵄩󵄩󵄩𝐿1(Ω) .

(20)

This follows from the 𝐿1(Ω) estimate on 𝑢1, via (17).
Thus we have 𝐿1(Ω𝑇) control of the problematic nonlinearity.
Thus we see we can uniformly bound all of the reaction
terms in𝐿1(Ω𝑇) and by bootstrap argument then bound them
uniformly in 𝐿𝑝 to deduce global existence [29]. So we can
state the following theorem.

Theorem 2. Consider the spatially explicit three-species model
with cannibalism (8)–(10), where the spatial dimension of the
physical domain is 𝑛 = 1. Solutions to this model are classical,
that is, (𝑢1, V1, 𝑟1) ∈ 𝐶1(0, 𝑇; 𝐶2(Ω)), and exist globally in time.

A simple corollary toTheorem 2 can be stated concerning
the model without cannibalism.

Corollary 3. Consider the spatially explicit three-species mod-
el without cannibalism (5). Solutions to this model are classical,
that is, (𝑢1, V1, 𝑟1) ∈ 𝐶1(0, 𝑇; 𝐶2(Ω)), and exist globally in time.

2.3. Nonexistence of Turing Instability in the Model without
Cannibalism. We state and prove the following theorem.

Theorem 4. Consider the three-species spatially explicit model
without cannibalism (5).The spatially homogenous steady state(𝑢1∗, V1∗, 𝑟1∗) of thismodel cannot be driven unstable by diffusion,
for any parameter regime.

Proof. We show this directly by checking the necessary con-
ditions for Turing instability from [19]. Note for Turing insta-
bility to occur we have certain necessary conditions on the
coefficients of the characteristic polynomial, gotten by lin-
earizing (5), around the spatially homogenous equilibrium



Complexity 5

Table 1: Coefficients of cubic functions 𝐴1(𝑘2)𝐴2(𝑘2) − 𝐴3(𝑘2) used in determining conditions for Turing instability.

Coefficient 𝐴3(𝑘2) [𝐴1𝐴2 − 𝐴3](𝑘2)
ℎ 𝐽11𝐽32𝐽23 + 𝐽12𝐽21𝐽33 − 𝐽11𝐽22𝐽33 𝐽11𝐽22𝐽33 − (𝐽11 + 𝐽22 + 𝐽33)(𝐽11𝐽22 − 𝐽12𝐽21 + 𝐽11𝐽33 + 𝐽22𝐽33 −𝐽23𝐽32) − 𝐽11𝐽23𝐽32 − 𝐽12𝐽21𝐽33
𝑑 𝑑1(𝐽22𝐽33 − 𝐽32𝐽23) + 𝑑2𝐽11𝐽33 + 𝑑3(𝐽11𝐽22 − 𝐽12𝐽21) 𝑑1(2𝐽11𝐽33 + 2𝐽11𝐽22 + 2𝐽22𝐽33 + 𝐽33𝐽33 + 𝐽22𝐽22 − 𝐽12𝐽21) +𝑑2(2𝐽22𝐽11 + 2𝐽22𝐽33 + 2𝐽33𝐽11 + 𝐽11𝐽11 + 𝐽33𝐽33 − 𝐽21𝐽12 −𝐽23𝐽32)+𝑑3(2𝐽22𝐽11 +2𝐽22𝐽33 +2𝐽33𝐽11 +𝐽11𝐽11 +𝐽22𝐽22 −𝐽23𝐽32)
𝑐 −𝑑1𝑑2𝐽33 − 𝑑1𝑑3𝐽22 − 𝑑2𝑑3𝐽11 −𝐽11(𝑑2 + 𝑑3)(2𝑑1 + 𝑑2 + 𝑑3) − 𝐽22(𝑑1 + 𝑑3)(𝑑1 + 2𝑑2 + 𝑑3) −𝐽33(𝑑1 + 𝑑2)(𝑑1 + 𝑑2 + 2𝑑3)𝑏 𝑑1𝑑2𝑑3 (𝑑2 + 𝑑3)(𝑑1𝑑1 + 𝑑2𝑑3 + 𝑑1𝑑2 + 𝑑1𝑑3)

(𝑢1∗, V1∗, 𝑟1∗). See the Appendix andTheorem C.1 therein. Note
that the Jacobian matrix of the reaction terms of the model
without cannibalism at the spatially homogenous equilibrium(𝑢1∗, V1∗, 𝑟1∗) is given by

𝐽 = [[[[[
[

− 𝑟𝑚 1 (−𝑢 + 𝑢𝑟𝑚 + 𝑡1)𝑟 −𝑚 0
−1 + 𝑟𝑚 0 − 1𝑚𝑢 (𝑚 − 𝑟)

]]]]]
]
. (21)

We now check the necessary conditions for Turing insta-
bility from Table 1, where we take the 𝐽𝑖𝑖 entries, from the
above matrix.

We first check the coefficient 𝑐 of 𝐴3,

𝑐 = − [−𝑑1𝑑2𝑢𝑟1∗ − 𝑑1𝑑3 (𝑚) − 𝑑2𝑑3 ( 𝑟𝑚)] > 0. (22)

We next check the coefficient 𝑐 of 𝐴1𝐴2 − 𝐴3,

𝑐 = [ 𝑟𝑚 (𝑑2 + 𝑑3) (2𝑑1 + 𝑑2 + 𝑑3)
+ 𝑚 (𝑑1 + 𝑑3) (𝑑1 + 2𝑑2 + 𝑑3)
+ 𝑢𝑟1∗ (𝑑2 + 𝑑1) (𝑑1 + 𝑑2 + 2𝑑3)] > 0.

(23)

We next check the coefficient 𝑑 of 𝐴3,

𝑑 = 𝑑1 (𝑚 (𝑢𝑟1∗)) + 𝑑2 ((𝑟1∗ − 1) (−𝑢𝑟1∗) + 𝑢1∗𝑟1∗)
+ 𝑑3 (−𝑚 (𝑟1∗ − 1) − 𝑟)

= 𝑑1 (𝑚 (𝑢𝑟1∗)) + 𝑑2 ((𝑟1∗ − 1) (−𝑢𝑟1∗) + 𝑢1∗𝑟1∗)
> 0.

