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The fault detection (FD) reduced-order filtering problem is investigated for a family of continuous-time Markovian jump linear
systems (MJLSs) with polytopic uncertain transition rates, which also include the totally known and partly unknown transition
rates. Then, in accordance with the convexification techniques, a novel sufficient condition for the existence of FD reduced-order
filter over MJLSs with deficient transition information is obtained in terms of linear matrix inequality (LMI), which can ensure the
error augmented system with the FD reduced-order filter is randomly stable. In addition, a performance index is given to enhance
the robustness of the residual system against deficient transition information and external disturbance, such that the error between
the fault and the residual is made as small as possible to reinforce the faults sensitivity. Finally, the effectiveness of the proposed
method is substantiated with two illustrative examples.

1. Introduction

Over the past few years, Markov jump linear systems (MJLSs)
have been attracting extensive research attention in many
engineering fields, such as energy system, solar thermal
power generation system, networked control system, man-
ufacturing system, and financial market system [1, 2]. Many
important results have been reported, such as a number of
studies on the Markovian jump system on the filter design
[3–5], state feedback controller design [6], output feedback
controller design [7–12], stability analysis, and synthesis [13–
17]. In fact,MJLSs are very suited to dynamicalmodel systems
whose property is subject to random sudden variant due to
abrupt external disturbance, shifting of the action spots of a
nonlinear system, and repairs of components; thus, in order
to ensure that the nonlinear system is randomly exponentially
stable, the authors in [11] proposed a Markovian Lyapunov
functional which was successfully used in the nonlinear sys-
tems. In essence, the transition rates (TRs) in the MJLSs are
very important. A large number of traditional analyses and
design results have been reported on condition that the TRs

in theMJLSs are exactly known.However, it should be pointed
out that all the mode transition rates cannot be acquired totally
in lots of engineering plants; for example, the authors in [5]
addressed two types of transition rates for the fault detection
problem on discrete-time MJLSs. But, in fact, for the majority
ofMJLSs, there are three types of transition cases for theMJLSs,
which are known, unknown, and polytopic uncertain TRs. For
example, the authors in [2] proposed a control approach for
continuous-time Markovian jump systems with time-varying
delay and deficient transition descriptions. The authors in [3]
presented a filtering method for two-dimensional continuous-
time Markovian jump systems with partially accessible mode
information. On the other hand, in many published papers,
the unknown TRs and polytopic uncertain TRs in MJLSs have
been taken into account separately. In reality, in a lot of actual
conditions, there are the uncertain TRs and unknown TRs in
MJLSs synchronously. To mention a few, the authors in [4]
investigated a new approach to delay-dependent 𝐻∞ filtering
for discrete-time Markovian jump systems with the exactly
known, partially unknown, and uncertain TRs concurrently,
which was more rational and general to research on the
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comprehensive analysis of MJLSs. But there are few research
results about fault detection of Markovian jump systems with
the exactly known, partially unknown, and uncertain TRs
concurrently, and the loss of sensor or actuator information can
be efficiently modeled by means of Markov chain frameworks.
This is the need to solve the main problem, which is one of the
motivations for our research.

On another research frontier, the fault detection isolation
and fault-tolerant control techniques have gotten a great
amount of attention in the academic research and practical
application because of the increasing demand for improving
the system reliability and the safety of fail-safe control systems
such as aerospace and nuclear plants (see [18–25]). The plant
operation should be monitored in real time. When the com-
ponents or instrument fault is found, the stable closed loop
performance of the systemhas always bemaintained, through
the fault-tolerant control approach to realize the acceptable
robust stability conditions of the system.Therefore, we should
first study the fault detection methods. The basic design idea
of FD is to use the effective methods to generate a residual
signal and to determine a common diagnostic residual
evaluation function and the threshold; then an alarm of fault
is generated when the value of system residual is larger than
the threshold [26]. Hence, in the process of fault detection,
residual generation is a very important step; based on this,
there are many basic approaches provided to generate robust
residuals that are sensitive to faults, while being insensitive
to unknown input and noise.There are many faults detection
methods, such as full-state observer-based methods [27, 28],
optimization-based approach [29], parity relations approach
[30], unknown input observers [31], system identification
methods [32], nonlinear approach [33, 34], artificial intel-
ligence techniques [35, 36], and discrete event systems and
hybrid systems [37–39]. In the above existing ways, the
fault detection filter method is the most favoured method.
However, in some complex engineering applications, high-
ordermodels are inevitably used to describe physical systems.
This brings many difficulties in design of the corresponding
FD filter in order to quickly detect faults. Moreover, to the
knowledge of the authors, there are few results for the high-
efficiency FD reduced-order filter design. This motivates us
to study this problem in order to reduce the complexity and
FD rate of false positives and computation time of the FD
filter design process and save storage space, so as to enhance
the efficiency of the FD, which has great potential in practical
applications.

In this paper, the chief aim is to design the FD reduced-
order filter for a family of continuous-time MJLSs with
uncertain transition probabilities, which is more general.
By satisfying some performance indexes, the susceptibility
to malfunction and the robustness against interference are
both enhanced on residual outputs. Through the construct-
ing of the residual generator, the FD reduced-order filter
design scheme is converted to an𝐻∞ reduced-order filtering
design problem in order that the error between residual
and malfunction is minimized at the 𝐻∞ level. Then, the
sufficient condition for the existence of the FD reduced-order
filter for the represented systems is obtained through linear

matrix inequalities. In fact, compared with the fault detec-
tion reduced-order filter design for discrete-time Markov
jump system with deficient transition information [25], the
problem of fault detection for continuous-time MJLSs with
deficient TRs should meet many requirements of detection
performance and Markov jump process, which leads to the
increase the difficulty of filter design.Therefore, to the best of
our knowledge, the research on the fault detection reduced-
order filters for continuous-time Markov jump system with
deficient transition information is relatively few, which is the
third motivation for this research.

Inspired by the aforementioned statements, in this
paper, a reduced-order fault detection filtering approach for
continuous-timeMJLSs with polytopic uncertainties is firstly
proposed.Then, the reduced-order H∞ filter design problem
is investigated by applying a linearisation approach, which
casts the filter design into a convex optimisation problem.
Finally, two examples are given to illustrate the effectiveness
of the proposed design method. Compared with the existing
result on FD filtering for the discrete-time Markovian jump
linear systems, the main contributions of the work in this
paper are twofold: (i) The filtering problem for a class of
continuous-time MJLSs with defective transition informa-
tion, which simultaneously includes the known, partially
unknown, and polytopic-type uncertain TPs, is considered.
The corresponding filter design results are expected to be
more general and therebymore practicable. (ii)This proposed
design approach has been applied to a vertical take-off and
landing helicopter system, which can improve the sensitivity
of fault detection and reduce the fault detection rate of false
positives.

This paper is organized as follows. Section 2 formulates
the mathematical model of the system; then, many prelim-
inary results are shown. The sufficient condition of FD filter
for the underlying system is established in Section 3. Section 4
describes two simulation cases study and results to point out
the effectiveness of the proposed approach. Section 5 presents
the conclusion of the this paper.

Notations. Throughout this paper, for real symmetric matrix𝑃, 𝑃 > 0means that 𝑃 is positive definite and ∗ represents the
symmetric element.R𝑛 denotes the 𝑛-dimensional Euclidean
space, R𝑚×𝑛 denotes the set of all 𝑚 × 𝑛 real matrices, and𝑁 represents a positive integer. ‖ ⋅ ‖ denotes the Euclidean
norm for vectors, 𝑙2[0,∞) represents the space of square
integrable vector functions over 𝜔 = {𝜔(𝑡)} ∈ 𝑙2[0,∞), and
its norm is given by ‖𝜔‖2 = √∫∞

0
‖𝜔‖2𝑑𝑡. 𝐸[⋅] stands for the

mathematical expectation.

