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The relationship between control and communication constraints is becoming of central importance in the consensus problem
of networked agents. In this paper, we investigate such a problem for nonlinear multiagent systems with Lipschitz dynamics. To
reflect communication constraints, the topology is assumed to switch within a finite set of digraphs characterised by an average
dwell time switching signal. By constructing a suitable multiple Lyapunov function, we show that consensus can be reached under
the designed consensus protocol. Amultistep algorithm for designing consensus protocol is then developed by solving the Lyapunov
equation and algebraic Riccati equation. Finally, simulation examples are delineated to substantiate the effectiveness of the proposed
algorithms.

1. Introduction

The traditional study of single-agent systems has been over-
come by a more realistic approach, that is, multiagent sys-
tems (MASs), which accounts for communications between
agents. Over the past years, cooperative control of MASs has
been a popular subject in systems and control community
due to its broad applications in multirobot search and rescue,
formation control of unmanned air vehicles, scheduling
of automated highway systems, and attitude alignment of
satellite clusters [1–3]. A fundamental issue for multiagent
coordination is to design distributed control strategies guar-
anteeing that all agents reach an agreement about some
variables of interest (such as position, velocity, and voltage),
which is known as the consensus problem in the literature.

From the seminal work of [4, 5], the topic of consensus
in a team of autonomous agents has rapidly grown and
attracted the attention of many researchers; see, for example,
[6–9] for first-order MASs, [10–13] for second-order MASs,
[14] for high-order MASs, and the recent survey papers
[15]. Under a static communication topology, it has been
shown that the first-order MASs achieve consensus if and

only if the directed topology contains a spanning tree or the
undirected topology is connected [7]. Moreover, consensus
under a dynamic topology can also be achieved in such
systems as long as the union of the digraphs has a spanning
tree or the union of the undirected graphs is connected
frequently enough as the system evolves [4, 6, 7]. It is worth
pointing out that, different from the first-order case, both
communication topology and coupling strength will affect
the information consensus in MASs with second-order or
high-order integrator dynamics [10, 14]. However, most of
these works usually assume that agents do not have their own
dynamics in the absence of communication, indicating that
only the information exchange determines agents’ time evo-
lution. Although this assumption makes consensus analysis
much easier, it is too restrictive for many applications. In
fact, for consensus problems encountered in the engineering
world, both individual dynamics and interaction topology
play an important role in achieving group consensus [16, 17].

In recent years, efforts have been made in generalizing
existing results to MASs with general linear dynamics [16–
22]. For linear MASs under time-invariant topology, the
distributed control laws based on state feedback or output

Hindawi
Complexity
Volume 2017, Article ID 5340642, 11 pages
https://doi.org/10.1155/2017/5340642

https://doi.org/10.1155/2017/5340642


2 Complexity

feedback have been designed under which the systems will
synchronize [16, 19]. But some constraints were imposed on
the system matrix of each individual agent; for example, the
system matrix is required to be neutrally stable or have no
eigenvalues with positive real parts. Also in the framework
of fixed topology, Ma and Zhang [17] studied the joint
impact of agent dynamics and communication topology
on consensusability. When the underlying graphs are time-
varying, leader-following consensus for multiple agents with
general linear dynamics was discussed in [21] and [22] for
switching undirected and directed topologies, respectively.

Compared with the development of general linear MASs,
that for general nonlinearMASs ismore limitedwith compar-
atively very few results available. Someworks on consensus of
nonlinear MASs with identical or heterogenous nonlinearity,
for example, [23–25], required restrictive assumptions such
as a fixed communication graph condition. However, this
assumption may not be satisfied in reality due to tech-
nological limitations of sensors or external disturbances.
A relevant but more general setting was studied in [26]
which assumed the communication topology switches within
a finite set of undirected graphs or digraphs. The recent
works in [27–29] also discussed the consensus problem of
general high-order nonlinear MASs in the leader-following
or leadless framework. However, it should be pointed out
that the LMI-type conditions for consensus in [26–29] not
only are computationally time-consuming, but also obscure
the relationship among consensus, agents’ dynamics, and
communication topology.

In this paper, we attempt to bridge the above theoretical
gap by dealing with a fairly general solution of consensus
problem in the nonlinear case. More specifically, with the
underlying interaction topology switching within a finite
set of digraphs, consensus of high-order nonlinear MASs
is studied under the following conditions: (1) the intrinsic
dynamics of each individual agent is in the Lipschitz non-
linear form, which is quite general and includes integrator
agents and general linear agents in the consensus literature
as special cases and (2) the communication topology of
present MAS model is allowed to switch according to an
average dwell time (ADT) switching signal. The idea of
imposing constraints on the switching signal may arise
naturally from physical constraints of mobile agents. Due
to the introduction of ADT-type switching topology and
nonlinear agent dynamics, the methods in existing literature
concerning arbitrarily switching or dwell time switching
topologies are not applicable. In this contribution, by con-
structing a multiple Lyapunov function, it is shown that
the consensus problem can be solved under the proposed
consensus protocol if the communication topology has a
spanning tree and the ADT is larger than an explicitly
calculated threshold. Our sufficient conditions suggest that
reaching consensus in such systems is dependent not only
on the communication topology but also on the agents’
dynamics and switching topology. In addition, to fortify
our contribution practically, we provide a specific multistep
algorithm to determine the gain matrix of the proposed
protocol relying on the algebraic graph theory, Lyapunov
equation, and algebraic Riccati theory. We hope that our

analysis will shed light on cooperative behavior emerging in
complex MASs.

The remainder of the paper is organised as follows. Some
background on graph theory as well as problem formulation
is given in Section 2. In Section 3, we provide a preliminary
consensus result on nonlinear MASs with fixed communica-
tion topology. Then we generalize that result to the restricted
switching case and establish our main theorem in Section 4.
The simulation examples are presented in Section 5 and
followed by Section 6, which concludes this paper.