(24)

We next check the coefficient 𝑑 of 𝐴1𝐴2 − 𝐴3,
𝑑 = 𝑑1 ( 2𝑟𝑚2 𝑢 (𝑚 − 𝑟) + 𝑟 + 2𝑢 (𝑚 − 𝑟)

+ ( 1𝑚𝑢 (𝑚 − 𝑟))2 + (𝑚)2 + 𝑢1∗𝑟1∗)
+ 𝑑2 ( 2𝑟𝑚2 𝑢 (𝑚 − 𝑟) + 𝑟 + 2𝑢 (𝑚 − 𝑟)
+ ( 1𝑚𝑢 (𝑚 − 𝑟))2 + ( 𝑟𝑚)2) + 𝑑3 ( 2𝑟𝑚2 𝑢 (𝑚 − 𝑟)
+ 2𝑟 + 2𝑢 (𝑚 − 𝑟) + (𝑚)2 + ( 𝑟𝑚)2 + 𝑢1∗𝑟1∗) > 0.

(25)

Since all of these coefficients are positive, the result follows as
an application ofTheorem C.1 from the Appendix and simple
contraposition. This proves the theorem.

Remark 5. Note that Theorem 4 shows that there does not
exist Turing instability in the model without cannibalism (5),
for any parameter regime.

2.4. Existence of Turing Instability with Cannibalism. Given
that there is no Turing instability in the model without
cannibalism (5), we now investigate the effect of including
cannibalism, on Turing instability in the model. To this end
we investigate the spatially explicit model (8)–(10). We first
introduce several structure theorems from linear algebra in
the literature [31–33].

Definition 6 (strongly stable). A real matrix 𝐴 is said to be
strongly stable if 𝐴 − 𝐷 is stable for all diagonal matrices𝐷.

Definition 7. Let 𝑃 denote the class of matrices whose signed
principal minors are all positive and 𝑃+0 the class whose
signed principal minors are all nonnegative, with one of each
order positive.

Theorem 8. A 3×3 real matrix𝐴 is strongly stable if and only
if 𝐴 ∈ 𝑃+0 , and 𝐴 is stable.

Theorem 9. 𝐴 is strongly stable if and only if 𝐴 is s-stable.
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Theorem 10. If the kinetic system

𝑑𝑢𝑑𝑡 = 𝑓 (𝑢, V, 𝑟)
𝑑V𝑑𝑡 = 𝑔 (𝑢, V, 𝑟)
𝑑𝑟𝑑𝑡 = ℎ (𝑢, V, 𝑟)

(26)

is s-stable, then no Turing bifurcation is possible from the
uniform steady state solution.

Theorem 11. If the kinetic system

𝑑𝑢𝑑𝑡 = 𝑓 (𝑢, V, 𝑟)
𝑑V𝑑𝑡 = 𝑔 (𝑢, V, 𝑟)
𝑑𝑟𝑑𝑡 = ℎ (𝑢, V, 𝑟)

(27)

contains an unstable subsystem, then Turing bifurcation is
possible from the uniform steady state solution.

Remark 12. We will now use the above theory to show that
cannibalism can in fact induce Turing instability. We will
first show that the Jacobian matrix of the reaction terms
of the model with cannibalism (8)–(10), given by (A.2), is
not strongly stable, for certain values of the cannibalism
parameter 𝑠. This will yield the result as a simple corollary
to Theorems 9 and 10. Note similar ideas were used in [32],
to show that a certain SEIR type epidemics model does not
possess Turing instability, as long as the disease-caused death
rate parameter is zero, but can have Turing patterns for
positive disease-caused death rate.

Recall the Jacobian matrix of the reaction terms of the
model with cannibalism is given by

𝐽 = [[[
[

𝑟1∗ − 1 + 𝛾𝑠V1∗ 1 + 𝛾𝑠𝑢1∗ 𝑢1∗
𝑟 − 𝑠V1∗ −𝑚 − 𝑠𝑢1∗ 0
−𝑟1∗ 0 𝑡1 − 2𝑢𝑟1∗ − 𝑢1∗

]]]
]

= [[
[
free + +
+ − 0
− 0 −

]]
]
.

(28)

Remark 13. Noticewewrite the sign of 𝐽11 as free, because due
to the cannibalism parameter 𝑠 the sign of 𝐽11 = 𝑟1∗ − 1 + 𝛾𝑠V1∗
could now be positive or negative.

Theorem 14. Consider the three-species model with cannibal-
ism (8)–(10) and its Jacobian matrix 𝐽 of reaction terms, given

by (28). Consider a parameter set for which 𝐽 is stable, whilst
the cannibalism parameter 𝑠 satisfies

𝑟1∗ − 1 + 𝛾𝑠V1∗ > 0,
𝑟1∗ − 1 + 𝛾𝑠V1∗ − 𝑚 − 𝑠𝑢1∗ > 0,

𝑜𝑟 𝑟1∗ − 1 + 𝛾𝑠V1∗ + 𝑡1 − 2𝑢𝑟1∗ − 𝑢1∗ > 0.
(29)

Then there exist diffusion coefficients (𝑑1, 𝑑2, 𝑑3), such that
the spatially homogenous steady state (𝑢1∗, V1∗, 𝑟1∗) of (8)–(10)
can be driven unstable due to Turing instability.

Theproof relies on extracting an unstable submatrix from
(28). This is equivalent to some signed principal minor not
belonging to 𝑃+0 and hence 𝐽 given by (28) not being strongly
stable.

Proof. Note if we look at the minor gotten by removing row 3
and column 3, we obtain the following submatrix:

[𝑟1∗ − 1 + 𝛾𝑠V1∗ 1 + 𝛾𝑠𝑢1∗
𝑟 − 𝑠V1∗ −𝑚 − 𝑠𝑢1∗] . (30)

This is clearly seen to be unstable if 𝑟1∗−1+𝛾𝑠V1∗−𝑚−𝑠𝑢1∗ >0. Also, if we look at the minor gotten by removing row 2 and
column 2, we obtain the following submatrix:

[𝑟1∗ − 1 + 𝛾𝑠V1∗ 𝑢1∗
−𝑟1∗ 𝑡1 − 2𝑢𝑟1∗ − 𝑢1∗] . (31)

This is clearly seen to be unstable if 𝑟1∗ − 1 + 𝛾𝑠V1∗ + 𝑡1 −2𝑢𝑟1∗ − 𝑢1∗ > 0.
Thus if either of these conditions are met, 𝐽 given by

(28) contains unstable submatrices. That is, certain signed
principal minors are not in 𝑃+0 . Thus via Theorem 8 𝐽 is not
strongly stable, which implies via Theorem 9 that 𝐽 is not 𝑠-
stable. This then implies that there exist diffusion coefficients(𝑑1, 𝑑2, 𝑑3) for which Turing instability is a certainty, via an
application of Theorems 10 and 11. This proves the theo-
rem.