2. Problem Formulation

In this section, we will consider a continuous-time MJLS on
a complete rate space of the form:

𝑥̇ (𝑡) = 𝐴 (𝜍 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝜍 (𝑡)) 𝑢 (𝑡) + 𝐸 (𝜍 (𝑡)) 𝜔 (𝑡)
+ 𝐹 (𝜍 (𝑡)) 𝑓 (𝑡) ,

𝑦 (𝑡) = 𝐶 (𝜍 (𝑡)) 𝑥 (𝑡) + 𝐷 (𝜍 (𝑡)) 𝜔 (𝑡) + 𝐻 (𝜍 (𝑡)) 𝑓 (𝑡) ,
(1)
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where 𝑢(𝑡) ∈ R𝑛𝑢 is the known control input, 𝑦(𝑡) ∈ R𝑛𝑦 is
the controlled output, 𝑥(𝑡) ∈ R𝑛𝑥 represents the plant state,𝑓(𝑡) ∈ R𝑛𝑓 is the fault signal to be detected, 𝜔(𝑡) ∈ R𝑛𝑑 is
the exogenous disturbance signal, and 𝑢(𝑡), 𝜔(𝑡), and 𝑓(𝑡) are
assumed to belong to 𝑙2[0,∞). {𝜍(𝑡), 𝑡 ≥ 0} is a continuous-
time homogeneous Markov chain, which takes values in a
finite set 𝑆 = {1, 2, . . . , 𝑛} and mode transition rates (TRs) are
defined as

Prob {𝜍 (𝑡 + ℎ) = 𝑗 | 𝜍 (𝑡) = 𝑔}
= {{{

𝜆𝑔𝑗ℎ + 𝑜 (ℎ) , 𝜍 (𝑡) jumps from 𝑔 to 𝑗,
1 + 𝜆𝑔𝑔ℎ + 𝑜 (ℎ) , otherwise,

(2)

where ℎ > 0, limℎ→0(𝑜(ℎ)/ℎ) = 0, for all 𝑔 ̸= 𝑗, 𝜆𝑔𝑗 ≥ 0,
and 𝜆𝑔𝑔 = −∑𝑁

𝑗=1,𝑗 ̸=𝑔 𝜆𝑔𝑗. For 𝜍(𝑡) = 𝑔, 𝑔 ∈ 𝑆, the system
matrices of the 𝑔th mode are denoted by (𝐴𝑔, 𝐵𝑔, 𝐶𝑔,𝐷𝑔),
which are known real matrices. In this paper, system (1) is
assumed randomly stable, which is a precondition for model
design.

Moreover, the TRs of the Markov process are regarded as
polytopic uncertain and partly available; in other words, the
transition rate matrix (TRM) Λ = {𝜆𝑔𝑗} is deemed to belong
to a known polytope 𝑃Λ with vertices Λ 𝑠.

𝑃Λ fl {Λ | Λ = 𝑀∑
𝑠=1

𝛼𝑠Λ 𝑠; 𝛼𝑠 ≥ 0, 𝑀∑
𝑠=1

𝛼𝑠 = 1} , (3)

where vertices Λ 𝑠 = [𝜆𝑔𝑗]𝑁×𝑁, 𝑔, 𝑗 ∈ 𝑆, 𝑆 = 1, 2, . . . ,𝑀,
are still given in TRM containing unknown and uncertain
factors. For example, for system (1)with four variationmodes,
the TRM is expressed as

[[[[[[
[

𝜆11 𝜆̂12 𝜆̃13 𝜆14

𝜆̃21 𝜆22 𝜆̂23 𝜆24

𝜆31 𝜆32 𝜆̃33 𝜆̂34

𝜆̃41 𝜆42 𝜆43 𝜆̃44

]]]]]]
]

, (4)

where the polytopic uncertainties and unknown TRs are
represented as the superscripts labeled with “̃” and “̂,”
separately, and the others are known TRs. In order to make
the notational more clearly, for all 𝑔 ∈ 𝑆, we denote 𝑆 =𝑆(𝑔)

𝑘
∪ 𝑆(𝑔)

𝑢𝑐 ∪ 𝑆(𝑔)

𝑢𝑘
as follows:

𝑆(𝑔)

𝑘
fl {𝑗 : 𝜆𝑔𝑗 is known} ,

𝑆(𝑔)
𝑢𝑐 fl {𝑗 : 𝜆̃𝑔𝑗 is uncertain} ,

𝑆(𝑔)

𝑢𝑘
fl {𝑗 : 𝜆̂𝑔𝑗 is unknown} .

(5)

Also, we define 𝜆(𝑔V)
𝑢𝑘

fl ∑
𝑗∈𝑆
(𝑔)

𝑢𝑘

𝜆̂𝑔𝑗 = 1 − ∑
𝑗∈𝑆
(𝑔)

𝑘

𝜆𝑔𝑗 −
∑

𝑗∈𝑆
(𝑔)
𝑢𝑐

𝜆̃(𝑔V)
𝑔𝑗 .

Remark 1. The transition rates of theMJLSs {𝜍(𝑡), 𝑡 ≥ 0} have
been universally assumed to be some known, some unknown,

and some uncertain within given intervals. Hence, the TRM
considered in this article is more natural to the MJLSs, which
includes the previous three cases. Then, we are interested
in designing an FD filter for the underlying system, and its
desired structure is considered to be

𝑥̇𝐹 (𝑡) = 𝐴𝐹 (𝜍 (𝑡)) 𝑥𝐹 (𝑡) + 𝐵𝐹 (𝜍 (𝑡)) 𝑦 (𝑡) ,
𝑟𝐹 (𝑡) = 𝐶𝐹 (𝜍 (𝑡)) 𝑥𝐹 (𝑡) + 𝐷𝐹 (𝜍 (𝑡)) 𝑦 (𝑡) , (6)

where 𝑥𝐹(𝑡) ∈ R𝑛 is the state estimation of filter, 𝑟𝐹(𝑡) ∈
R𝑓 is the residual, and 𝐴𝐹(𝜍(𝑡)), 𝐵𝐹(𝜍(𝑡)), 𝐶𝐹(𝜍(𝑡)), 𝐷𝐹(𝜍(𝑡)),∀𝜍(𝑡) ∈ 𝐼 are the matrices to be calculated.

Define 𝑥̃(𝑡) fl [𝑥𝑇(𝑡) 𝑥𝐹
𝑇(𝑡)]𝑇, 𝑒(𝑡) fl 𝑟𝐹(𝑡)−𝑓(𝑡).Then,

by augmenting (1) and (6), the error augmented system is
obtained as follows:

̇̃𝑥 (𝑡) = 𝐴̃ (𝜍 (𝑡)) 𝑥̃ (𝑡) + 𝐵̃ (𝜍 (𝑡)) 𝜓 (𝑡) ,
𝑒 (𝑡) = 𝐶̃ (𝜍 (𝑡)) 𝑥̃ (𝑡) + 𝐷̃ (𝜍 (𝑡)) 𝜓 (𝑡) , (7)

where 𝜓(𝑡) = [𝑢𝑇(𝑡) 𝜔𝑇(𝑡) 𝑓𝑇(𝑡)]𝑇 and

𝐴̃ (𝜍 (𝑡)) = [ 𝐴 (𝜍 (𝑡)) 0
𝐵𝐹 (𝜍 (𝑡)) 𝐶 (𝜍 (𝑡)) 𝐴𝐹 (𝜍 (𝑡))] ,

𝐵̃ (𝜍 (𝑡))
= [𝐵 (𝜍 (𝑡)) 𝐸 (𝜍 (𝑡)) 𝐹 (𝜍 (𝑡))

0 𝐵𝐹 (𝜍 (𝑡)) 𝐷 (𝜍 (𝑡)) 𝐵𝐹 (𝜍 (𝑡))𝐻 (𝜍 (𝑡))] ,
𝐶̃ (𝜍 (𝑡)) = [𝐷𝐹 (𝜍 (𝑡)) 𝐶 (𝜍 (𝑡)) 𝐶𝐹 (𝜍 (𝑡))] ,
𝐷̃ (𝜍 (𝑡))

= [0 𝐷𝐹 (𝜍 (𝑡)) 𝐷 (𝜍 (𝑡)) 𝐷𝐹 (𝜍 (𝑡))𝐻 (𝜍 (𝑡)) − 𝐼] .