2. Preliminaries and Problem Setup

Throughout this paper, we let ‖ ⋅ ‖ denote the Euclidian norm.𝐼𝑛 (or 𝑂𝑛) is the 𝑛 × 𝑛 identity matrix (or zero matrix); 1𝑁
(or 0𝑁) is a vector in R𝑁 with elements being all ones (or
all zeros). diag{𝑥1, . . . , 𝑥𝑁} defines a diagonal matrix with
diagonal entries 𝑥1 to 𝑥𝑁. 𝑁 = {1, 2, . . . , 𝑁} is an index
set. We say 𝑋 > 0 (or 𝑋 < 0) if the matrix 𝑋 is positive
(or negative) definite. If not explicitly stated, we assume the
dimensions of the matrix used in this paper are compatible.

2.1. Preliminaries. In order to facilitate model description,
we introduce some concepts and notions in algebraic graph
theory [30]. Let G = (V,E) denote a digraph with a set of
nodesV = {1, . . . , 𝑁} and a set of directed edgesE ⊆ V×V
of the form (𝑖, 𝑗). Let us define a weighted adjacency matrix
A = [𝑎𝑖𝑗] ∈ R𝑁×𝑁 as follows: 𝑎𝑖𝑗 > 0 if (𝑗, 𝑖) ∈ E; 𝑎𝑖𝑗 = 0
otherwise. We assume there are no repeated edges and no
self-loops; that is, 𝑎𝑖𝑖 = 0 for all 𝑖 ∈ 𝑁. If (𝑗, 𝑖) ∈ E, we
say node 𝑗 is a neighbor of node 𝑖. The set of neighbors of
node 𝑖 is denoted by 𝑁𝑖 = {𝑗 ∈ V : (𝑗, 𝑖) ∈ E}. A sequence
of edges (𝑖1, 𝑖2), (𝑖2, 𝑖3), . . . , (𝑖𝑘−1, 𝑖𝑘) is called a directed path
from node 𝑖1 to node 𝑖𝑘. A digraph is said to have a spanning
tree if there exists a node, called the root, which has a directed
path to every other node in the graph. The Laplacian matrix𝐿 = [𝑙𝑖𝑗] ∈ R𝑁×𝑁 of graphG is defined by 𝐿 = D − A, where
D = diag{𝑑1, . . . , 𝑑𝑁} is the degreematrix with 𝑑𝑖 = ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗.
An important property of 𝐿 is presented in the following
lemma.

Lemma 1 (see [7]). If the digraphG has a spanning tree, then
its Laplacian matrix 𝐿 has a simple zero eigenvalue and all
other eigenvalues have positive real parts.

Let 𝐸 = [−1𝑁−1, 𝐼𝑁−1] ∈ R
(𝑁−1)×𝑁,𝐹 = [0𝑁−1, 𝐼𝑁−1]𝑇 ∈ R
𝑁×(𝑁−1). (1)

By taking 𝑆 = ( 1 0𝑇𝑁−11𝑁−1 𝐼𝑁−1) , (2)

we have 𝑆−1𝐿𝑆 = ( 0 −𝛽𝑇0𝑁−1 𝐸𝐿𝐹) , (3)
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where 𝛽 = (−𝑙12, −𝑙13, . . . , −𝑙1𝑁)𝑇. Hence, from Lemma 1, we
can establish a key lemma on the eigenvalue distribution of
matrix 𝐸𝐿𝐹 ∈ R(𝑁−1)×(𝑁−1) as follows.

Lemma 2 (see [31]). If the digraph G has a spanning tree,
then the eigenvalues of 𝐸𝐿𝐹 correspond to the 𝑁 − 1 nonzero
eigenvalues of Laplacian 𝐿 and all have positive real parts.

2.2. Problem Setup. In this paper, we consider a MAS con-
sisting of 𝑁 nonlinear agents. Regarding 𝑁 agents as nodes
in V, the communication among them can be conveniently
described by a digraph G = (V,E), where (𝑗, 𝑖) ∈ E
represents that agent 𝑖 can receive information from agent 𝑗.

The dynamical behavior of each agent is described as

𝑥̇𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝑓 (𝑥𝑖 (𝑡) , 𝑡) + 𝐵𝑢𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁, (4)

where 𝑥𝑖(𝑡) = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛)𝑇 ∈ R𝑛 is the state of the 𝑖th
agent and 𝑢𝑖(𝑡) ∈ R𝑚 is the control protocol to be designed.𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚 are constant real matrices. The
pair (𝐴, 𝐵) is assumed to be stabilizable throughout the paper.
The continuously differentiable function 𝑓(⋅, ⋅) : R𝑛 × R+ →
R𝑛 (𝑓(𝑥𝑖(𝑡), 𝑡) = [𝑓1(𝑥𝑖(𝑡), 𝑡), . . . , 𝑓𝑛(𝑥𝑖(𝑡), 𝑡)]𝑇) describes the
intrinsic nonlinear dynamics of each agent and is assumed to
satisfy the following Lipschitz condition.

Assumption 3. There exists a nonnegative constant 𝜂 such that
for ∀𝑦, 𝑧 ∈ R𝑛 and ∀𝑡 ≥ 0󵄩󵄩󵄩󵄩𝑓 (𝑦, 𝑡) − 𝑓 (𝑧, 𝑡)󵄩󵄩󵄩󵄩 ≤ 𝜂 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩 . (5)

Remark 4. It is worth mentioning that the agent’s dynamics
in the MAS (4) is in a very general nonlinear form, which
includes the first-order, second-order, and high-order inte-
grators and general linear systems as special cases. Assump-
tion 3 on𝑓(⋅, ⋅) is verymild in the sense that it is automatically
satisfied if 𝜕𝑓𝑖/𝜕𝑥𝑗 (𝑖, 𝑗 = 1, 2, . . . , 𝑛) are uniformly bounded.
Therefore, it includes many well-known systems, such as
various neural networks, Chua’s oscillator, the Lorenz system,
Chen system, and Lü system.

Here, the control objective of consensus regulation prob-
lem is to devise distributed algorithm 𝑢𝑖 (𝑖 ∈ 𝑁) such that
all𝑁 agents in (4) can reach a common state finally, which is
precisely defined as follows.