3. Numerical Analysis of Turing Instability

3.1. The Effect of Cannibalism on Turing Instability. We
now numerically demonstrate that if the conditions via
Theorem 14 are met, we can find diffusion coefficients𝑑1, 𝑑2, 𝑑3 so as to induce Turing instability in (8)–(10). We
choose the following parameter set, 𝑑1 = 10−11, 𝑑2 = 1.7 ×10−8, 𝑑3 = 0.9, 𝑟 = 0.01,𝑚 = 0.1, 𝛾 = 0.01, 𝑠 = 0.01, 𝑢 = 0.13,𝑡1 = 0.21. For this parameter set we see that 𝑢1∗ = 0.058844,
V1∗ = 0.005850, 𝑟1∗ = 1.162736.Thus 𝑟1∗−1+𝛾𝑠V1∗ = 0.1627 > 0
and 𝑟1∗ −1+𝛾𝑠V1∗ −𝑚−𝑠𝑢1∗ = 0.0614 > 0. Thus the conditions
of Theorem 14 are met, and we can expect Turing instability.
This is demonstrated in the plots next.

3.2. Sensitivity Analysis: Turing Space and Dispersion Plots.
Since cannibalism is the sole factor in bringing about Turing
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instability in (8)–(10), we decide to further investigate this
result. We perform next a sensitivity analysis, also referred
to as a Turing space analysis, considering the effect on
Turing instability with two parameters at a time. Since
cannibalism is the central theme under investigation, we
check the sensitivity of the cannibalism parameter against
every other parameter. In our simulations we refer to the
current literature [8, 34] to keep the parameters close to
reality. In all of the plots in Figures 2 and 3 the blue area is
the region where Turing instability exists, and the white area
is the region where it does not.The results are presented next.

We next display the dispersion relation, as we vary the
cannibalism parameter 𝑠.

We interpret and discuss the above results in the Discus-
sion and Conclusion (Section 6).

4. Hopf Bifurcation

4.1. Hopf Bifurcation in Terms of the Cannibalism Parameter.
We will now investigate the correct criterion for Hopf
bifurcation in (3), in terms of the cannibalism parameter 𝑠.
The criterion provided in [26] is incorrect. See Figures 6 and
7. In order to investigate theHopf bifurcation ofmodel system
(3), we follow the method developed by Liu [35]. It can be
seen that the Hopf bifurcation at 𝑠 = 𝑠∗ can occur provided
that 𝐴1(𝑠∗), 𝐴3(𝑠∗), and Φ(𝑠∗) = 𝐴1(𝑠∗)𝐴2(𝑠∗) − 𝐴3(𝑠∗) are
smooth functions of 𝑠 in an open interval of 𝑠 ∈ R such that

(1) 𝐴1(𝑠∗) > 0, 𝐴3(𝑠∗) > 0, and Φ(𝑠∗) = 𝐴1(𝑠∗)𝐴2(𝑠∗) −𝐴3(𝑠∗) = 0;
(2) (𝑑Φ(𝑠)/𝑑𝑠)|𝑠=𝑠∗ ̸= 0.
Thus we can state the following theorem.

Theorem 15. Under conditions (B.2), (B.3), (B.5), (B.7), and
(B.9) there is a Hopf bifurcation of the positive equilibrium
point (𝑢1∗, V1∗, 𝑟1∗) at 𝑠 = 𝑠∗ of model system (3), where𝐴1(𝑠∗) >0, 𝐴3(𝑠∗) > 0, and 𝐴1(𝑠∗)𝐴2(𝑠∗) − 𝐴3(𝑠∗) = 0.

The coefficients 𝐴1, 𝐴2, and 𝐴3 and details of conditions
(B.2)–(B.9) are provided in the Appendix.

We now numerically illustrate a correct bifurcation point
for Hopf instability.We begin by trying to find an 𝑠 = 𝑠∗, such
that Φ(𝑠∗) = 𝐴1(𝑠∗)𝐴2(𝑠∗) − 𝐴3(𝑠∗) = 𝑎(𝑠∗)2 + 𝑏𝑠∗ + 𝑐 = 0
whilst (𝑑Φ(𝑠)/𝑑𝑠)|𝑠=𝑠∗ = 2𝑎𝑠∗ + 𝑏 ̸= 0.

The form of Φ is complicated and depends on the
correctly calculated𝐴1,𝐴2,𝐴3; see the Appendix.We choose
the same parameters from [26], 𝑟 = 0.5, 𝑚 = 1, 𝑢 = 0.1,𝛾 = 1.5, 𝑡1 = 1.3, but the correct form of the coefficients as
we have worked out in the Appendix and plotΦ(𝑠).
5. Cannibalism as a Life Boat Mechanism

Cannibalismoften gives rise to counterintuitive phenomenon
in population dynamics. A life boat mechanism is a feature of
cannibalism, where a noncannibalistic population is doomed
to extinction but can persist under the act of cannibalism.
We now explore such features in our model systems. We first

show numerically that a life boat mechanism for the prey
exists. Next we conjecture that a life boat mechanism for the
predator also exists.

5.1. Cannibalism as a Life Boat for the Prey. Notice that, in the
special case that 𝑟 = 𝑚, a prey free equilibrium (𝑢1∗, V1∗, 0) is
possible in both the no cannibalismmodel (4) and the model
with cannibalism (3). We show in Figure 8 numerically that a
life boatmechanism for the prey also exists.This is not proved
rigorously. A rigorous investigation will have to employ the
normal form theory, for nonlinear stability analysis, as there
are two zero eigenvalues at equilibrium (𝑢1∗, V1∗, 𝑟1∗), and thus
this equilibrium point is nonhyperbolic. However we can
make the following conjecture.

Conjecture 16. Consider model system (3). Under certain
parametric restrictions, if there is no cannibalism, that is, 𝑠 = 0,
a small perturbation to prey free state (𝑢1∗, V1∗, 0) will still yield
extinction of the prey. However, if 𝑠 > 0, the prey population
will recover, to reach a nontrivial (𝑢1∗, V1∗, 𝑟1∗) state.
Remark 17. What we notice is that, under certain parametric
restrictions, the prey free state is globally stable, but introduc-
ing cannibalism results in coexistence of all species, and orbits
converge to a nontrivial interior equilibrium (𝑢1∗, V1∗, 𝑟1∗).This
shows that a life boat mechanism exists for the prey as well.
Also see Figure 8.