(8)

In fact, the error augmented system (7) is also an MJLS
with deficient TRM in (4). We recommend the definitions of
stochastic stability of the Markovian jump system for system
(7), which are necessary for the next step of progress.

Definition 2 (see [2]). A continuous-time stochastic system
(7) is said to be randomly stable if, for 𝜔(𝑡) = 0, 𝑡 ≥ 0, and
every initial condition 𝑥̃(0) ∈ R𝑛𝑥 and 𝑟(0) ∈ 𝑆. Then, the
following holds: 𝐸{∫∞

0
‖𝑥̃(ℎ), 𝑥̃(0), 𝑟(0)‖2𝑑ℎ} < ∞.

Definition 3 (see [6]). Given the disturbance input 𝜔(𝑡) ∈𝑙2[0,∞) and a scalar 𝜍 > 0, system (7) is randomly stable
and has an 𝐻∞ performance index 𝜍 if the following two
conditions are satisfied:

(1) When 𝜔(𝑡) = 0, 𝑡 ≥ 0, system (7) is randomly stable
in the sense of Definition 2.

(2) When 𝜔(𝑡) ̸= 0, 𝑡 ≥ 0, under zero initial conditions,
the following inequality holds:

𝐸{∫∞

0
𝑒𝑇 (𝑡) 𝑒 (𝑡) 𝑑𝑡} < 𝜍2𝐸{∫∞

0
𝜔𝑇 (𝑡) 𝜔 (𝑡) 𝑑𝑡} . (9)
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As a consequence, the main purposes of this paper are
to determine matrices {𝐴𝐹(𝜍(𝑡)), 𝐵𝐹(𝜍(𝑡)), 𝐶𝐹(𝜍(𝑡)), 𝐷𝐹(𝜍(𝑡))}
in system (6), such that the augmented error system (7) is
randomly stable with a reliable 𝐻∞ performance level with
deficient transition information. Finally, the continuous-time
MJLS (1) will be assumed to be stable in the end.Moreover, in
order to detect the fault𝑓(𝑡), the residual evaluation function
is designed as 𝐽(𝑟(𝐿)) = √∫𝑘0+𝐿

𝑘0
𝑟𝑇(𝑡)𝑟(𝑡)𝑑𝑡, where 𝑘0 denotes

the initial evaluation time instant. The fault 𝑓(𝑡) can be
detected by the following steps.

(i) Select a threshold 𝐽th ≜ sup𝑑∈𝑙2,𝑓=0𝐸[𝐽(𝑟(𝐿))].
(ii) Based on the above result, the fault 𝑓𝑘 can be detected

by comparing 𝐽(𝑟(𝐿)) and 𝐽th.
(iii) When 𝐽(𝑟(𝐿)) ≥ 𝐽th, there are some faults; we should

give an alarm; when 𝐽(𝑟(𝐿)) < 𝐽th, there are no faults.
Before proceeding further, it is worth briefly reviewing

the following useful lemma on the error augmented system
(7) with completely known TRs, which is given for the
derivation of the latter results.

Lemma 4 (see [10]). For the error augmented system (7) with
totally known transition mode information and a given scalar𝜉 > 0, the coupled inequalities

[
[
𝐴̃𝑇

𝑔𝑄𝑔 + 𝑄𝑔𝐴̃𝑔 + 𝜂𝑔 + 𝐶̃𝑇

𝑔𝐶̃𝑔 𝑄𝑔𝐵̃𝑔 + 𝐶̃𝑇

𝑔𝐷̃𝑔

∗ − (𝜉2𝐼 − 𝐷̃𝑇

𝑔𝐷̃𝑔)
]
]

< 0, ∀𝑔 ∈ 𝑆,
(10)

where 𝜂𝑔 fl ∑𝑁
𝑗=1 𝜆𝑔𝑗𝑄𝑗 have resolvable matrices 𝑄 ={𝑄1, 𝑄2, . . . ,Q𝑁} such that MJLS (7) with totally known TRs

is randomly stable with an 𝐻∞ performance index 𝜉.
3. Main Results

In the above section, firstly, we introduce an𝐻∞ performance
analysis criterion for the error augmented system (7) and
further focus on the design of the FD reduced-order filter for
MJLS (1) with deficient mode information.

3.1. 𝐻∞ FD Reduced-Order Filter Performance Analysis. The
following lemma presents an 𝐻∞ FD reduced-order filter
performance analysis result for the underlying augmented
error system in (7) with deficient TRs.

Lemma 5. Let 𝜉 > 0 be a given scalar; if there are positive-
definite symmetric matrices 𝑄 = {𝑄1, 𝑄2, . . . , 𝑄𝑁} such that
LMI (11) holds, then the error augmented system in (7) with
incomplete mode transition information is randomly stable
with a guaranteed 𝐻∞ performance index 𝜉 and satisfies (9).

Ψ(V)
𝑔𝑗 = [[[[

[

−𝐼 𝐶̃𝑔 𝐷̃𝑔

∗ 𝐴̃𝑇

𝑔𝑄𝑔 + 𝑄𝑔𝐴̃𝑔 + 𝜂̃(V)
𝑔𝑗 𝑄𝑔𝐵̃𝑔

∗ ∗ −𝜉2𝐼
]]]]
]

< 0,

𝑗 ∈ 𝑆(𝑔)

𝑢𝑘
, V = 1, 2, . . . ,𝑀,

(11)

where

𝜂̃(V)
𝑔𝑗 = {{{

𝜂(𝑔)

𝑘
+ 𝜂(𝑔V)

𝑢𝑐 − (𝜆(𝑔)

𝑘
+ 𝜆(𝑔V)

𝑢𝑐 ) 𝜂𝑗, 𝑗 ∈ 𝑆(𝑔)

𝑢𝑘
, if 𝑔 ∈ 𝑆(𝑔)

𝑘
∪ 𝑆(𝑔)

𝑢𝑐 ,
𝜂(𝑔)

𝑘
+ 𝜂(𝑔V)

𝑢𝑐 + 𝜆(𝑔)

𝑙
𝜂𝑔 − (𝜆(𝑔)

𝑙
+ 𝜆(𝑔)

𝑘
+ 𝜆(𝑔V)

𝑢𝑐 ) 𝜂𝑗, 𝑗 ∈ 𝑆(𝑔)

𝑢𝑘
, if 𝑔 ∈ 𝑆(𝑔)

𝑢𝑘
,

𝜂(𝑔)

𝑘
= ∑

𝑗∈𝑆
(𝑔)

𝑘

𝜆𝑔𝑗𝑄𝑗,

𝜂(𝑔V)
𝑢𝑐 = ∑

𝑗∈𝑆
(𝑔)
𝑢𝑐

𝜆̃(V)
𝑔𝑗 𝑄𝑗,

𝜆(𝑔)

𝑘
= ∑

𝑗∈𝑆
(𝑔)

𝑘

𝜆𝑔𝑗,

𝜆(𝑔V)
𝑢𝑐 = ∑

𝑗∈𝑆
(𝑔)
𝑢𝑐

𝜆̃(V)
𝑔𝑗 .