Definition 5. The consensus of the MAS (4) is said to be
achieved, if there is a distributed controller 𝑢𝑖 for each agent𝑖 ∈ 𝑁 such that the closed-loop system satisfies

lim
𝑡→∞

󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩 = 0, ∀𝑖, 𝑗 ∈ 𝑁 (6)

for any initial conditions 𝑥𝑖(0) and 𝑥𝑗(0).

In the following, by designing a distributed consensus
protocol, we will demonstrate that the consensus of the MAS
(4) depends on both the structure properties of each agent’s
dynamics and communication topology of the system.

3. Consensus under Fixed
Communication Topology

In this section, we consider consensus of the MAS (4) with
fixed communication topology. To solve the problem, we
make the following assumption.

Assumption 6. The communication topology G contains a
directed spanning tree.

We propose a distributed protocol of the form𝑢𝑖 = 𝐾 ∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗 (𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)) , 𝑖 ∈ 𝑁, (7)

where 𝐾 ∈ R𝑚×𝑛 is a feedback gain matrix to be designed.
Define consensus error as 𝛿𝑖(𝑡) ≜ 𝑥𝑖(𝑡) − 𝑥1(𝑡) (𝑖 =2, . . . , 𝑁). From (4) and (7), we have the following error

system:𝛿̇𝑖 (𝑡) = 𝐴𝛿𝑖 (𝑡) + [𝑓 (𝑥𝑖 (𝑡) , 𝑡) − 𝑓 (𝑥1 (𝑡) , 𝑡)]+ 𝐵𝐾[[ 𝑁∑𝑗=1 (𝑎𝑖𝑗 − 𝑎1𝑗) 𝛿𝑗 (𝑡) − 𝑑𝑖𝛿𝑖 (𝑡)]] (8)

which can then be expressed in a compact form as𝛿̇ (𝑡) = (𝐼𝑁−1 ⊗ 𝐴 − 𝐸𝐿𝐹 ⊗ 𝐵𝐾) 𝛿 (𝑡) + 𝑓̃ (𝑥 (𝑡) , 𝑡) (9)

by defining 𝛿 = (𝛿𝑇2 , 𝛿𝑇3 , . . . , 𝛿𝑇𝑁)𝑇 and 𝑓̃(𝑥, 𝑡) = [𝑓𝑇(𝑥2, 𝑡) −𝑓𝑇(𝑥1, 𝑡), . . . , 𝑓𝑇(𝑥𝑁, 𝑡) − 𝑓𝑇(𝑥1, 𝑡)]𝑇. Here 𝐸 and 𝐹 are
defined in (1).

Remark 7. From the definition of the consensus error 𝛿𝑖(𝑡),
it can be seen that the consensus problem of the MAS (4)
has been transformed to the asymptotical stability problem
of error system (8) or (9). Moreover, we should note that,
in 𝛿𝑖(𝑡) ≜ 𝑥𝑖(𝑡) − 𝑥1(𝑡) (𝑖 = 2, . . . , 𝑁), 𝑥1(𝑡) is selected as
a reference state which is only convenient for the following
stability analysis of the error system (8) or (9). As a matter of
fact, other states 𝑥2(𝑡), 𝑥3(𝑡), . . ., or 𝑥𝑁(𝑡) can also be chosen
as the reference state without changing the present results.

Remark 8. In this paper, the symbol ⊗ denotes Kronecker
product (also known as the tensor product). For anymatrices𝐴, 𝐵, 𝐶, and 𝐷 with appropriate dimensions, 𝐴 ⊗ 𝐵 = [𝑎𝑖𝑗𝐵]
and the Kronecker algebra has the following properties [32]:𝐴 ⊗ (𝐵 + 𝐶) = 𝐴 ⊗ 𝐵 + 𝐴 ⊗ 𝐶, (𝐴 ⊗ 𝐵)𝑇 = 𝐴𝑇 ⊗ 𝐵𝑇, and(𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = 𝐴𝐶 ⊗ 𝐵𝐷.

Under Assumption 6, it follows from Lemma 2 that all𝑁−1 eigenvalues of 𝐸𝐿𝐹 in the error system (9) have positive
real parts. Then, there exists a positive definite matrix 𝑄 > 0
in R(𝑁−1)×(𝑁−1) satisfying the following Lyapunov equation:(𝐸𝐿𝐹)𝑇𝑄 + 𝑄 (𝐸𝐿𝐹) = 𝐼𝑁−1. (10)
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Denoting the 𝑁 − 1 positive real eigenvalue of 𝑄 are𝜆𝑗(𝑄) (𝑗 ∈ 𝑁 − 1). As the set {𝜆𝑗(𝑄) : 𝑗 ∈ 𝑁 − 1} is finite,
we define 𝜆max (𝑄) = max {𝜆𝑗 (𝑄) : 𝑗 ∈ 𝑁 − 1} ,𝜆min (𝑄) = min {𝜆𝑗 (𝑄) : 𝑗 ∈ 𝑁 − 1} (11)

which are all positive.

On the other hand, associated with (𝐴, 𝐵), from LQR-
based optimal control theory [33], the following algebraic
Riccati equation (ARE)

𝐴𝑇𝑃 + 𝑃𝐴 − 1𝜆max (𝑄)𝑃𝐵𝐵𝑇𝑃 + 𝑐𝐼𝑛 = 0 (12)

has a unique positive definite solution 𝑃 > 0 for any positive
real number 𝑐 which will be specified later. Denote the 𝑛
positive real eigenvalue of 𝑃 by 𝜇𝑗(𝑃) (𝑗 ∈ 𝑛). Define𝜇max (𝑃) = max {𝜇𝑗 (𝑃) : 𝑗 ∈ 𝑛} ,𝜇min (𝑃) = min {𝜇𝑗 (𝑃) : 𝑗 ∈ 𝑛} (13)

which are all positive.
Now, with the above preparations, we are in a position

to give our first main result for the MAS (4) under the fixed
interaction topology.

Theorem9. Suppose that Assumptions 3 and 6 hold. Let𝑄 > 0
and 𝑃 > 0 be the solutions of (10) and (12), respectively, and
the gain matrix in (7) is designed as 𝐾 = 𝐵𝑇𝑃. Then, the
multiagent system (4) can achieve consensus under protocol (7)
if the following inequality holds:

𝑐 > 𝜆max (𝑄) 𝜇2max (𝑃)𝜆min (𝑄) 𝜇min (𝑃) 𝜂2 + 𝜇max (𝑃) , (14)

where 𝑐 is a positive constant given in (12).

