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One interesting characteristic of some complex systems is the formation of macro level constructions perceived as having features
that cannot be reduced to their micro level constituents. This characteristic is considered to be the expression of synergy where
the joint action of the constituents produces unique features that are irreducible to the constituents isolated behavior or their
simple composition. The synergy, characterizing complex systems, has been well acknowledged but difficult to conceptualize and
quantify in the context of computing the emerging meaning of various linguistic and conceptual constructs. In this paper, we
propose a novel measure/procedure for quantifying semantic synergy. This measure draws on a general idea of synergy as has been
proposed in biology. We validate this measure by providing evidence for its ability to predict the semantic transparency of linguistic

compounds (Experiment 1) and the abstractness rating of nouns (Experiment 2).

1. Introduction

One interesting characteristic of some complex systems is
the formation of macro level constructions perceived as
having features that cannot be reduced to their micro level
constituents. For example, we perceive water as “wet” while
“wetness” does not characterize either the hydrogen or the
oxygen molecules from which water is composed. The same
emerging behavior is evident in natural language, where the
meaning of word compounds, such as Hotdog, cannot be
trivially reduced to the meaning of their constituents or/and
their compositionality. This characteristic may be considered
to be the expression of synergy where the joint action of
the constituents produces unique features that are irre-
ducible to the constituents isolated behavior or their simple
composition.

Various measures of synergy have been developed in the
natural sciences (e.g., [1-3]) (for a comprehensive review, see
[4]). Most of them exclusively rely on the concept of mutual
information, as epitomized, for instance, by the information
decomposition frameworks developed by [3]. Nevertheless,
there is no one agreed measure of synergy, and it is nontrivial

to apply the various measures of synergy, which rely on
mutual information, to the “semantic” context. In other
words, the synergy, characterizing complex systems, has been
well acknowledged but difficult to conceptualize and quantify
in the context of computing the emerging meaning of various
linguistic and conceptual constructs. We are not familiar
with any paper in which the synergy of semantic constructs,
here described as “semantic synergy,” has been scientifically
measured.

In this paper, we propose a novel measure/procedure
for quantifying semantic synergy. This measure draws on a
general idea of synergy as has been proposed in biology. We
validate this measure by providing evidence for its ability to
predict the semantic transparency of linguistic compounds
(Experiment 1) and the abstractness rating of nouns (Experi-
ment 2). For clarity, we first explain and illustrate the meaning
of semantic synergy and then introduce the measure and
test it. As the measure is of relevance for people from social
sciences and humanities, who do not necessarily have the
background of information theory, efforts have been made to
provide a clear exposition of the main idea through several
worked-out examples.
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2. Semantic Synergy and Word Compounds

For introducing the idea of semantic synergy, we use the
example of linguistic compounds. Linguistic compounds
are formed when two or more words, or more accurately
“lexemes,” are joined to produce a new word. Compound
words are not marginal linguistic elements of the lexicon, and
itis argued that compounding is one of the first processes that
accompanied the emergence of language [5, p. 1].

The extent in which the constituents contribute to the
meaning of the compound is discussed under the title of
semantic transparency [6-9]. For instance, Seafood is a highly
transparent compound as both Sea and Food contribute to
its meaning. After all, Seafood is food that we get from
the sea. In contrast, the word Dog seems to contribute a
little to understanding the meaning of the word compound
Hotdog unless one understands the visual similarity between
the sausage denoted by “Hotdog” and a dachshund, an
understanding which is grounded in a concrete cultural
knowledge. The example of Hotdog is a clear illustration of
semantic synergy as the meaning of this compound cannot
be reduced either to Hot or to Dog or even to their simple
composition. An intelligent alien trying to understand the
meaning of Hotdog by inquiring the definitions of Hot
and Dog in the Oxford English Dictionary would probably
experience a failure. An anecdote may further illustrate
this point. An old friend of the first author visited the
UK in the early sixties and for the first time in his life
saw a stand selling sausages under the sign of “Hotdogs.”
He was shocked by the idea that, despite their great fond-
ness for dogs, the British eat sausages made out of dog
meat.