(12)

Proof. By virtue of Lemma 4, it is shown that system (7)
with totally known transition probabilities is randomly stable
with an 𝐻∞ performance 𝜉, when matrix inequality (10)
holds. Now because the diagonal elements in the transition
probabilitiesmatrixmay not be known, the proof of Lemma 5

should be divided into two cases to analyze; that is, 𝑔 ∈𝑆(𝑔)

𝑘
∪ 𝑆(𝑔)

𝑢𝑐 (Case 1) and 𝑔 ∈ 𝑆(𝑔)

𝑢𝑘
(Case 2), respectively.

Case 1 (𝑔 ∈ 𝑆(𝑔)

𝑘
∪𝑆(𝑔)

𝑢𝑐 ). In this case,𝑔 ∈ 𝑆(𝑔)

𝑘
∪𝑆(𝑔)

𝑢c indicates that
𝜆𝑔𝑔 is knownor uncertain; then it is equivalent to𝜆(𝑔)

𝑘
+𝜆(𝑔𝑠)

𝑢𝑐 ≤ 0.
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First of all, we consider the case that 𝜆(𝑔)

𝑘
+ 𝜆(𝑔𝑠)

𝑢𝑐 <0. Noticing that, with incomplete probabilities information,∑𝑁
𝑗=1 𝜆𝑔𝑗𝑄𝑗 in (10) can be dealt with,

𝑁∑
𝑗=1

𝜆𝑔𝑗𝑄𝑗 = ∑
𝑗∈𝑆
(𝑔)

𝑘

𝜆𝑔𝑗𝑄𝑗 + ∑
𝑗∈𝑆
(𝑔)

𝑢𝑘

𝜆̂𝑔𝑗𝑄𝑗

+ ∑
𝑗∈𝑆
(𝑔)
𝑢𝑐

( 𝑀∑
V=1

𝛽V𝜆̃(V)
𝑔𝑗 )𝑄𝑗

= ∑
𝑗∈𝑆
(𝑔)

𝑘

𝜆𝑔𝑗𝑄𝑗

+ (−𝜆(𝑔)

𝑘
− 𝜆(𝑔V)

𝑢𝑐 ) ∑
𝑗∈𝑆
(𝑔)

𝑢𝑘

𝜆̂𝑔𝑗

−𝜆(𝑔)

𝑘
− 𝜆(𝑔V)

𝑢𝑐

𝑄𝑗

+ 𝑀∑
V=1

𝛽V ∑
𝑗∈𝑆
(𝑔)
𝑢𝑐

𝜆̃(V)
𝑔𝑗 𝑄𝑗

= 𝜂(𝑔)

𝑘
+ (−𝜆(𝑔)

𝑘
− 𝜆(𝑔V)

𝑢𝑐 ) ∑
𝑗∈𝑆
(𝑔)

𝑢𝑘

𝜆̂𝑔𝑗

−𝜆(𝑔)

𝑘
− 𝜆(𝑔V)

𝑢𝑐

𝑄𝑗

+ 𝑀∑
V=1

𝛽V𝜂(𝑔V)
𝑢𝑐 ,

(13)

where

𝜂(𝑔)

𝑘
= ∑

𝑗∈𝑆
(𝑔)

𝑘

𝜆𝑔𝑗𝑄𝑗,

𝜂(𝑔V)
𝑢𝑐 = ∑

𝑗∈𝑆
(𝑔)
𝑢𝑐

𝜆̃(V)
𝑔𝑗 𝑄𝑗,

𝜆(𝑔)

𝑘
= ∑

𝑗∈𝑆
(𝑔)

𝑘

𝜆𝑔𝑗,

𝜆(𝑔V)
𝑢𝑐 = ∑

𝑗∈𝑆
(𝑔)
𝑢𝑐

𝜆̃(V)
𝑔𝑗 ,

(14)

and 𝜆̂𝑔𝑗 (𝑗 ∈ 𝑆(𝑔)

𝑢𝑘
) are unknown elements; and ∑𝑀

V=1 𝛽V𝜆̃(V)
𝑔𝑗 ,∀𝑗 ∈ 𝑆(𝑔)

𝑢𝑐 represents the polytopic uncertain elements.
As 0 ≤ 𝛽V ≤ 1, ∑𝑀

V=1 𝛽V = 1, and 0 ≤ 𝜆̂𝑔𝑗/(−𝜆(𝑔)

𝑘
− 𝜆(𝑔V)

𝑢𝑐 ) ≤
1, ∑

𝑗∈𝑆
(𝑔)

𝑢𝑘

(𝜆̂𝑔𝑗/(−𝜆(𝑔)

𝑘
− 𝜆(𝑔V)

𝑢𝑐 )) = 1, the right-hand side (RHS)
of inequality (13) is sorted out for the following expression:

RHS (13) = 𝑀∑
V=1

𝛽V ∑
𝑗∈𝑆
(𝑔)

𝑢𝑘

𝜆̂𝑔𝑗

−𝜆(𝑔)

𝑘
− 𝜆(𝑔V)

𝑢𝑐

(𝜂(𝑔)

𝑘
+ 𝜂(𝑔V)

𝑢𝑐

− (𝜆(𝑔)

𝑘
+ 𝜆(𝑔V)

𝑢𝑐 ) 𝜂𝑗) .
(15)

Thus, for 0 ≤ 𝛽V ≤ 1 and 0 ≤ 𝜆̂𝑔𝑗 ≤ −(𝜆(𝑔)

𝑘
+𝜆(𝑔V)

𝑢𝑐 ), the left-
hand side (LHS) of inequality (10) can be obtained as follows:

LHS (10) = 𝑀∑
V=1

𝛽V ∑
𝑗∈𝑆
(𝑔)
𝑢𝑐

𝜆̂𝑔𝑗

−𝜆(𝑔)

𝑘
− 𝜆(𝑔𝑠)

𝑢𝑐

Ψ(V)
𝑔𝑗 ,

𝑗 ∈ 𝑆(𝑔)

𝑢𝑘
, V = 1, 2, . . . ,𝑀,

(16)

where

Ψ(V)
𝑔𝑗 = [[[

[

−𝐼 𝐶̃𝑔 𝐷̃𝑔

∗ 𝐴̃𝑇

𝑖 𝑄𝑔 + 𝑄𝑔𝐴̃𝑔 + 𝜂̃(V)
𝑔𝑗 𝑄𝑔𝐵̃𝑖

∗ ∗ −𝜉2𝐼
]]]
]

,

𝜂̃(V)
𝑔𝑗 fl 𝜂(𝑔)

𝑘
+ 𝜂(𝑔V)

𝑢𝑐 − (𝜆(𝑔)

𝑘
+ 𝜆(𝑔V)

𝑢𝑐 ) 𝜂𝑗.
(17)

When Ψ(V)
𝑔𝑗 < 0 in (16), inequality (10) holds.

Secondly, we consider the case that 𝜆(𝑔)

𝑘
+ 𝜆(𝑔V)

𝑢𝑐 = 0.
In fact, if 𝜆(𝑔)

𝑘
+𝜆(𝑔𝑠)

𝑢𝑐 = 0, then all the items in the 𝑔th row
are fully known. Inequality (11) is obtained through the linear
transformation with 𝜂̃(V)

𝑔𝑗 fl 𝜂(𝑔)

𝑘
+ 𝜂(𝑔𝑠)

𝑢𝑐 .
In conclusion, when the unknown elements 𝜆̂𝑔𝑗, 𝑔 ̸= 𝑗,

are not the diagonal elements 𝜆̂𝑔𝑔, inequality (10) can be
converted to (11).