Proof. We construct a Lyapunov function candidate for the
error system (9) as𝑉 (𝑡) = 𝛿𝑇 (𝑡) (𝑄 ⊗ 𝑃) 𝛿 (𝑡) , (15)

where 𝑄 > 0 and 𝑃 > 0 are the solutions of (10) and (12),
respectively.

The timederivative of𝑉(𝑡) along the trajectories of system
(9) is𝑉̇ (𝑡) = 2𝛿𝑇 (𝑡) (𝑄 ⊗ 𝑃) 𝛿̇ (𝑡)= 2𝛿𝑇 (𝑡) (𝑄 ⊗ 𝑃) (𝐼𝑁−1 ⊗ 𝐴 − 𝐸𝐿𝐹 ⊗ 𝐵𝐾) 𝛿 (𝑡)+ 2𝛿𝑇 (𝑡) (𝑄 ⊗ 𝑃) 𝑓̃ (𝑥 (𝑡) , 𝑡) . (16)

Substituting 𝐾 = 𝐵𝑇𝑃 into (9) and then applying Assump-
tion 3, we have𝑉̇ (𝑡) = 𝛿𝑇 (𝑡) [𝑄 ⊗ (𝐴𝑇𝑃 + 𝑃𝐴)− ((𝐸𝐿𝐹)𝑇𝑄 + 𝑄 (𝐸𝐿𝐹)) ⊗ 𝑃𝐵𝐵𝑇𝑃] 𝛿 (𝑡) + 2𝛿𝑇 (𝑡)⋅ (𝑄 ⊗ 𝑃) 𝑓̃ (𝑥 (𝑡) , 𝑡) ≤ 𝛿𝑇 (𝑡) [𝑄 ⊗ (𝐴𝑇𝑃 + 𝑃𝐴)

− 1𝜆max (𝑄)𝑄 ⊗ 𝑃𝐵𝐵𝑇𝑃] 𝛿 (𝑡) + 2𝛿𝑇 (𝑡) (𝑄 ⊗ 𝑃)
⋅ 𝑓̃ (𝑥 (𝑡) , 𝑡) = 𝛿𝑇 (𝑡) [𝑄
⊗ (𝐴𝑇𝑃 + 𝑃𝐴 − 1𝜆max (𝑄)𝑃𝐵𝐵𝑇𝑃)] 𝛿 (𝑡) + 2𝛿𝑇 (𝑡)⋅ (𝑄 ⊗ 𝑃) 𝑓̃ (𝑥 (𝑡) , 𝑡) = −𝛿𝑇 (𝑡) [𝑄 ⊗ 𝑐𝐼𝑛] 𝛿 (𝑡)+ 2𝛿𝑇 (𝑡) (𝑄 ⊗ 𝑃) 𝑓̃ (𝑥 (𝑡) , 𝑡) ≤ − 𝑐𝜇max (𝑃)𝛿𝑇 (𝑡) [𝑄⊗ 𝑃] 𝛿 (𝑡) + 𝑓̃𝑇 (𝑥 (𝑡) , 𝑡) (𝑄 ⊗ 𝑃) 𝑓̃ (𝑥 (𝑡) , 𝑡)+ 𝛿𝑇 (𝑡) (𝑄 ⊗ 𝑃) 𝛿 (𝑡) ≤ −( 𝑐𝜇max (𝑃)− 𝜆max (𝑄) 𝜇max (𝑃)𝜆min (𝑄) 𝜇min (𝑃) 𝜂2 − 1) 𝛿𝑇 (𝑡) [𝑄 ⊗ 𝑃] 𝛿 (𝑡) .

(17)

By using the inequality (14), we have 𝑉̇(𝑡) < 0 for any 𝛿(𝑡) ̸=0. According to Lyapunov stability theory, one can conclude
that the nonlinear error system (9) is asymptotically stable.
Therefore, the consensus problem of theMAS (4) is solved by
the distributed protocol (7). This completes the proof.

According to the proof of Theorem 9, a three-step
procedure can be given to determine a consensus protocol
(7) under a time-invariant topology containing a directed
spanning tree.

Algorithm 10.

Step 1. Solve the Lyapunov equation (10) to get a matrix𝑄 > 0
and calculate its largest eigenvalue 𝜆max(𝑄).
Step 2. Choose an appropriate number 𝑐 > 0 and solve the
Riccati equation (12) to get a matrix 𝑃 > 0. Then, design 𝐾 =𝐵𝑇𝑃.
Step 3. Verify that inequality (14) is feasible.

Remark 11. From the proof of Theorem 9, it can be seen that,
by introducing a model transformation, the consensus prob-
lem of a large-scale multiagent system (4) with protocol (7)
is converted into the stability problem of the error system (9)
with a reduced-order dimension. The results show that both
interaction topology (indicated by the Lyapunov equation
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(10)) and agent’s dynamics (indicated by the Riccati equation
(12) and the algebraic inequality (14)) play important roles in
the consensus of the system.

Remark 12. To our knowledge, the works of [23, 27] also
focused on global consensus of Lipschitz nonlinear MASs
under time-invariant topology. It is worth pointing out that
Theorem 9 is different from these existing results in at
least three aspects. First, the communication topology in
Theorem 9 is assumed to be directed and only required to
contain a spanning tree. Such an assumption is weaker in
contrast to that in [23] (where it is assumed to be bidirectional
and connected). Second, here we discuss the consensus
regulation problem which is different from the consensus
tracking problem in [27]. Third, all conditions for consensus
in [23, 27] need to check the solvability of LMIs. By contrast,
the results given here only require checking the feasibility of
an algebraic inequality (14).

For information consensus problem, a recent interesting
topic is addressing the consensus of linear MASs [16, 17, 19].
Here,Theorem 9 can be also adapted to the consensus of such
systems with 𝑓(𝑥𝑖(𝑡), 𝑡) in (4) removed; that is,𝑥̇𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁. (18)

The proof is based on an analogous version of Theorem 9
and hence the corresponding result is only summarized in the
following corollary.