5.2. Cannibalism as a Life Boat for the Predator

Conjecture 18. Consider model system (3). Under certain
parametric restrictions there exist cannibalism rates 𝛾, 𝑠 such
that if there is no cannibalism, that is, 𝑠 = 0, a small pertur-
bation to the predators in the (0, 0, 𝑡1/𝑢) state will still yield
extinction of the predator. However, if 𝑠 > 0, the predator
population will recover, to reach a nontrivial (𝑢1∗, V1∗, 𝑟1∗) state.
Remark 19. The Jacobian matrix for the no cannibalism
model (4) at (0, 0, 𝑡1/𝑢) [26] is given by

𝐽 = [[[[[
[

𝑡1𝑢 − 1 1 0
𝑟 −𝑚 0

−𝑡1𝑢 0 −𝑡1

]]]]]
]
. (32)

Satisfaction of the following conditions,

𝑢 > 𝑡1,
𝑟 < 𝑚(1 − 𝑡1𝑢 ) ,

(33)

are sufficient to satisfy the Ruth-Hurwitz criteria for local
asymptotic stability of (0, 0, 𝑡1/𝑢).Thus if there exist cannibal-
ism rates 𝛾, 𝑠 such that (𝑢1∗, V1∗, 𝑟1∗), the nontrivial equilibrium
of the model with cannibalism (3), is globally stable and
(33) also holds, then the populations will rebound from
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Figure 1:Herewe demonstrate that cannibalism can indeed induceTuring instability in (8)–(10).We see a spatial Turing pattern in the juvenile
species in the left panel.The right panel shows the spatial profile of all three species, after the simulation is runmuch longer (𝑡 = 1000).We see
Turing persists in both the adult and juvenile predators, but the prey has very weak Turing. The values of the parameters here are 𝑑1 = 10−11,𝑑2 = 1.7 × 10−8, 𝑑3 = 0.9, 𝑟 = 0.01, 𝑚 = 0.1, 𝛾 = 0.01, 𝑠 = 0.01, 𝑢 = 0.13, 𝑡1 = 0.21. For this parameter set we see that 𝑢1∗ = 0.058844,
V1∗ = 0.005850, 𝑟1∗ = 1.162736.

(𝜖, 𝜖, 𝑡1/𝑢 + 𝜖) and be driven up to (𝑢1∗, V1∗, 𝑟1∗). This tells
us that a small amount of adult and predator populations
without cannibalism cannot sustain themselves under certain
parametric restrictions, as (0, 0, 𝑡/𝑢) is locally stable. Thus(𝜖, 𝜖, 𝑡/𝑢 + 𝜖) will be pulled back to (0, 0, 𝑡/𝑢). However,
the act of cannibalism, under these parametric restrictions
(assuming one can formally prove global stability of the
equilibrium), can cause these small amounts of adult and
juvenile predator populations to rise, and so (𝜖, 𝜖, 𝑡/𝑢+ 𝜖) can
be driven up to (𝑢1∗, V1∗, 𝑟1∗).
6. Discussion and Conclusion

In the current manuscript, to the best of our knowledge, we
report the first cannibalism induced Turing instability result,

in spatially explicit three-species age structured predator-
prey systems. That is, if one considers the spatially explicit
version of the three-species age structured ODE model
originally proposed in [18], that is, (5), then without canni-
balism there can be no Turing instability in any parameter
regime. This is shown via Theorem 4. However, introducing
cannibalism brings about Turing instability, in (8)–(10), seen
viaTheorem 14. Also note that although the Hopf bifurcation
analysis on the model originally proposed by Magnússon
has been done in [26], the results therein are incorrect. We
derive the correct conditions for the Hopf bifurcation via
Theorem 15. In the case of the prey species, we see numerical
evidence of a life boat via Figure 1.

From an ecological point of view,Theorem 14 tells us that,
for this specificmodel, cannibalism induces Turing instability.
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Figure 2: The values of the parameters here are 𝑑1 = 10−11, 𝑑2 =1.7 × 10−8, 𝑑3 = 0.9, 𝛾 = 0.01,𝑚 = 0.1, 𝑢 = 0.13, 𝑡1 = 0.21. We look
at the Turing space (sensitivity) generated by varying 𝑠 and 𝑟, each
in the range [0, 1].

Thus in order to investigate the Turing instability result
further, we performa sensitivity analysis, wherewe look at the
Turing space generated by the cannibalism parameter, with
every other parameter in the system.

We look at how the Turing space changes as we vary 𝑠
the cannibalism parameter and 𝛾 the rate of intake by the
cannibalistic adult. We see that Turing occurs everywhere in𝑠 ∈ [0, 1], 𝛾 ∈ [0, 1], so we do not show a plot of this
case. This tells us that the interplay between the amount of
cannibalism and intake rate of the cannibal always produces
Turing instability, in this range (to keep things realistic we
vary the parameters only in [0, 1]). That is, if we keep 𝑠 fixed
and increase or decrease 𝛾, the Turing instability persists.

In Figure 2 we look at how the Turing space changes
with respect to the interactions between the cannibalistic
adult predator and the juvenile predator. Here we vary 𝑠
the cannibalism parameter and 𝑟 the growth rate of the
cannibalistic adult that adds to the juvenile population. We
see that Turing occurs for all 𝑠 ∈ [0, 1], if 𝑟 is very low, say𝑟 ∈ (0, 0.03]. For low values of 𝑠, say 𝑠 ∈ (0, 0.2], Turing
occurs if we increase 𝑟 up to about 0.2, but not if we further
increase 𝑟. Furthermore, we observe that we lose Turing, for
moderate values of 𝑟, say about 0.2 or more, if we increase 𝑠
past 0.5. This tells us that the interplay between the amount
of cannibalism and growth rate of the cannibalistic adult
essentially always acts to remove Turing for values of 𝑠 > 0.5.
However Turing essentially persists for all 𝑠, if say 𝑟 ∈ (0, 0.03]
that is very low.Nowwe vary 𝑠 the cannibalismparameter and𝑚 the loss in the juvenile population, due to natural death as
well as transitioning into the adult class. We see that Turing
occurs almost everywhere except for very low values of 𝑠, 𝑚,
that is, 𝑠 ∈ (0, 0.3] and 𝑚 ∈ (0, 0.1]. This tells us that the
interplay between the amount of cannibalism and loss rate
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Figure 3: The values of the parameters in (a) are 𝑑1 = 10−11, 𝑑2 =1.7×10−8, 𝑑3 = 0.9, 𝛾 = 0.01,𝑚 = 0.1, 𝑟 = 0.01, 𝑢 = 0.13. We look at
the Turing space (sensitivity) generated by varying 𝑠 and 𝑢, each in
the range [0, 1]. The values of the parameters in (b) are 𝑑1 = 10−11,𝑑2 = 1.7 × 10−8, 𝑑3 = 0.9, 𝛾 = 0.01, 𝑟 = 0.1, 𝑢 = 0.13, 𝑚 = 0.1. We
look at the Turing space (sensitivity) generated by varying 𝑠 and 𝑡1,
each in the range [0, 1].

of the juvenile essentially always acts to give Turing for most
values in the considered range, so again we do not plot this
case.