Case 2 (𝑔 ∈ 𝑆(𝑔)

𝑢𝑘
). Firstly, it is the case that 𝜆̂𝑔𝑔 < −(𝜆(𝑔)

𝑘
+𝜆(𝑔V)

𝑢𝑐 ).
Identically, for this case the term ∑𝑁

𝑗=1 𝜆𝑔𝑗𝑄𝑗 in (10) can
be processed into

𝑁∑
𝑗=1

𝜆𝑔𝑗𝑄𝑗 = ∑
𝑗∈𝑆
(𝑔)

𝑘

𝜆𝑔𝑗𝑄𝑗 + 𝜆̂𝑔𝑔𝑄𝑔 + ∑
𝑗∈𝑆
(𝑔)

𝑢𝑘
,𝑗 ̸=𝑔

𝜆̂𝑔𝑗𝑄𝑗

+ ∑
𝑗∈𝑆
(𝑔)
𝑢𝑐

( 𝑀∑
V=1

𝛽V𝜆̃(V)
𝑔𝑗 )𝑄𝑗 = 𝜂(𝑔)

𝑘
+ 𝜆̂𝑔𝑔𝑄𝑔

− (𝜆̂𝑔𝑔 + 𝜆(𝑔)

𝑘
+ 𝜆(𝑔V)

𝑢𝑐 )
⋅ ∑
𝑗∈𝑆
(𝑔)

𝑢𝑘
,𝑗 ̸=𝑔

𝜆̂𝑔𝑗

−𝜆̂𝑔𝑔 − 𝜆(𝑔)

𝑘
− 𝜆(𝑔V)

𝑢𝑐

𝑄𝑗 + 𝑀∑
V=1

𝛽V𝜂(𝑔V)
𝑢𝑐 ,

(18)

where 𝜂(𝑔)

𝑘
fl ∑

𝑗∈𝑆
(𝑔)

𝑘

𝜆𝑔𝑗𝑄𝑗 and 𝜂(𝑔V)
𝑢𝑐 fl ∑

𝑗∈𝑆
(𝑔)
𝑢𝑐

𝜆̃(V)
𝑔𝑗 𝑄𝑗.

Similarly, it follows from 0 ≤ 𝛽V ≤ 1, ∑𝑀
V=1 𝛽V = 1, and0 ≤ 𝜆̂𝑔𝑗/(−𝜆̂𝑔𝑔 − 𝜆(𝑔)

𝑘
− 𝜆(𝑔V)

𝑢𝑐 ) ≤ 1, ∑
𝑗∈𝑆
(𝑔)

𝑢𝑘
,𝑗 ̸=𝑔

(𝜆̂𝑔𝑗/(−𝜆̂𝑔𝑔 −
𝜆(𝑔)

𝑘
− 𝜆(𝑔V)

𝑢𝑐 )) = 1, that
𝑁∑
𝑗=1

𝜆𝑔𝑗𝑄𝑗 = 𝑀∑
V=1

𝛽V ∑
𝑗∈𝑆
(𝑔)

𝑢𝑘
,𝑗 ̸=𝑔

𝜆̂𝑔𝑗

−𝜆(𝑔)

𝑘
− 𝜆(𝑔𝑠)

𝑢𝑐 − 𝜆̂𝑔𝑔

[𝜂(𝑔)

𝑘

+ 𝜂(𝑔V)
𝑢𝑐 + 𝜆̂𝑔𝑔𝑄𝑔 − (𝜆̂𝑔𝑔 + 𝜆(𝑔)

𝑘
+ 𝜆(𝑔V)

𝑢𝑐 )𝑄𝑗] .
(19)
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Correspondingly, for this case, LHS (10) can be rewritten
as

LHS (10) = 𝑀∑
V=1

𝛽V ∑
𝑗∈𝑆
(𝑔)

𝑢𝑘
,𝑗 ̸=𝑔

𝜆̂𝑔𝑗

−𝜆(𝑔)

𝑘
− 𝜆(𝑔𝑠)

𝑢𝑐 − 𝜆̂𝑔𝑔

Ψ(V)
𝑔𝑗 ,

𝑗 ∈ 𝑆(𝑔)

𝑢𝑘
, 𝑗 ̸= 𝑔, V = 1, 2, . . . ,𝑀,

(20)

where

Ψ(V)
𝑔𝑗 fl

[[[
[

−𝐼 𝐶̃𝑔 𝐷̃𝑔

∗ 𝐴̃𝑇

𝑔𝑄𝑔 + 𝑄𝑔𝐴̃𝑔 + 𝜂̃(V)
𝑔𝑗 𝑄𝑔𝐵̃𝑔

∗ ∗ −𝜉2𝐼
]]]
]

,

𝜂̃(V)
𝑔𝑗 fl 𝜂(𝑔)

𝑘
+ 𝜂(𝑔V)

𝑢𝑐 + 𝜆̂𝑔𝑔𝑄𝑔 − (𝜆(𝑔)

𝑘
+ 𝜆(𝑔V)

𝑢𝑐 + 𝜆̂𝑔𝑔)𝑄𝑗.
(21)

It follows from (20) that (10) is equivalent to

Ψ(V)
𝑔𝑗 < 0, 𝑗 ∈ 𝑆(𝑔)

𝑢𝑘
, 𝑗 ̸= 𝑔. (22)

To facilitate the calculation, we introduce a lower bound𝜆(𝑔)

𝑙
for the unknown element 𝜆̂𝑔𝑔; that is,

𝜆(𝑔)

𝑙
≤ 𝜆̂𝑔𝑔 < −𝜆(𝑔)

𝑘
− 𝜆(𝑔V)

𝑢𝑐 , (23)

which indicates that 𝜆̂𝑔𝑔 can take different value in
[𝜆(𝑔)

𝑙
, −𝜆(𝑔)

𝑘
− 𝜆(𝑔V)

𝑢𝑐 + 𝜀] for any small value 𝜀 < 0. Then 𝜆̂𝑔𝑔

can be further expressed as follows:

𝜆̂𝑔𝑔 = −𝜉𝜆(𝑔)

𝑘
− 𝜉𝜆(𝑔V)

𝑢𝑐 + 𝜉𝜀 + (1 − 𝜉) 𝜆(𝑔)

𝑙
, (24)

where 0 ≤ 𝜉 ≤ 1. As 𝜆̂𝑔𝑔 in (24) depends on 𝜉 linearly,
therefore (22) only needs to be satisfied for 𝜉 = 0 and 𝜉 = 1;
that is, (22) holds if and only if the following inequalities in
(25)-(26) simultaneously hold:

Ψ(V)
𝑔𝑗 < 0, 𝑗 ∈ 𝑆(𝑔)

𝑢𝑘
, 𝑗 ̸= 𝑔, (25)

where Ψ(V)
𝑔𝑗 is defined in (21) with 𝜂̃(V)

𝑔𝑗 = 𝜂(𝑔)

𝑘
+ 𝜂(𝑔V)

𝑢𝑐 − (𝜆(𝑔)

𝑘
+

𝜆(𝑔V)
𝑢𝑐 )𝑄𝑗 + 𝜀(𝑄𝑔 − 𝑄𝑗), and

Ψ(V)
𝑔𝑗 < 0, 𝑗 ∈ 𝑆(𝑔)

𝑢𝑘
, 𝑗 ̸= 𝑔, (26)

where Ψ(V)
𝑔𝑗 is defined in (21) with 𝜂̃(V)

𝑔𝑗 = 𝜂(𝑔)

𝑘
+ 𝜂(𝑔V)

𝑢𝑐 − (𝜆(𝑔)

𝑘
+

𝜆(𝑔V)
𝑢𝑐 )𝑄𝑔 + 𝜆(𝑔)

𝑙
(𝑄𝑔 − 𝑄𝑗).

As 𝜀 is small enough, (25) is established only if

Ψ(V)
𝑔𝑗 < 0, 𝑗 ∈ 𝑆(𝑔)

𝑢𝑘
, 𝑗 ̸= 𝑔, (27)

where Ψ(V)
𝑔𝑗 is defined in (21) with 𝜂̃(V)

𝑔𝑗 = 𝜂(𝑔)

𝑘
+ 𝜂(𝑔V)

𝑢𝑐 − (𝜆(𝑔)

𝑘
+

𝜆(𝑔V)
𝑢𝑐 )𝑄𝑔, which is implied by (26) when 𝑗 = 𝑔, 𝑗 ∈ 𝑆(𝑔)

𝑢𝑘
.