Corollary 13. Suppose thatAssumption 6 holds. Let𝑄 > 0 and𝑃 > 0 be the solutions of (10) and (12) for any 𝑐 > 0, respectively.
Then, the linear multiagent system (18) can achieve consensus
under protocol (7) by designing the feedback gainmatrix as𝐾 =𝐵𝑇𝑃.
Remark 14. Different from the integrator agents, the agent’s
dynamics of the linear multiagent systems will affect the
consensus behavior. In the existing works, it is often required
that matrix 𝐴 is neutrally stable [19] or all eigenvalues of 𝐴
sit in the closed left-half complex plane [16]. Different from
them, this assumption is now weakened to stabilizability of
the pair (𝐴, 𝐵), which means that matrix 𝐴 can be stable,
marginally stable, or even unstable.

4. Consensus under Constrained
Switching Topology

In this section, we are interested in extending the results in
Section 3 to the case that the interaction topology is switching
according to a constrained switching signal. Associated with
this case, the Laplacian matrix 𝐿 and the neighbor 𝑁𝑖 of
each agent will vary with time 𝑡. Accordingly, we can define
a switching digraph G𝜎(𝑡) = (V,E𝜎(𝑡)) to describe the
communication relationship of multiagent system (4) at time𝑡, where E𝜎(𝑡) denotes the directed edge set at time 𝑡. Let
A𝜎(𝑡) = [𝑎𝜎(𝑡)𝑖𝑗 ], L𝜎(𝑡), and 𝑁𝜎(𝑡)𝑖 be the weighted adjacency
matrix, Laplacian matrix, and neighbor set of the switching
graph, respectively. 𝜎(𝑡) : [0, +∞) → M is a piecewise

constant function, called a switching signal, which takes its
values in the finite set M = {1, 2, . . . ,𝑀}. Also, for any
switching sequence 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑘 < 𝑡𝑘+1 < ⋅ ⋅ ⋅ ,𝜎(𝑡) is everywhere continuous from the right. Let 𝜎(𝑡𝑘) = 𝑖𝑘
for 𝑖𝑘 ∈ M, which means that the 𝑖𝑘th interaction topology
G𝑖𝑘 is active when 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1). We denote the finite set
of all possible 𝑀 digraphs defined on the node set V as
G = {G1,G2, . . . ,G𝑀}. The following assumption on G is a
key condition to ensure consensus under switching topology.

Assumption 15. Each communication topology G𝑚 in G
contains a directed spanning tree.

For the purpose of consensus under switching topology,
we slightlymodify the earlier protocol (7) to include a switch-
ing signal 𝜎(𝑡). Thus, in the sequel we consider protocols of
the form 𝑢𝑖 = 𝐾 ∑

𝑗∈𝑁𝜎(𝑡)
𝑖

𝑎𝜎(𝑡)𝑖𝑗 (𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)) , 𝑖 ∈ 𝑁, (19)

where 𝐾 ∈ R𝑚×𝑛 is the feedback gain matrix to be designed
later.

Combining (19) with (4) leads to dynamics of the error
system under switching topology𝛿̇ (𝑡) = (𝐼𝑁−1 ⊗ 𝐴 − 𝐸𝐿𝜎(𝑡)𝐹 ⊗ 𝐵𝐾) 𝛿 (𝑡)+ 𝑓̃ (𝑥 (𝑡) , 𝑡) , (20)

where 𝐸 and 𝐹 are defined in (1).
As before, for each 𝑚 ∈ M, consider the Lyapunov

equation(𝐸𝐿𝑚𝐹)𝑇𝑄𝑚 + 𝑄𝑚 (𝐸𝐿𝑚𝐹) = 𝐼𝑁−1, 𝑚 ∈ M. (21)

Under Assumption 15, (21) has a unique positive definite
solution 𝑄𝑚 > 0. Then, within the set of 𝑀(𝑁 − 1) positive
eigenvalues {𝜆𝑗(𝑄𝑚) : 𝑚 ∈ M, 𝑗 ∈ 𝑁 − 1}, we let𝜆max = max {𝜆𝑗 (𝑄𝑚) : 𝑚 ∈ M, 𝑗 ∈ 𝑁 − 1} ,𝜆min = min {𝜆𝑗 (𝑄𝑚) : 𝑚 ∈ M, 𝑗 ∈ 𝑁 − 1} . (22)

On the other hand, since (𝐴, 𝐵) is stabilizable, from LQR-
based optimal control theory [33], the following algebraic
Riccati equation (ARE)𝐴𝑇𝑃 + 𝑃𝐴 − 1𝜆max

𝑃𝐵𝐵𝑇𝑃 + 𝑐𝐼𝑛 = 0 (23)

has a unique positive definite solution 𝑃 > 0 for any positive
real number 𝑐 which will be specified later. Within the set of𝑛 positive eigenvalues {𝜇𝑗(𝑃) : 𝑗 ∈ 𝑛} of 𝑃, we let𝜇max (𝑃) = max {𝜇𝑗 (𝑃) : 𝑗 ∈ 𝑛} ,𝜇min (𝑃) = min {𝜇𝑗 (𝑃) : 𝑗 ∈ 𝑛} . (24)

Here, we aim at finding a general set of ADT switching
signals and the corresponding state feedback controllers, such
that the multiagent system (4) achieves consensus under
protocol (19). For this purpose, let us first revisit the definition
of the ADT property.
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Definition 16 (see [34]). For a switching signal 𝜎(𝑡) and any𝑇2 > 𝑇1 ≥ 0, let 𝑁𝜎(𝑇1, 𝑇2) denote the switching number of𝜎(𝑡) over the interval (𝑇1, 𝑇2). If there exist a positive number𝜏𝑎 > 0 and an integer 𝑁0 ≥ 0 such that𝑁𝜎 (𝑇1, 𝑇2) ≤ 𝑁0 + 𝑇2 − 𝑇1𝜏𝑎 , (25)

then 𝜏𝑎 is called an average dwell time.