In Figure 3 we look at how the Turing space changes with
respect to the interactions between the cannibalistic adult
predator and the prey species. In Figure 3(a) we vary 𝑠 the
cannibalism parameter and 𝑢 the growth rate of the prey.
This particular interaction is probably the most interesting
in our opinion. As a first analysis we noticed that Turing
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occurs for all 𝑠 ∈ [0, 1], for a narrow band of 𝑢 values, say𝑢 ∈ [0.15, 0.22]. However, upon further discretization of the
parameter space, we observed that there are disconnected
patches where Turing occurs, for roughly 𝑠 ∈ [0.65, 0.75]
and 𝑢 ∈ [0.55, 0.6], and then again for certain values of𝑢 ∈ [0.7, 1]. This property is not seen in any of the other
simulations, despite various further discretization in all of
the parameters. In Figure 3(b) we vary 𝑠 the cannibalism
parameter and 𝑡1 the competition coefficient for the prey.
Note the competition mediated effects of cannibalism have
been the focus of a number of recent studies [8, 36]. We see
that Turing occurs for all 𝑠 ∈ [0, 1], for a narrow band of 𝑡1
values, say 𝑡1 ∈ [0.11, 0.2]. Also Turing occurs for essentially
all 𝑡1 values, say 𝑡1 ≥ 0.1, for a narrow band of 𝑠 values, 𝑠 ∈[0.95, 1]. This tells us that the interplay between the amount
of cannibalism and competition amongst prey essentially acts
to give Turing for restricted values of competition parameter𝑡1.

In the same vein as the above, we also conduct a disper-
sion relation analysis. Here we plot the coefficient𝐴1𝐴2 −𝐴3
for various values of the wave number 𝑘. Recall that Turing
instability occurs, if this coefficient dips below the 𝑘 axis. We
construct a sequence of 4 graphs, by varying the cannibalism
parameter 𝑠. What we notice is that as 𝑠 is increased (for other
parametric values fixed as in Figure 1), we see the coefficient
moves upwards and then becomes positive past 𝑠 = 0.31.
This tells us that the effect of increasing cannibalism here is
to remove the Turing instability.

In light of our results we can summarise a few important
findings.

(1) In the spatially explicit form of the classical model
considered byMagnússon and then rescaled by Tang,
cannibalism can cause Turing instability.

(2) The Turing instability induced by cannibalism seems
to bemost sensitive to the prey growth rate parameter𝑢 and 𝑡1 the competition coefficient for the prey. It also
seems to be least sensitive to 𝛾 the rate of intake by the
cannibalistic adult and 𝑚 the loss rate in the juvenile
population. This tells us that the adult predator-prey
relation is critical, despite the adult being able to
cannibalise the juvenile predator.

(3) Magnússon and Tang’s findings are that, in the
ODE model, increasing the cannibalism parameter 𝑠
destabilises the system. Given that we choose similar
parameters, our result suggests that, in the spatially
explicit case, increasing the cannibalism parameter 𝑠
removes the Turing instability and hence stabilises the
system; see Figure 4. This makes the ODE and PDE
models quite different dynamically.

Note the Turing patterns we currently obtain are purely
spatial. It would be interesting to investigate if spatiotemporal
patterns driven by Turing-Hopf type instabilities exist. If one
can prove otherwise, it raises further interesting questions
into the nature of cannibalism and its ecological conse-
quences, such as why would conspecific consumption hinder
temporal changes in the population, at fixed locations in
space? The other interesting question for possible future
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Figure 4: Here we plot the dispersion relation of the coefficient𝐴1𝐴2 − 𝐴3 versus the wave numbers 𝑘, for various values of the
parameter 𝑠. Recall there is Turing instability when at least some part
of the coefficient 𝐴1𝐴2 − 𝐴3 lies below the 𝑘 axis.
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Figure 5:Herewe see a plot ofΦ(𝑠) versus 𝑠 for the other parameters
as mentioned earlier from [26], 𝑟 = 0.5,𝑚 = 1, 𝑢 = 0.1, 𝛾 = 1.5, 𝑡1 =1.3.We clearly see that (𝑑Φ(𝑠)/𝑑𝑠)|𝑠=1.001 > 0, and (𝑑Φ(𝑠)/𝑑𝑠)|𝑠=0.75 =0. The root occurs at approximately 𝑠 = 1.001.

investigation is considering cannibalism among juveniles.
We know for a fact that this does take place in certain
amphibian species [36]. One might also consider the effect
of cannibalism occurring simultaneously amongst adults
and juveniles. Lastly, akin to [17] one can investigate the
occurrence of cannibalism in the prey. Further investigation
of the disconnected Turing space seen in Figure 3 should also
be a future direction. The issue of whether cannibalism acts
as a life boat mechanism for the predator, in (3), remains
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Figure 6: Here we take the parameters as mentioned earlier from [26], 𝑟 = 0.5,𝑚 = 1, 𝑢 = 0.1, 𝛾 = 1.5, 𝑡1 = 1.3, 𝑠 = 0.9. We clearly see that,
at 𝑠 = 0.9, Φ < 0, from Figure 5, and we expect limit cycle dynamics, which we see in (a). We compare to the simulation from [26] in (b),
which shows a stable spiral at 𝑠 = 0.9, which is clearly incorrect.
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Figure 7: Here we take the parameters as mentioned earlier from [26], 𝑟 = 0.5,𝑚 = 1, 𝑢 = 0.1, 𝛾 = 1.5, 𝑡1 = 1.3. With 𝑠 = 0.986494, Φ < 0,
from Figure 5, and we clearly see limit cycle dynamics, as expected in (a). Now if we take 𝑠 = 1.0141, where Φ > 0, from Figure 5, we see a
stable spiral, again as expected, in (b).

unproven and can also be considered in future. All in all, we
hope that the current work leads to further investigations and
collaborations into the fascinating effects of cannibalism and
the often counterintuitive role it plays in natural predator-prey
communities.