Fromwhat has been discussed above, despite the presence
of uncertain and unknown terms in the transition probabili-
tiesmatrix, the error augmented system (7) is randomly stable
with an 𝐻∞ performance 𝜉 if (11) holds. This completes the
proof.

Remark 6. Lemma 5 presents an 𝐻∞ performance analysis
standard for a family of MJLSs with deficient TRs. However,
it is shown that there are coupling terms in the system matri-
ces inequality (11), where structural constraint significantly
augments the level of design conservatism. Thus, it incurs
some difficulties for fault detection filter synthesis problem.
To overcome these difficulties, the slack matrix method can
be adopted here in order to obtain the following improved
criterion for the error augmented system (7).

3.2. Design of 𝐻∞ Reduced-Order FD Filter. The next step is
to translate the 𝐻∞ FD filter design problem into a model-
matching problem. In the following theorem, a sufficient
condition is provided for the existence of an admissible 𝐻∞

FD filter with the deficient transition probabilities (4).

Theorem 7. Consider system (1) with deficient transition
information; for given 𝜉 > 0, determine the matrices 𝐴𝐹(𝑔) =𝑄−1

𝑔(2)𝐴𝐹(𝑔), 𝐵𝐹(𝑔) = 𝑄−1
𝑔(2)𝐵𝐹(𝑔), 𝐶𝐹(𝑔) = 𝐶𝑓(𝑔), and 𝐷𝐹(𝑔) =𝐷𝑓(𝑔); then the FD filter (6) is found so that the augmented

error system (7) is randomly stable with an 𝐻∞ performance
index 𝜉; if there exist positive-definite symmetric matrices𝑄𝑔 =
[ 𝑄𝑔(1) 𝑊𝑄𝑔(2)

∗ 𝑄𝑔(2)
] ∈ 𝑅(𝑛𝑥+𝑛𝑟)×(𝑛𝑥+𝑛𝑟), 𝑊 fl [𝐼𝑛𝑟 0𝑛𝑟×(𝑛𝑥−𝑛𝑟)

]𝑇 and
𝑀𝑖 > 0, 𝐴𝐹(𝑔), 𝐵𝐹(𝑔), 𝐶𝐹(𝑔), 𝐷𝐹(𝑔), ∀𝑔 ∈ 𝑆, satisfy the following
LMIs:

𝜓(V)
𝑔𝑗 =

[[[[[[[[[
[

−𝐼 Θ1 𝐶𝐹(𝑔) 0 Θ2 Θ3∗ Θ4 Θ5 Θ6 Θ7 Θ8∗ ∗ Θ9 Θ10 Θ11 Θ12∗ ∗ ∗ −𝜉2𝐼 0 0∗ ∗ ∗ ∗ −𝜉2𝐼 0∗ ∗ ∗ ∗ ∗ −𝜉2𝐼

]]]]]]]]]
]

< 0, (28)

where

𝜂̃(V)
𝑔𝑗 = {{{

𝜂(𝑔)

𝑘
+ 𝜂(𝑔V)

𝑢𝑐 − (𝜆(𝑔)

𝑘
+ 𝜆(𝑔V)

𝑢𝑐 ) 𝜂𝑗, 𝑗 ∈ 𝑆(𝑔)

𝑢𝑘
, if 𝑔 ∈ 𝑆(𝑔)

𝑘
∪ 𝑆(𝑔)

𝑢𝑐 ,
𝜂(𝑔)

𝑘
+ 𝜂(𝑔V)

𝑢𝑐 + 𝜆(𝑔)

𝑙
𝜂𝑔 − (𝜆(𝑔)

𝑙
+ 𝜆(𝑔)

𝑘
+ 𝜆(𝑔V)

𝑢𝑐 ) 𝜂𝑗, 𝑗 ∈ 𝑆(𝑔)

𝑢𝑘
, if 𝑔 ∈ 𝑆(𝑔)

𝑢𝑘
,

𝜂(𝑔)

𝑘
= ∑

𝑗∈𝑆
(𝑔)

𝑘

𝜆𝑔𝑗𝑄𝑗,
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𝜂(𝑔V)
𝑢𝑐 = ∑

𝑗∈𝑆
(𝑔)
𝑢𝑐

𝜆̃(V)
𝑔𝑗 𝑄𝑗,

𝜆(𝑔)

𝑘
= ∑

𝑗∈𝑆
(𝑔)

𝑘

𝜆𝑔𝑗,

𝜆(𝑔V)
𝑢𝑐 = ∑

𝑗∈𝑆
(𝑔)
𝑢𝑐

𝜆̃(V)
𝑔𝑗 ,

Θ1 = 𝐷𝐹(𝑔)𝐶(𝑔),
Θ2 = 𝐷𝐹(𝑔)𝐷(𝑔),
Θ3 = 𝐷𝐹(𝑔)𝐻(𝑔) − 𝐼,
Θ4 = 𝐴𝑇

(𝑔)𝑄𝑔(1) + 𝑄𝑔(1)𝐴 (𝑔) + 𝑊𝐵𝐹(𝑔)𝐶(𝑔) + 𝐶𝑇
(𝑔)𝐵𝑇

𝐹(𝑔)𝑊𝑇 + 𝜂̃(V)
𝑔𝑗 ,

Θ5 = 𝐴𝑇
(𝑔)𝑊𝑄𝑔(2) + 𝑊𝐴𝐹(𝑔) + 𝐶𝑇

(𝑔)𝐵𝑇

𝐹(𝑔) + 𝜂̃(V)
𝑔𝑗 ,

Θ6 = 𝑄𝑔(1)𝐵(𝑔),
Θ7 = 𝑄𝑔(1)𝐸(𝑔) + 𝑊𝐵𝐹(𝑔)𝐷(𝑔),
Θ8 = 𝑄𝑔(1)𝐹(𝑔) + 𝑊𝐵𝐹(𝑔)𝐻(𝑔),
Θ9 = 𝐴𝑇

𝐹(𝑔) + 𝐴𝐹(𝑔) + 𝜂̃(V)
𝑔𝑗 ,

Θ10 = 𝑄𝑇
𝑔(2)𝑊𝑇𝐵(𝑔),

Θ11 = 𝑄𝑇
𝑔(2)𝑊𝑇𝐸(𝑔) + 𝐵𝐹(𝑔)𝐷(𝑔),

Θ12 = 𝑄𝑇
𝑔(2)𝑊𝑇𝐹(𝑔) + 𝐵𝐹(𝑔)𝐻(𝑔).

(29)

Proof. For 𝐻∞ FD filter design purpose, we choose the slack
matrix 𝑄𝑔 as

𝑄𝑔 fl [𝑄𝑔(1) 𝑊𝑄(2)∗ 𝑄(3)

] , 𝑔 ∈ 𝑆, (30)

where

𝑊 fl [𝐼𝑛𝑟 𝑂𝑛𝑟×(𝑛𝑥−𝑛𝑟)
]𝑇 ,

𝑄𝑔(1) ∈ 𝑅𝑛𝑥×𝑛𝑥 ,
𝑄(2) ∈ 𝑅𝑛𝑟×𝑛𝑟 ,
𝑄(3) ∈ 𝑅𝑛𝑟×𝑛𝑟 .