Remark 17. Definition 16 means that if there exists a positive
number 𝜏𝑎 such that a switching signal has the ADT property,
the ADT between any two consecutive switching instants is
no smaller than a common constant 𝜏𝑎 for all system modes.

Now, the following theorem states our secondmain result
for the MAS (4) under the ADT switching topology.

Theorem 18. Suppose that Assumptions 3 and 15 hold. Let𝑄𝑚 > 0 and𝑃 > 0 be the solutions of (21) and (23), respectively,
and the gain matrix in (19) is designed as 𝐾 = 𝐵𝑇𝑃. Then,
themultiagent system (4) can achieve consensus under protocol
(19) if the positive constant 𝑐 in (23) satisfies𝛼 ≜ 𝑐𝜇max (𝑃) − 𝜆max𝜇max (𝑃)𝜆min𝜇min (𝑃) 𝜂2 − 1 > 0, (26)

and the ADT of switching signal 𝜎(𝑡) satisfies𝜏𝑎 > 𝜏∗𝑎 = ln𝛽𝛼 , (27)

where 𝛽 ≥ 1 is chosen such that𝑄𝑙 ≤ 𝛽𝑄𝑚, ∀𝑙, 𝑚 ∈ M. (28)

Proof. Referring to the proof of Theorem 9, we see that it is
equivalent to prove the asymptotical stability of error system
(20) which is a nonlinear switched system.

This proof consists of two parts.
First, we consider the 𝑚th subsystem of the nonlinear

switched system (20)𝛿̇ (𝑡) = (𝐼𝑁−1 ⊗ 𝐴 − 𝐸𝐿𝑚𝐹 ⊗ 𝐵𝐾) 𝛿 (𝑡) + 𝑓̃ (𝑥 (𝑡) , 𝑡) ,∀𝑚 ∈ M
(29)

for which we choose the following Lyapunov function candi-
date 𝑉𝑚 (𝑡) = 𝛿𝑇 (𝑡) (𝑄𝑚 ⊗ 𝑃) 𝛿 (𝑡) , (30)

where 𝑄𝑚 > 0 and 𝑃 > 0 are the solutions of (21) and (23),
respectively.

Substituting 𝐾 = 𝐵𝑇𝑃 into (20) and differentiating 𝑉𝑚(𝑡)
along the trajectory of (20), we have𝑉̇𝑚 (𝑡) = 𝛿𝑇 (𝑡) [𝑄𝑚 ⊗ (𝐴𝑇𝑃 + 𝑃𝐴)− ((𝐸𝐿𝑚𝐹)𝑇𝑄𝑚 + 𝑄𝑚 (𝐸𝐿𝑚𝐹)) ⊗ 𝑃𝐵𝐵𝑇𝑃] 𝛿 (𝑡)+ 2𝛿𝑇 (𝑡) (𝑄𝑚 ⊗ 𝑃) 𝑓̃ (𝑥 (𝑡) , 𝑡) ≤ 𝛿𝑇 (𝑡) [𝑄𝑚⊗ (𝐴𝑇𝑃 + 𝑃𝐴) − 1𝜆max

𝑄𝑚 ⊗ 𝑃𝐵𝐵𝑇𝑃] 𝛿 (𝑡)

+ 2𝛿𝑇 (𝑡) (𝑄𝑚 ⊗ 𝑃) 𝑓̃ (𝑥 (𝑡) , 𝑡) = −𝛿𝑇 (𝑡) [𝑄𝑚 ⊗ 𝑐𝐼𝑛]⋅ 𝛿 (𝑡) + 2𝛿𝑇 (𝑡) (𝑄𝑚 ⊗ 𝑃) 𝑓̃ (𝑥 (𝑡) , 𝑡) ≤ − 𝑐𝜇max (𝑃)⋅ 𝛿𝑇 (𝑡) [𝑄𝑚 ⊗ 𝑃] 𝛿 (𝑡) + 𝑓̃𝑇 (𝑥 (𝑡) , 𝑡) (𝑄𝑚 ⊗ 𝑃)⋅ 𝑓̃ (𝑥 (𝑡) , 𝑡) + 𝛿𝑇 (𝑡) (𝑄𝑚 ⊗ 𝑃) 𝛿 (𝑡) ≤ −( 𝑐𝜇max (𝑃)− 𝜆max𝜇max (𝑃)𝜆min𝜇min (𝑃) 𝜂2 − 1) 𝛿𝑇 (𝑡) [𝑄𝑚 ⊗ 𝑃] 𝛿 (𝑡)= −𝛼𝑉𝑚 (𝑡) ,
(31)

which is obtained by applying Assumption 3.
Integrating the above inequality on the interval [𝑡𝑘, 𝑡)

gives 𝑉𝑚 (𝑡) ≤ 𝑒−𝛼(𝑡−𝑡𝑘)𝑉𝑚 (𝑡𝑘) , ∀𝑚 ∈ M. (32)

Second, for the error system (20), choose the following
switched Lyapunov function𝑉𝜎(𝑡) (𝑡) = 𝛿𝑇 (𝑡) (𝑄𝜎(𝑡) ⊗ 𝑃) 𝛿 (𝑡) . (33)

Let 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑘 < 𝑡𝑘+1 < ⋅ ⋅ ⋅ be any switching
sequence of 𝜎(𝑡).Then, at the switching instant 𝑡𝑘, combining
(28) and (33) yields𝑉𝜎(𝑡𝑘) (𝑡𝑘) ≤ 𝛽𝑉𝜎(𝑡−

𝑘
) (𝑡−𝑘 ) , 𝑘 = 1, 2, . . . . (34)

Therefore, when 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), it follows from (32) and
(34) that𝑉𝜎(𝑡) (𝑡) ≤ 𝑒−𝛼(𝑡−𝑡𝑘)𝑉𝜎(𝑡𝑘) (𝑡𝑘) ≤ 𝑒−𝛼(𝑡−𝑡𝑘)𝛽𝑉𝜎(𝑡−