Appendix

A. Equilibrium and Stability Analysis of
Model with Cannibalism

The interior equilibrium point for (3) is given by

𝑢1∗ = − (𝑚 − 𝑠𝑡1 + 𝑠𝑢 − 𝑟𝑠𝑢𝛾) ± √(𝑚 − 𝑠𝑡1 + 𝑠𝑢 − 𝑟𝑠𝑢𝛾)2 − 4 (−𝑟𝑢 − 𝑚𝑡1 + 𝑚𝑢)2 ,
V1∗ = 𝑟𝑢1∗(𝑚 + 𝑠𝑢1∗) ,
𝑟1∗ = 𝑡1 − 𝑢1∗𝑢 .

(A.1)
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Figure 8: Here we demonstrate that cannibalism can act as a lifeboat for the prey species also.The values of the parameters here are 𝑟 = 0.01,𝑚 = 0.01. 𝛾 = 0.01, 𝑢 = 0.062, 𝑡1 = 0.09.We see in (a) that, with 𝑠 = 0, or no cannibalism, the prey is driven to extinction. However, in (b),
we see that introducing a little bit of cannibalism, that is, by choosing 𝑠 = 0.1, the prey population immediately rebounds to a high level.

The Jacobianmatrix of system (3) evaluated at the interior
equilibrium (𝑢1∗, V1∗, 𝑟1∗) is given by

𝐽 = [[
[
𝑟1∗ − 1 + 𝛾𝑠V1∗ 1 + 𝛾𝑠𝑢1∗ 𝑢1∗𝑟 − 𝑠V1∗ −𝑚 − 𝑠𝑢1∗ 0

−𝑟1∗ 0 𝑡1 − 2𝑢𝑟1∗ − 𝑢1∗
]]
]
. (A.2)

B. Derivation of Characteristic Polynomial

Here we focus on working out the coefficients of the charac-
teristic polynomial det(𝐽 − 𝜆𝐼), where 𝐽 is as in (A.2). These
coefficients are critical in order to correctly work out Hopf
bifurcations that occur in (3). The characteristic equation is
standard,

𝜆3 + 𝐴1𝜆2 + 𝐴2𝜆 + 𝐴3 = 0, (B.1)

where

(1) 𝐴1 = −(𝐽11 + 𝐽22 + 𝐽33);
(2) 𝐴3 = −(𝐽11𝐽22𝐽33) + (𝐽11𝐽32𝐽23) + (𝐽21𝐽12𝐽33) −(𝐽12𝐽31𝐽23) − (𝐽13𝐽21𝐽32) + (𝐽13𝐽31𝐽22);
(3) 𝐴2 = (𝐽11𝐽33)+ (𝐽11𝐽22)+ (𝐽22𝐽33)− (𝐽23𝐽32)− (𝐽21𝐽12)−(𝐽13𝐽31).
Straightforward computations show that 𝐴1 > 0 and𝐴3 > 0 if and only if the following conditions are satisfied:
(i) 𝐴1 = −(𝐽11 + 𝐽22 + 𝐽33) > 0,⇒ −(𝑟1∗ + 𝛾𝑠V1∗ − 1 − 𝑚 −𝑠𝑢1∗ + (𝑢1∗ − 𝑡1)) > 0 ⇒ −𝑟1∗ − 𝛾𝑠V1∗ + 1 + 𝑚 + 𝑠𝑢1∗ − 𝑢1∗ + 𝑡1 >0 ⇒ 1 + 𝑚 + 𝑡1 − 𝑟1∗ − 𝑢1∗ > 𝑠(𝛾V1∗ − 𝑢1∗).

Thus if (𝛾V1∗ − 𝑢1∗) > 0, then 𝐴1 > 0,
if

1 + 𝑚 + 𝑡1 − 𝑟1∗ − 𝑢1∗(𝛾V1∗ − 𝑢1∗) > 𝑠. (B.2)

However if (𝛾V1∗ − 𝑢1∗) < 0, then 𝐴1 > 0,
if

1 + 𝑚 + 𝑡1 − 𝑟1∗ − 𝑢1∗(𝛾V1∗ − 𝑢1∗) < 𝑠. (B.3)

(ii) 𝐴3 = −(𝐽11𝐽22𝐽33) + (𝐽11𝐽32𝐽23) + (𝐽21𝐽12𝐽33) −(𝐽12𝐽31𝐽23) − (𝐽13𝐽21𝐽32) + (𝐽13𝐽31𝐽22) > 0,
𝐴3 = [(𝑟1∗ − 1 + 𝛾𝑠V1∗) (𝑚 + 𝑠𝑢1∗) (𝑢1∗ − 𝑡1)]

+ [(𝑟 − 𝑠V1∗) (1 + 𝛾𝑠𝑢1∗) (𝑢1∗ − 𝑡1)]
+ [𝑢1∗𝑟1∗ (𝑚 + 𝑠𝑢1∗)] > 0.

(B.4)

Thus [(𝑢1∗)2 − 2(𝑢1∗)2𝑟1∗ − 𝑡1𝑢1∗ + 𝑢1∗V1∗ − 𝑟𝛾(𝑢1∗)2 + 𝑡1𝑢1∗𝑟1∗ +𝑚𝛾𝑡1V1∗ + 𝑟𝛾𝑡1𝑢1∗ − 𝑚𝛾𝑢1∗V1∗ − 𝑡1] > 0.
Then 𝐴3 > 0 if
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[𝑚𝑡1 − 𝑚𝑢1∗ − 𝑟𝑡1 + 𝑟𝑢1∗ − 𝑚𝑡1𝑟1∗V1∗ + 2𝑚𝑢1∗𝑟1∗]
[(𝑢1∗)2 − 2 (𝑢1∗)2 𝑟1∗ − 𝑡1𝑢1∗ + 𝑢1∗V1∗ − 𝑟𝛾 (𝑢1∗)2 + 𝑡1𝑢1∗𝑟1∗ + 𝑚𝛾𝑡1V1∗ + 𝑟𝛾𝑡1𝑢1∗ − 𝑚𝛾𝑢1∗V1∗ − 𝑡1] > 𝑠. (B.5)

(iii)𝐴2 = (𝐽11𝐽33)+(𝐽11𝐽22)+(𝐽22𝐽33)−(𝐽23𝐽32)−(𝐽21𝐽12)−(𝐽13𝐽31).
𝐴2 = ((𝑟1∗ − 1 + 𝛾𝑠V1∗) (𝑢1∗ − 𝑇1))

+ ((𝑟1∗ − 1 + 𝛾𝑠V1∗) (−𝑚 − 𝑠𝑢1∗))
+ ((−𝑚 − 𝑠𝑢1∗) (𝑢1∗ − 𝑡1))
− ((1 + 𝛾𝑠𝑢1∗) (𝑟 − 𝑠V1∗)) + (𝑢1∗𝑟1∗) .