(31)

Then, according to formula (24), performing the following
congruent transformation, by [ 𝐼 0

∗ 𝑄(2)𝑄
−1
(3)

], yields
[𝐼 0
0 𝑄(2)𝑄−1

(3)

][𝑄𝑔(1) 𝑊𝑄(2)∗ 𝑄(3)

][𝐼 0
0 𝑄(2)𝑄−1

(3)

]
𝑇

= [𝑄𝑔(1) 𝑊𝑄(2)𝑄−1
(3)𝑄𝑇

(2)

∗ 𝑄(2)𝑄−1
(3)𝑄𝑇

(2)

] fl [𝑄𝑔(1) 𝑊𝑄𝑔(2)∗ 𝑄𝑔(2)

] .
(32)

Thus, matrix 𝑄𝑔 in (32) can been directly specified the
following general form:

𝑄𝑔 = [𝑄𝑔(1) 𝑊𝑄𝑔(2)∗ 𝑄𝑔(2)

] , 𝑔 ∈ 𝑆. (33)

It is noted that in this way the matrix variables𝑄𝑔(2) are set as
Markovian and can be absorbed directly by the gain variables𝐴𝐹𝑔 and 𝐵𝐹𝑔 by introducing

𝐴𝐹𝑔 = 𝑄𝑔(2)𝐴𝐹𝑔,
𝐵𝐹𝑔 = 𝑄𝑔(2)𝐵𝐹𝑔,

𝑔 ∈ 𝑆.
(34)

Then we replace matrices 𝑄𝑔 given by (33) into (11),
togetherwith the admissible filter parametermatrices defined
in (8). Finally we can get (28) exactly. This completes the
proof.

Remark 8. Up until now, it has been shown that the main
results presented inTheorem 7 not only provide performance
index 𝜉∗, but also give a numerically efficient and reliable
approach to determine the corresponding gains of an admis-
sible FD filter in (6) by using Matlab software. In order to



8 Complexity

acquire a receivable 𝐻∞ FD filter with 𝜉 made as small as
possible in (9), it is necessary to calculate inequality (28) in
Theorem 7 iteratively. Also, it can be derived from (28) that
the design reduced-order FD filter and the corresponding
error between residual and fault should be different on the
basis of the different degree of deficient statistics of mode
transitions. The main goal is to make the error as small as
possible. To illustrate the feasibility and effectiveness of the
proposed FD scheme, a numerical example will be given in
the next section.

4. Illustrative Examples
For simplicity, we only consider two addressed FD examples
for the continuous-time MJLSs with deficient transition
information to demonstrate the effectiveness and practicabil-
ity of the proposed approach.

Example 1. Consider (1) with four operation modes and the
following matrices:

𝐴1 = [[[[
[

0 1 0 06.34 23.66 32.83 35.510 0 0 2−12.46 −48.71 −54.25 −67.50
]]]]
]

,

𝐴2 = [[[[
[

0 2 0 05.34 22.66 31.83 34.510 0 0 1−11.46 −47.71 −53.25 −66.50
]]]]
]

,

𝐴3 = [[[[
[

0 1 0 04.34 21.66 29.83 31.510 0 0 3−9.46 −44.71 −51.25 −63.50
]]]]
]

,

𝐴4 = [[[[
[

0 3 0 08.34 28.66 35.83 37.510 0 0 5−17.46 −53.71 −57.25 −73.50
]]]]
]

,

𝐵1 = [0; 0.2361; 0; −0.4758] ,
𝐵2 = [0; 0.1209; 0; −0.3621] ,
𝐵3 = [0; 0.2341; 0; −0.7653] ,
𝐵4 = [0; 0.7451; 0; −0.5832] ,
𝐶1 = [1 0 0 0] ,
𝐶2 = [1 0 3 0] ,
𝐶3 = [1 2 0 0] ,
𝐶4 = [0 1 0 0] ,
𝐷1 = 𝐷2 = 𝐷3 = 𝐷4 = 0.5,
𝐸1 = 𝐸2 = 𝐸3 = 𝐸4 = [0 0.5 0 −0.5] ,
𝐹1 = 𝐹2 = 𝐹3 = 𝐹4 = [0 −1 0 0.3] ,
𝐻1 = 𝐻2 = 𝐻3 = 𝐻4 = 0.1.

(35)

In order to make the simulation simplification, we con-
sider the exogenous disturbance input 𝜔(𝑡) = 0.15 cos(𝑡) for0 ≤ 𝑡 ≤ 200. The fault signal 𝑓(𝑡) is

𝑓 (𝑡) = {{{
0.8, 60 ≤ 𝑡 ≤ 120,
0, others. (36)

Now, four cases for different transition ratematrix (TRM)
are shown as follows.

Four Different TRMs

Case 1 (completely known TRM).

[[[[[
[

−0.8 0.3 0.1 0.4
0.7 −1.2 0.3 0.2
0.1 0.5 −1.3 0.7
0.2 0.2 0.1 −0.5

]]]]]
]

. (37)

Case 2 (polytopic uncertain TRM).

[[[[[[
[

−0.8 0.3 𝜆̂13 𝜆̂14

𝜆̂21 𝜆̂22 𝜆̂23 𝜆̂24

𝜆̃31 𝜆̂32 𝜆̃33 𝜆̂34

𝜆̂41 𝜆̂42 0.1 −0.5

]]]]]]
]

. (38)

Case 3 (partly known TRM).

[[[[[[
[

−0.8 0.3 𝜆̂13 𝜆̂14

𝜆̂21 𝜆̂22 0.3 𝜆̂24

𝜆̂31 𝜆̂32 𝜆̂33 𝜆̂34

𝜆̂41 𝜆̂42 0.1 −0.5

]]]]]]
]

. (39)

Case 4 (completely unknown TRM).

[[[[[[
[

𝜆̂11 𝜆̂12 𝜆̂13 𝜆̂14

𝜆̂21 𝜆̂22 𝜆̂23 𝜆̂24

𝜆̂31 𝜆̂32 𝜆̂33 𝜆̂34

𝜆̂41 𝜆̂42 𝜆̂43 𝜆̂44

]]]]]]
]

. (40)

And the simulation result of Markov chain 𝜍(𝑡) is given in
Figure 1.

For Case 2, the TRM includes two vertices Δ 𝜍, 𝜍 = 1, 2,
and their third row Δ2

𝜍, 𝜍 = 1, 2, is given by

Δ2
1 = [0.6 𝜆̂32 −1.1 𝜆̂34] ,

Δ2
2 = [0.42 𝜆̂32 −0.93 𝜆̂34] . (41)

Applying Theorem 7 through the Matlab LMI Toolbox,
the gains of an admissible FD filter in the form of (6) for four
different TRMs as shown above are acquired, respectively.
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Table 1: Computation results for four different reduced-order FD
filters cases.

Transition rate matrix 𝐽min Time steps
Completely known (Case 1) 1.0002 61
Polytopic uncertain (Case 2) 1.0004 62
Partly known (Case 3) 1.0007 63
Completely unknown (Case 4) 1.0010 64

Table 2: Computation results for four different full-order FD filters
cases.

Transition rate matrix 𝐽min Time steps
Completely known (Case 1) 1.0001 62
Polytopic uncertain (Case 2) 1.0002 63
Partly known (Case 3) 1.0005 64
Completely unknown (Case 4) 1.0008 65
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Figure 1: Modes evolution in Example 1.

Obviously, it is seen from Figure 2, which presents the
generated residual signals 𝑟(𝑡), that the more the transition
rate information we have known is, the smaller the generated
residual 𝑟(𝑡) will become; for example, the generated residual
value in Case 2 is the smaller than the residual value in Case3.The simulation of polytopic uncertain TRs has better result
than that of partly known TRs or completely unknown TRs.

In the following, Figure 3 displays the evolution of 𝐽(𝑟𝑒) =
√∫𝑘0+𝑒

𝑘0
𝑟𝑇(𝑡)𝑟(𝑡)𝑑𝑡 for both faulty case and fault-free case,

respectively. It can be concluded from Figure 3 that when the
fault occurs, the residual and the residual evaluation function
have obvious change and the𝐻∞ performance indices for the
error augmented system (7) in Case 2 are better than those in
Cases 3 and 4.