𝑘
) (𝑡−𝑘 )≤ 𝑒−𝛼(𝑡−𝑡𝑘)𝛽𝑒−𝛼(𝑡𝑘−𝑡𝑘−1)𝑉𝜎(𝑡𝑘−1) (𝑡𝑘−1)≤ 𝑒−𝛼(𝑡−𝑡𝑘)𝛽2𝑒−𝛼(𝑡𝑘−𝑡𝑘−1)𝑉𝜎(𝑡−

𝑘−1
) (𝑡−𝑘−1) ≤ ⋅ ⋅ ⋅≤ 𝑒−𝛼(𝑡−𝑡0)𝛽𝑘𝑉𝜎(𝑡0) (𝑡0)= 𝑒−𝛼(𝑡−𝑡0)+𝑁𝜎(𝑡0 ,𝑡) ln𝛽𝑉𝜎(𝑡0) (𝑡0)≤ 𝛽𝑁0𝑒−(𝛼−ln𝛽/𝜏𝑎)(𝑡−𝑡0)𝑉𝜎(𝑡0) (𝑡0) ,

(35)

where (35) is obtained by applying (25) with 𝑁𝜎(𝑡0, 𝑡) = 𝑘.
Combining (35) with 𝜆min𝜇min(𝑃)‖𝛿(𝑡)‖2 ≤ 𝑉𝜎(𝑡)(𝑡), we

have‖𝛿 (𝑡)‖2 ≤ 1𝜆min𝜇min (𝑃)𝑉𝜎(𝑡) (𝑡)≤ 𝜆max𝜇max (𝑃)𝜆min𝜇min (𝑃) 𝛽𝑁0𝑒−(𝛼−ln𝛽/𝜏𝑎)(𝑡−𝑡0) 󵄩󵄩󵄩󵄩𝛿 (𝑡0)󵄩󵄩󵄩󵄩2 (36)

which means that‖𝛿 (𝑡)‖≤ √𝜆max𝜇max (𝑃)𝜆min𝜇min (𝑃) 𝛽𝑁0/2𝑒−(1/2)(𝛼−ln𝛽/𝜏𝑎)(𝑡−𝑡0) 󵄩󵄩󵄩󵄩𝛿 (𝑡0)󵄩󵄩󵄩󵄩 . (37)
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Clearly, if conditions (26) and (27) hold, we can conclude
that ‖𝛿(𝑡)‖ → 0 asymptotically, which implies that consensus
problem in multiagent system (4) is solved by protocol
(19) under the ADT switching topology. This completes the
proof.

Based on the proof process of Theorem 18, a three-step
algorithm is provided to determine a consensus protocol (19)
under a time-varying topology.

Algorithm 19.

Step 1. For each possible digraph G𝑚, solve the Lyapunov
equation (21) to get a matrix 𝑄𝑚 > 0 and calculate its largest
eigenvalue 𝜆max among all 𝑀 digraphs.

Step 2. Choose an appropriate number 𝑐 > 0 and solve the
Riccati equation (23) to get a matrix 𝑃 > 0. Then, design𝐾 =𝐵𝑇𝑃.
Step 3. Verify that inequalities (26)–(28) are feasible.

Remark 20. In related works [26–29], all the consensus
conditions involve the feasibility of LMIs. Here, a unique
feature of Algorithm 19 is that a positive scalar 𝑐 is introduced.
With this parameter, consensus is preserved under ADT
switching topology only if the algebraic inequality (26) is
verified to be feasible. Moreover, the size of matrices in
the Lyapunov equation (21) and Riccati equation (23) to be
computed is irrelevant to the number of individual agents.
Therefore, nonlinear MASs with considerable size are still
computationally manageable.

As in Corollary 13, the results of Theorem 18 are easily
adapted to deal with a general linear MAS (18) under ADT
switching topology. The corresponding result is summarized
in the following corollary.

Corollary 21. Suppose that Assumption 15 holds. Let 𝑄𝑚 > 0
and 𝑃 > 0 be the solutions of (21) and (23) for any 𝑐 >0, respectively, and the gain matrix in (23) is designed as𝐾 = 𝐵𝑇𝑃. Then, the linear multiagent system (18) can achieve
consensus under protocol (19) if the ADT of switching signal𝜎(𝑡) satisfies 𝜏𝑎 > 𝜏∗𝑎 = ln𝛽𝛼 , (38)

where 𝛽 ≥ 1 is chosen such that𝑄𝑙 ≤ 𝛽𝑄𝑚, ∀𝑙, 𝑚 ∈ M. (39)

Remark 22. For consensus analysis, the agentmatrix𝐴 in [21]
should satisfy the inequality 𝐴𝑇𝑃 + 𝑃𝐴 ≤ 0, which is not
needed in Corollary 21. This means that the requirement of
the agent’s dynamics here is weaker than that in [21].

5. Numerical Simulation

In this section, we present two numerical examples to illus-
trate the effectiveness of the theoretical results in previous
sections.

1 2 3

6 5 4

Figure 1: The directed interaction topology in Example 1.

Example 1 (consensus of multiple Chua’s oscillators under
fixed topology). To illustrateTheorem 9, we consider a MAS
composed of six nonlinear agents with a fixed communica-
tion graph shown in Figure 1, inwhich theweights on directed
edges are assumed to be 1. Each agent is modeled as a Chua’s
oscillator [35, 36] governed by (4) with

𝐴 = (−2𝑚7 𝑚 01 −1 10 −𝑛 0) ,
𝐵 = 15𝐼3,

(40)

and 𝑓(𝑥𝑖) = ((3𝑚/14)(|𝑥𝑖1 + 1| − |𝑥𝑖1 − 1|), 0, 0)𝑇 where𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3)𝑇 (𝑖 = 1, . . . , 6). It is known that Chua’s
circuit depicts a chaotic behavior when𝑚 = 5 and 𝑛 = 6(2/7).
Apparently, the pair (𝐴, 𝐵) is stabilizable and 𝑓(𝑥𝑖) satisfies
Assumption 3 with Lipschitz constant 𝜂 = 3𝑚/7.