(B.6)

Thus 𝐴2 > 0 if the following holds true.
𝑚 − 𝑟 + 𝑡1 − 𝑢1∗ + 𝑚𝑡1 − 𝑚𝑢1∗ − 𝑚𝑟1∗ + 𝑠𝑢1∗ + 𝑠V1∗

− 𝑡1𝑟1∗ + 2𝑢1∗𝑟1∗ − 𝑠 (𝑢1∗)2 + 𝑠𝑡1𝑢1∗ − 𝑠𝑢1∗𝑟1∗
− 𝑚𝑠𝛾V1∗ − 𝑟𝑠𝛾𝑢1∗ − 𝑠𝛾𝑡1V1∗ + 𝑠𝛾𝑢1∗V1∗ > 0.

(B.7)

We now check when 𝐴1𝐴2 − 𝐴3 > 0.
𝐴1𝐴2 − 𝐴3 = 𝑟𝑡1 − 𝑚𝑡1 + 𝑚𝑢1∗ − 𝑟𝑢1∗ + 𝑠 (𝑢1∗)2

− 2𝑠 (𝑢1∗)2 𝑟1∗ + 𝑚𝑡1𝑟1∗ − 𝑠𝑡1𝑢1∗
− 𝑠𝑡1V1∗ − 2𝑚𝑢1∗𝑟1∗ + 𝑠𝑢1∗V1∗
− 𝑟𝑠𝛾 (𝑢1∗)2 + 𝑠𝑡1𝑢1∗𝑟1∗ + 𝑚𝑠𝛾𝑡1V1∗
+ 𝑟𝑠𝛾𝑡1𝑢1∗ − 𝑚𝑠𝛾𝑢1∗V1∗ > 0.

(B.8)

We set

(i) 𝐴1(𝑠)𝐴2(𝑠) − 𝐴3(𝑠) = 𝑎𝑠2 + 𝑏𝑠 + 𝑐 = 0, where
(ii) 𝑐 = 𝑚−𝑟+𝑡1−𝑢1∗+𝑡1(𝑟1∗)2−𝑡21𝑟1∗−2𝑢1∗(𝑟1∗)2−2(𝑢1∗)2𝑟1∗+2𝑚𝑡1+𝑡21−2𝑚𝑢1∗−2𝑚𝑟1∗+𝑟𝑟1∗+(𝑢1∗)2−2𝑡1𝑢1∗−2𝑡1𝑟1∗+𝑚𝑡21+𝑚2𝑡1+3𝑢1∗𝑟1∗+𝑚(𝑢1∗)2−𝑚2𝑢1∗+𝑚(𝑟1∗)2−𝑚2𝑟1∗−𝑚𝑟 + 𝑚2 + 3𝑡1𝑢1∗𝑟1∗ − 2𝑚𝑡1𝑢1∗ − 2𝑚𝑡1𝑟1∗ + 2𝑚𝑢1∗𝑟1∗,
(iii) 𝑏 = 𝑢1∗ + V1∗ − 2𝑡1(𝑢1∗)2 + 𝑡21𝑢1∗ + 𝑢1∗(𝑟1∗)2 + 2(𝑢1∗)2𝑟1∗ +2𝑚𝑢1∗ +𝑚V1∗ − 𝑟𝑢1∗ − 2(𝑢1∗)2 + (𝑢1∗)3 + 2𝑡1𝑢1∗ − 2𝑢1∗𝑟1∗ −

V1∗𝑟1∗−2𝑚(𝑢1∗)2−𝑚2𝛾V1∗−2𝑡1𝑢1∗𝑟1∗−𝛾𝑡21V1∗−𝛾(𝑢1∗)2V1∗−2𝑚𝛾V1∗ − 𝑟𝛾𝑢1∗ + 𝑟𝛾V1∗ − 2𝑚𝑢1∗𝑟1∗ − 2𝛾𝑡1V1∗ + 2𝛾𝑢1∗V1∗ +2𝛾𝑡1𝑢1∗V1∗+2𝛾𝑡1V1∗𝑟1∗−3𝛾𝑢1∗V1∗𝑟1∗−𝑚𝑟𝛾𝑢1∗ + 2𝑚𝑠𝑡1𝑢1∗−2𝑚𝛾𝑡1V1∗ + 2𝑚𝛾𝑢1∗V1∗ + 2𝑚𝛾V1∗𝑟1∗ + 𝑟𝛾𝑢1∗𝑟1∗,
(iv) 𝑎 = −(𝑢1∗−𝛾V1∗)((𝑢1∗)2−V1∗−𝑢1∗−𝑡1𝑢1∗+𝑢1∗𝑟1∗+𝑚𝛾V1∗+𝑟𝛾𝑢1∗ + 𝛾𝑡1V1∗ − 𝛾𝑢1∗V1∗).
Thus 𝐴1𝐴2 − 𝐴3 > 0 if

𝑏2 − 4𝑎𝑐 < 0, 𝑎 > 0, (B.9)

where 𝑎, 𝑏, 𝑐 are given above.

C. General Criteria for Turing Instability

We first recap certain general criteria regarding Turing insta-
bility in three-species models following [19]. Let us consider
a general three-species reaction diffusion system:

𝑢𝑡 = 𝑑1𝑢𝑥𝑥 + 𝑓 (𝑢, V, 𝑟)
V𝑡 = 𝑑2V𝑥𝑥 + 𝑔 (𝑢, V, 𝑟)
𝑟𝑡 = 𝑑3𝑟𝑥𝑥 + ℎ (𝑢, V, 𝑟) .

(C.1)

We prescribe Neumann boundary conditions,

𝑢𝑥 = V𝑥 = 𝑟𝑥 = 0, (C.2)

and suitable positive initial conditions,

𝑢 (𝑥, 0) > 0,
V (𝑥, 0) > 0,
𝑟 (𝑥, 0) > 0.

(C.3)

Consider the linearization of (C.1) about the positive
interior equilibrium point (𝑢∗, V∗, 𝑟∗), which is the spatially
homogenous solution to (C.1).