According to the path in Figure 1 and the residual

threshold 𝐽th = sup𝑑∈𝑙2,𝑓=0𝐸[√∫𝑘0+𝐿

𝑘0
𝑟𝑇(𝑡)𝑟(𝑡)𝑑𝑡], for the

four different TRM cases, the optimal 𝐻∞ performance
indices and the corresponding time steps for the FD are
obtained in Tables 1 and 2. The filter gain is set to 0.1. From

the computation results, it can be also shown that the FD
capability in Case 2 is stronger than that in Cases 3 and 4.
Remark 9. From the comparison results of the same-order
FD filters, it is clear to see that the fault detection results
in polytopic uncertain TRs are less conservative than those
in incompletely known and completely unknown TRs. The
more the polytopic uncertain knowledge in the TRM is, the
faster the sensitivity to faults will be taken and the better
the fault detection performance the filter can attain is. The
time steps to detect the fault have been shortened. Finally,
comparing Tables 1 and 2, we can find that FD speed with the
reduced-order filter is faster than that with full-order filter
in the same case. Thus, it declares the effectiveness of the
designed FD reduced-order filter for MJLSs with deficient
transition information.

Example 2. Consider a vertical take-off and landing (VTOL)
helicopter system (see [2]). The system dynamics can be
modeled as

𝑥̇ (𝑡) = 𝐴 (𝜍 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝜍 (𝑡)) 𝑢 (𝑡) + 𝐸 (𝜍 (𝑡)) 𝜔 (𝑡) ,
𝑦 (𝑡) = 𝐶 (𝜍 (𝑡)) 𝑥 (𝑡) + 𝐷 (𝜍 (𝑡)) 𝜔 (𝑡) . (42)

The behavior of 𝜍(𝑡) is characterized as a Markov chain
with three differentmodes, corresponding to airspeeds of 135,
60, and 170 knots, respectively.

𝐴1 (𝜍 (𝑡)) = [[[[[
[

−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 0.3681 −0.707 1.4200

0 0 1 0

]]]]]
]

,

𝐴2 (𝜍 (𝑡)) = [[[[[
[

−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 0.0664 −0.707 0.1198

0 0 1 0

]]]]]
]

,

𝐴3 (𝜍 (𝑡)) = [[[[[
[

−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 0.5047 −0.707 2.5460

0 0 1 0

]]]]]
]

,

𝐵1 (𝜍 (𝑡)) = [0.4422; 3.5446; −5.5200; 0] ,
𝐵2 (𝜍 (𝑡)) = [0.4422; 0.9775; −5.5200; 0] ,
𝐵3 (𝜍 (𝑡)) = [0.4422; 5.1120; −5.5200; 0] ,
𝐶1 (𝜍 (𝑡)) = 𝐶2 (𝜍 (𝑡)) = 𝐶3 (𝜍 (𝑡)) = [0 0.5 0 0.6] ,
𝐷1 (𝜍 (𝑡)) = 𝐷2 (𝜍 (𝑡)) = 𝐷3 (𝜍 (𝑡)) = 0.3,
𝐸1 (𝜍 (𝑡)) = 𝐸2 (𝜍 (𝑡)) = 𝐸3 (𝜍 (𝑡))

= [0.1761; −7.5922; 4.4900; 0] .

(43)
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Figure 2: Generated residual in Example 1.
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The system state is 𝑥 = [𝑥1; 𝑥2; 𝑥3; 𝑥4], where 𝑥1 is the
horizontal velocity, 𝑥2 is the vertical velocity, 𝑥3 is the pitch
rate, and 𝑥4 is the pitch angle. In order tomake the simulation
simplification, one type of the exogenous disturbance signal
on the side-slip sensor is only considered in the VTOL
helicopter example. we consider the system input 𝑢(𝑡) =
sin(𝑡) for 0 ≤ 𝑡 ≤ 90. The exogenous disturbance signal is𝜔(𝑡) = sawtooth(0.1 ∗ 𝑡), 0 ≤ 𝑡 ≤ 90. Now, four different
transition rate matrices (TRMs) are shown as follows.

Four Different TRMs

Case 1 (completely known TRM).

[[
[
−0.9 0.3 0.6
0.7 −1.2 0.5
0.8 0.5 −1.3

]]
]

. (44)

Case 2 (polytopic uncertain TRM).

[[[
[

−0.9 0.3 0.6
𝜆̃21 𝜆̃22 𝜆̃23

𝜆̂31 𝜆̂32 −1.3
]]]
]

. (45)

Case 3 (partly known TRM).

[[[
[

−0.9 0.3 0.6
𝜆̂21 𝜆̂22 𝜆̂23

𝜆̂31 𝜆̂32 −1.3
]]]
]

. (46)

Case 4 (completely unknown TRM).

[[[
[

𝜆̂11 𝜆̂12 𝜆̂13

𝜆̂21 𝜆̂22 𝜆̂23

𝜆̂31 𝜆̂32 𝜆̂33

]]]
]

. (47)

And the simulation result of three switching cases forMarkov
chain 𝜍(𝑡) is given in Figure 4.

For Case 2, the TRM includes two vertices Δ 𝜍, 𝜍 = 1, 2,
and their second row Δ2

𝜍, 𝜍 = 1, 2, is given by

Δ2
1 = [0.6 −1.1 0.5] ,

Δ2
2 = [0.4 −1.7 1.3] . (48)

Applying Theorem 7 through the Matlab LMI Toolbox,
the gains of an admissible FD filter in the form of (6) for four
different TRMs as shown above are acquired, respectively.
This means that the fault detection filter of VTOL helicopter
system can be designed. By using this filter, the generated
residual 𝑟(𝑡) and 𝐽𝑟(𝑡) values can be calculated.

Obviously, it is seen from Figure 5 that the more the
transition rate information we have known, the closer the
estimates of the disturbance signal to the real values of the
interference signal.The detected residual signal 𝑟(𝑡) in Case 2
is more accurate than that in Case 3. The fault detection time
in Case 2 is shorter than those of in Cases 3 and 4.

Figure 6 displays the evolution of 𝐽𝑟(𝑡) for both distur-
bance case and disturbance-free case, respectively. Because
the disturbance signal is not equal to the fault signal, when the
fault occurs, the side-slip angle sensor should be switched to
the other redundant sensor. For example, when 𝐽th is 0.5, the
disturbance case can be accurately judged in Cases 1 and 2,
but it is wrong to judge as the failure condition in Cases 3 and4. The performance of fault detection filtering for the error
augmented system (7) in Case 2 is better than that in Case 3
or Case 4, because it can reduce the rate of false positives.

5. Conclusion

In this paper, a fault detection approach is proposed for
continuous-time MJLSs with deficient transition informa-
tion.Themain contribution of our study is the introduction of
Markov jump system with deficient transition information in
fault detection reduced-order filter design. Special emphasis
is that the abovementioned method is used in the fault detec-
tion process of continuous-time MJLSs for the first time. The
underlying systems are more general, because the deficient
transition descriptions include completely known, polytopic
uncertain, partly unknown, and completely unknown transi-
tion rates. Based on the linearmatrix inequality approach and
the linear convex optimization, a sufficient condition of FD
reduced-order filter for continuous-timeMJLS with deficient
transition information is obtained, such that the augmented
error system is randomly stable. Then, the changes of the
fault signal are approximately equal to the changes of the
residual signal. Finally, the two simulation examples have
been given to illustrate the effectiveness of the proposed
design approach, which can improve the sensitivity of fault
detection and reduce the fault detection rate of false positives.
Due to the fact that time-varying delay is found in the process
of fault detection, some interesting topics for future works
include fault detection and fault-tolerant control methods
for time-varying delay and uncertain process in the different
Markov systems.
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Figure 5: Generated residual in Example 2.
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