The control gain𝐾 of the consensus protocol (7) is chosen
based on the design procedure in Algorithm 10. Solving the
Lyapunov equation (10) yields𝑄

= ((
(

0.4167 0.0042 0.0618 −0.2500 −0.14510.0042 0.3392 0.1784 0.0069 −0.14020.0618 0.1784 0.3701 −0.0174 −0.1791−0.2500 0.0069 −0.0174 0.5833 0.1007−0.1451 −0.1402 −0.1791 0.1007 0.3215
))
)

. (41)

A straightforward calculation shows that the largest eigen-
value of 𝑄 is 𝜆max(𝑄) = 0.87 and the smallest eigenvalue
of 𝑄 is 𝜆min(𝑄) = 0.14. Then, solving the algebraic Riccati
equation (12) with 𝑐 = 6, we obtain

𝑃 = (0.1465 0.0111 0.00040.0111 0.1504 −0.01010.0004 −0.0101 0.1514 ) , (42)

and thus design 𝐾 = 𝐵𝑇𝑃. Moreover, the selected parameter𝑐 = 6makes inequality (14) feasible. Figures 2 and 3 show the
simulation results of applying consensus protocol (7) to the
nonlinearMAS (4), fromwhichwe can see that the consensus
behavior of general high-order MAS (4) under fixed directed
topology is achieved.
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Figure 2: Time evolution of state trajectories 𝑥𝑖(𝑡) (𝑖 = 1, . . . , 6) in
Example 1.

Example 2 (consensus of multiple single-link robots under
restricted switching topology). To illustrate Theorem 18, we
now employ aMAS composed of four single-link robots with
revolute joints [37], whose dynamics can be written in the
form of (4) with

𝐴 = ( 0 10 0 0−48.6 −1.25 48.6 00 0 0 1019.5 0 −19.5 0 ) ,
𝐵 = ( 021.600 ) ,

(43)

and 𝑓(𝑥𝑖) = (0, 0, 0, −0.0333 sin(𝑥𝑖3))𝑇, where 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2,𝑥𝑖3, 𝑥𝑖4)𝑇 (𝑖 = 1, . . . , 4). Here, the states 𝑥𝑖1 and 𝑥𝑖2 represent
the angular rotation and angular velocity of the motor,
respectively; 𝑥𝑖3 and 𝑥𝑖4 represent the angular rotation and
angular velocity of the link, respectively. It is easy to check that
the pair (𝐴, 𝐵) is stabilizable and the Lipschitz constant for
this 𝑓(𝑥𝑖) is 𝜂 = 0.0333. The switching communication graph
is shown in Figure 4, in which each possible graph contains
a rooted spanning tree and the weights on directed edges are
assumed to be 1.
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Figure 3: Time evolution of consensus errors 𝛿𝑖(𝑡) = 𝑥𝑖(𝑡) −𝑥1(𝑡) (𝑖 = 2, . . . , 6) in Example 1.

1 2

4 3

1 2

4 3

1 2

4 3

G1 G2 G3

Figure 4: Three directed interaction topologies 𝐺1, 𝐺2, and 𝐺3 in
Example 2.

The control gain 𝐾 of the consensus protocol (19) is
chosen based on the design procedure in Algorithm 19. For
each directed graph G𝑚 (𝑚 = 1, 2, 3), we can get a positive
matrix 𝑄𝑚 by solving its corresponding Lyapunov equation
(21). Due to the limited space, the details of 𝑄𝑚 in Lyapunov
equation (21) are omitted here. Then the largest and smallest
eigenvalues of𝑄1,𝑄2, and𝑄3 can be computed as𝜆max = 1.37
and 𝜆min = 0.19. Then, setting 𝑐 = 41.5 and solving the
algebraic Riccati equation (23), we get

𝑃 = (11.0675 0.7118 −4.2657 5.14370.7118 0.4005 −0.2186 0.3571−4.2657 −0.2186 10.2756 0.10085.1437 0.3571 0.1008 7.5259). (44)

The feedback gain𝐾 is designed as𝐾 = 𝐵𝑇𝑃. With the above𝑐 = 41.5, the algebraic inequality (26) is feasible with 𝛼 =
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Figure 5: Time evolution of state trajectories 𝑥𝑖(𝑡) (𝑖 = 1, 2, 3, 4) in
Example 2.

1.11. Then, we select the parameters 𝛽 in (28) as 𝛽 = 6.49.
Thus, global consensus in theMAS (4) with protocol (19) will
be achieved if the ADT 𝜏𝑎 of the switching signal 𝜎(𝑡) is larger
than 𝜏∗𝑎 = 1.69 which is obtained from (27).

With 𝜏𝑎 = 1.8 and 𝑁0 = 2, Figures 5 and 6 show the
state and the error trajectories for all the agents, respectively.
It is observed that cooperative consensus is well achieved in
spite of the fact that some dwell time of the switching signal𝜎(𝑡) between consecutive switching signals is smaller than the
common constant 𝜏𝑎, as shown in Figure 7.

6. Conclusions

In this paper, we have studied the consensus problem for a
class of MASs with Lipschitz nonlinear dynamics. A distinct
feature of theMASmodel lies in its communication topology
that switches within a finite set of digraphs characterised by
an ADT switching signal. The assumption not only reflects
physical communication constraints of realmobileMASs, but
also makes the methods in existing literature infeasible to
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Figure 6: Time evolution of consensus errors 𝛿𝑖(𝑡) = 𝑥𝑖(𝑡) −𝑥1(𝑡) (𝑖 = 2, 3, 4) in Example 2.

analyze the consensus behavior. By converting the consensus
problem into the stability problem of a switched nonlinear
system and constructing an appropriate multiple Lyapunov
function, it has been proved that consensus behavior can be
achieved under the proposed consensus protocols. By solving
a Lyapunov equation and an algebraic Riccati equation, we
provided a multistep algorithm to design the gain matrix
in the proposed protocols. Overall, both theoretical analysis
and numerical simulations show that the obtained results
are quite efficient and could be further extended to solve
other nonlinearMASs (e.g., QUAD nonlinear dynamics [38],
unknown nonlinear dynamics [39]). Moreover, although
this result hinges on deterministic switching topologies, the
information flow between agents may change due to the link
failure with a certain probability and the communication
topologies in such cases will switch stochastically [40, 41].
Therefore, the consensus issue of high-order nonlinearMASs
under random switching topologies deserves careful studies.
Future efforts will focus on solving these problems.
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