The semantic synergy evident in the case of Hotdog is
also evident in cases in which the semantic transparency
of the compound is much higher. The word compound
Guidebook is rated among the top compounds in terms of its
semantic transparency [10]. However, even in this relatively
simple case, there is no trivial computational process to
infer its meaning from the meaning of its constituents, as
indicated by its relatively old age of acquisition which is
approximately five. In this context, it must be clarified that
the terms “semantic transparency” and “semantic synergy,”
despite being conceptually related, are not conceptually con-
founded. Semantic transparency is a token instantiating the
general mechanism of semantic synergy. However, semantic
transparency cannot be equated with semantic synergy. The
extent in which the meaning of a compound can be derived
from its constituents is not the same as the extent in which
the information encapsulated in the compound provides us
with an added value beyond the information provided by the
constituents. As we show in Experiment 1, the correlation
between semantic transparency and our proposed measure
of semantic synergy is significant but far from perfect, as
should have been the case if the two concepts would have
been identical.

There has been intensive work in understanding the
cognitive processes underlying the comprehension of lin-
guistic compounds. In addition, there have been some
notable attempts to build computational models of “semantic
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composition” (e.g., [11]). However, understanding the cogni-
tive processes underlying the comprehension of compounds
and developing workable computational models of these
processes are far from being solved issues and totally beyond
the scope of the current paper. We use the contexts of
word compounds and words’ level of abstractness only for
validating our measure of semantic synergy. Hence, our
main aim is the development and validation of the new
measure.

In this paper, we first use the case of word compounds
in order to test our measure of semantic synergy. While
linguistic and computational models of compounds have
shown the contribution of the constituents to the semantic
transparency of the compound (e.g., [6, 12]), it is clear from
psychological studies [7] that the meaning of the compound is
not simply constructed from its parts. Therefore, the semantic
transparency of word compounds may serve as a test case for
validating our measure of semantic synergy. However, and we
repeatedly emphasize this point, the paper has no pretensions
to model the cognitive processing of compounds or to
build computational models for understanding compounds,
although it probably has some relevance for both of these
challenges.

3. Meaning and Distributional Semantics

Previously, we have mentioned the fact that synergy measures
heavily rely on the idea of mutual information. Mutual
information-based measures of synergy are not required
to deal with “meaning” as they focus on the reduction
of uncertainty only. However, any attempt to develop a
measure of semantic synergy should explain the specific
sense of meaning on which it relies and the way this sense
is embedded in the measurement process. Here, we adopt
the idea of “distributional semantics” ([13, 14]) in order to
clarify how meaning can be represented. “Distributional
semantics is based on the hypothesis that words that occur
in similar contexts tend to have similar meanings (Harris,
1954; Firth, 1957). This hypothesis leads naturally to vector
space models, in which words are represented by context
vectors (Turney & Pantel, 2010)” [14, p. 1]. In this context,
we may consider the meaning of Hotdog, for instance, by
using the words collocated with it in a large corpus of
the English language. For instance, searching the Corpus
of Contemporary American English (abbreviated as COCA)
[15] for the words collocated up to 4 positions to the right/left
of Hotdog, we identify collocations such as Bun, Ketchup,
and Mustard. We may organize these words as a basis for
a ‘context vector” in which the values are the collocations’
frequencies or probabilities. This vector may be used for
representing the meaning of Hotdog for various practical
applications and indeed this simple idea of distributional
semantics has been proven to be extremely powerful in the
context of natural language processing and computational
cognition. Given that the meaning of Hotdog and its con-
stituents (i.e., Hotand Dog) may be represented by using their
context vectors, how can we measure the synergy of a word
compound?
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TABLE 1: The context vectors of Seafood, Sea, and Food.