Consider a small space time perturbation, that is,

W = 𝑈 − 𝑈∗ = 𝑂 (𝜖) , where 𝜖 󳨀→ 0, (C.4)

with 𝑈∗ = (𝑢∗, V∗, 𝑟∗). Substituting and collecting linear
terms of order 𝑂(W), we obtain

𝜕W𝜕𝑡 = DΔW + JW, (C.5)

ΔW𝑖 ⋅ n = 0 for 𝑥 ∈ 𝜕Ω, 𝑖 = 1, 2, 3, (C.6)

where

D = [[
[
𝑑1 0 0
0 𝑑2 0
0 0 𝑑3

]]
]

(C.7)

is the diffusion matrix and

J = [[
[
𝐽11 𝐽12 𝐽13𝐽21 𝐽22 𝐽23𝐽31 𝐽32 𝐽33

]]
]

(C.8)

is the Jacobian matrix associated with the reaction terms of
(C.1).
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Let

W (𝜀, 𝑡) = [[
[
𝑢0𝑢1𝑢2
]]
]
𝑒𝜆𝑡+𝑖𝑘𝜀, (C.9)

where 𝜀 is the spatial coordinate in Ω, 𝑢𝑖 (𝑖 = 0, 1, 2) is the
amplitude, 𝜆 is the eigenvalues associated with the interior
equilibrium point, (𝑢1∗, V1∗, 𝑟1∗), and 𝑘 is the wave number of
the solution. Upon substituting, we obtain the characteristic
equation

󵄨󵄨󵄨󵄨󵄨J − 𝜆I − 𝑘2D󵄨󵄨󵄨󵄨󵄨 = 0, (C.10)

where I is a 3 × 3 identity matrix. The sign of Re(𝜆)
indicates the stability, or lack thereof, of the equilibriumpoint(𝑢∗, V∗, 𝑟∗). The dispersion relation is

𝑃 (𝜆) = 𝐴3 (𝑘2) 𝜆3 + 𝐴2 (𝑘2) 𝜆2 + 𝐴1 (𝑘2) 𝜆
+ 𝐴0 (𝑘2) , (C.11)

where

𝐴1 (𝑘2) = − (𝐽11 + 𝐽22 + 𝐽33) + (𝑑1 + 𝑑2 + 𝑑3) 𝑘2 (C.12)

𝐴2 (𝑘2) = [(𝐽11𝐽33) + (𝐽11𝐽22) + (𝐽22𝐽33) − (𝐽23𝐽32)
− (𝐽21𝐽12) − (𝐽13𝐽31)] + 𝑘2 [𝑑3𝐽22 + 𝑑2𝐽33 + 𝑑1𝐽33
+ 𝑑1𝐽22 + 𝑑2𝐽11 + 𝑑3𝐽11] + (𝑘2)2 [𝑑2𝑑3 + 𝑑2𝑑1
+ 𝑑1𝑑3]

(C.13)

𝐴3 (𝑘2) = [− (𝐽11𝐽22𝐽33) + (𝐽11𝐽32𝐽23) + (𝐽21𝐽12𝐽33)
− (𝐽12𝐽31𝐽23) − (𝐽13𝐽21𝐽32) + (𝐽13𝐽31𝐽22)]
+ 𝑘2 [−𝑑3𝐽12𝐽21 − 𝑑2𝐽31𝐽13 − 𝑑1𝐽32𝐽23 + 𝑑1𝐽22𝐽33
+ 𝑑2𝐽11𝐽33 + 𝑑3𝐽11𝐽22] + (𝑘2)2 [𝑑1𝑑2𝐽33
+ 𝑑1𝑑3𝐽22 + 𝑑3𝑑2𝐽11] + (𝑘2)3 [𝑑1𝑑2𝑑3] .

(C.14)

Now Re(𝜆) < 0 provided that𝐴𝑛(𝑘2) > 0, for 𝑛 = 0, 1, 2, 3, and 𝐴1(𝑘2)𝐴2(𝑘2) −𝐴3(𝑘2) > 0.
Diffusion-driven instability requires that the stable,

homogeneous steady state is driven unstable by the inter-
action of the dynamics and diffusion of the species, and,
therefore, from the arguments given above we are interested
in obtaining conditions such that Re(𝜆(𝑘2 = 0)) < 0 and
Re(𝜆(𝑘2 > 0)) > 0, for some 𝑘2 > 0. Note𝐴1(𝑘2) = 𝛼+𝛽(𝑘2),
where 𝛼 = −(𝐽11+𝐽22+𝐽33), 𝛽 = (𝑑1+𝑑2+𝑑3), and𝐴1(𝑘2) > 0
if 𝛼 > 0.

Note that 𝐴3(𝑘2) and 𝐴1(𝑘2)𝐴2(𝑘2) − 𝐴3(𝑘2) are both
cubic functions of (𝑘2) of the form 𝑏(𝑘2)3 + 𝑐(𝑘2)2 + 𝑑(𝑘2) + ℎ
with 𝑏 ≥ 0 and ℎ > 0. If it exists, the minimum turning point

for 𝑦(𝑘2) = 𝑏(𝑘2)3 + 𝑐(𝑘2)2 + 𝑑(𝑘2) + ℎ (which is calculated
from 𝑑𝑦/𝑑𝑘2 = 0 and 𝑑2𝑦/𝑑(𝑘2)2 > 0) occurs at

𝑘2 = 𝑘2𝑇𝑃 = −𝑐 + [√𝑐2 − 3𝑏𝑑]
3𝑏 . (C.15)

Now 𝑘2𝑇𝑃 is real and positive if 𝑑 < 0 or 𝑐 < 0 (and 𝑐2 >3𝑏𝑑). The coefficients 𝑏, 𝑐, 𝑑, ℎ of 𝐴3(𝑘2) and 𝐴1(𝑘2)𝐴2(𝑘2) −𝐴3(𝑘2) are worked out in detail in Table 1.
We refer the reader to a detailed analysis of this in [19].

However, we can summarise the necessary conditions for
Turing instability from [19] via the following theorem.

Theorem C.1. Consider the three-species reaction diffu-
sion system (5). For the spatially homogenous steady state(𝑢∗, V∗, 𝑟∗) to be driven unstable due to diffusion, it is necessary
that the coefficients 𝑐, 𝑑 of 𝐴3, as well as the coefficients 𝑐, 𝑑 of𝐴1𝐴2 − 𝐴3, from Table 1 be strictly negative and 𝑐2 − 3𝑏𝑑 be
strictly positive.
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