Restaurant Crab Shrimp Service Wine Water Salt

Seafood .70 .05 12 .02 .04 .05 .02
Sea .09 0 0 22 17 49 .03
Food .01 .01 .02 .02 0 .30 .64

4. Measuring Semantic Synergy

In the context of genes interaction, [1] proposed that the
synergy between G1 and G2 with respect to C may be
formalized as follows:

Syn (G1,G2C) = 1 (G1,G2;C)

¢y)
~[I(G1;C) +1(G%C)],

where “I” signifies the mutual information between the
constituents. When applied to the context of compounds, the
idea behind this formulation is appealing in its simplicity;
synergy is what remained after we subtract the sum of
each constituent’s unique information about the compound
from the constituents’ joined contribution. Analogically, we
suggest that the semantic synergy of words W1 and W2, with
respect to a word compound W1W2, may be conceptualized
as the information gained when using the unique context
vectors of W1 and W2 for approximating the context vector
of W2W?2 minus the information gained when approximating
W1W?2 by the simple addition of the information gained by
WT1’s approximation of W1W?2 and the information gained
when using W2 for approximating W1W?2. This idea may
be better clarified by a toy example in which we apply the
Kullback-Leibler Divergence measure.

Let us assume that we would like to measure the semantic
synergy of the word compound Seafood. We search COCA
for the collocations of Seafood, Sea, and Food and group these
collocations into a bag of words that serves as the basis of our
vector. This bag of words may include the following words:
Crab, Salt, Service, Shrimp Restaurant, Water, and Wine.

Next, we use the above bag of words to form a shared basis
for the context vectors of Seafood, Sea, and Food. We load our
vectors with values that indicate the probably of each word to
appear in the context of the target word (i.e., Seafood, Sea,
and Food). See Table 1.

At this point, we may want to approximate the distribu-
tion of Seafood (i.e., its meaning) by using the distributions
of Sea and Food. According to the distributional hypothesis,
the meaning of Seafood can be represented by using its
context vector. Therefore, approximating the distribution of
Seafood by using the distribution of Sea and Food may
indicate how much information we have gained when revis-
ing our beliefs from the prior distributions (i.e., senses) of
Sea and food, to the a posteriori distribution of Seafood.
If the meaning of Seafood is a synergetic product of its
constituents, then approximating the meaning of Seafood,
as represented by its context vector, through the senses
of its constituents, as represented by their context vectors,
should involve some gain in information as the information
represented in Seafood cannot be fully approximated through

the information encapsulated in Sea and Food. The higher the
gain, the higher the synergy. Here, we may use the Kullback-
Leibler Divergence which is an asymmetric measure of the
difference between two probability distributions P and Q:

N P
Dy, (P | Q) = ) P(i)log =——. 2)
KL Z g Q)

We may use Dy, to approximate the distribution of the
word compound Seafood by using each of its constituent’s
distributions. Here is an elaborated example showing how we
may approximate the distribution of Seafood through Sea and
Food.

Table 1 shows us that the probability of Restaurant to be
collocated with Seafood is 0.70 and that its probability to be
collocated with Sea is 0.09. Therefore, we first calculate

0.70
0.70 * log 0.09° 3)

Next, we see that the probability of the word Crab to be
collocated with Seafood is 0.05 and with Sea 0 (which is
converted to 0.001). Therefore, we calculate

0.05
0.001

0.05 * log (4)
and so on. We sum these expressions as follows:
Dy (Seafood || Sea) = Y 0.70 * log(50.70/0.09),...,0.02 =
1og(0.02/0.30).

Similarly, we calculate the divergence measure for Food
and Seafood. Dy (Seafood || Sea) = 2.85, and Dy  (Seafood ||
Food) = 4.70. These results suggest that it is easier to
approximate the context vector of Seafood by using Sea rather
than by using Food.

5. The Experiments

5.1. Experiment 1

5.1.1. Methods. In the sections below, we introduce our data-
set and the procedure we have applied for measuring seman-
tic synergy.

5.1.2. Dataset. For the first experiment, we have used the
dataset provided by [10]. This dataset includes 629 linguistic
compounds and their rating by human judges according
to several relevant measures such as familiarity (FAM), age
of acquisition (AoA), semantic transparency (TRANS), and
imageability (IMG). Semantic transparency concerns the
extent in which the meaning of the compound can be inferred
from its constituents. Imageability concerns the extent in
which the compound may be imagined. As TRANS may be
considered to be the expression of semantic synergy;, it is the
focus of the first experiment.

5.1.3. Procedure. We symbolize each word compound as
WI1W?2, the left word as W1, and the right word as W2.
For each word, we searched the COCA for collocations that
exhibit up to 4 positions to the right/left of our target word.



Out of this list, we filter up to the 300 most frequent words
in the forms of lemmas that (1) belong only to the parts of
speech of Noun, Verb, and Adjective and have (2) mutual
information >3 with our target word (W1, W2, and W1W2).
The second constraint aims to filter out highly frequent and
noisy collocations. Each list is stored as a bag of words and the
bags of words of W1, W2, and W1W?2 are united into a single
list of unique words (i.e., lemmas) that can have a maximal
cardinality of 900. From this list, we remove W1, W2, and
W1W?2. The list is organized as an alphabetical list of unique
words that form the basis of the context vector. This basis is
used to describe W1, W2, and W1W?2. Next, we construct
the specific vectors for W1, W2, and W1W?2 by loading the
basis with the frequencies of each lemma and converting the
frequencies into probabilities. We define three sets of words
and four vectors:

(1) WIW2: the vector comprised of the probabilities of
the lemmas collocated with W1W2

(2) set WL (W1INWI1IW2) - (W2nNnWI1W2)

This means that, first, we identify the words at the intersection
of W1 and W1W?2 and sum their frequencies. From this list
of words, we “remove” the words that also exist at W2 N
W1W?2. The unique words remaining after this process has
been completed are identified in the basis and loaded with
values to form a vector which is titled Unique_ W1.

(3) set-W2: W2NWIW2) - (WINW1W2)

It is calculated the same as set_-W1 but this time we
identify words that exist at W2 N W1W2 but do not exist
for W1 N W1W2. Again, the final vector, titled Unique W2,
is comprised of the same 900 words that form the basis, but
we have values different from 0 only for words that exist at
W2 N WIW2 but do not exist in W1 N WI1W?2.

(4) set_Joint=WINW2nNWIW2

This time, we identify the words that exist at the inter-
section of the three words (i.e.,, W1 N W2 N W1W2) and the
vector, titled Joint, includes the 900 words but only the words
included in set_joint have values different from 0 which is the
sum of their frequencies at W1, W2, and W1W2 as converted
to probabilities.

Each vector is converted into a vector of probabilities
where a value of 0 is transformed to 0.001. In the next step, we
produce three measures that are based on a “softer” version
of the Kullback-Leibler Divergence. These are measures of
information gain, as they give us an indication about the
information we have gained when revising our beliefs from
the prior distributions of the context vectors of the con-
stituents, or their shared semantic space, to the context vector
of the compound. The general structure of the measures is
very simple:

< p (Pi)
Zp(Qi)’

where P is always W1W2 and Q is either Unique W1,
Unique_W2, or Joint.

©)
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TABLE 2: Pearson correlations between the measures of the linguistic
compounds.

FAM AoA TRANS IMG
FAM —.672 .288 495
AoA -.397 —.642
TRANS .396

(1) The first measure is titled Gain_-W1, where P=W1W2
and Q = W1. In this case, W1 is the unique vector of
W1 as we calculated before.

(2) The second measure is titled Gain_ W2, where P =
WIW?2 and Q = W2. In this case, W2 is the unique
vector of W2 as we calculated before.

(3) The third measure is titled Gain_Joint, where P =
W1W2 and Q = Joint.

The semantic synergy measure of a word compound is
calculated as follows:

(5) SemSyn = (Gain Joint # [set_Joint]) — (GainW1 #
[set_-W1| + GainW?2 * [set_-W2|).

Semantic synergy is thus defined as

(1) the information gained when trying to approximate
the distribution of the compound using the prior
distribution of the elements shared by W1, W2, and
WI1W?2 and multiplied by the cardinality of set_joint,
minus

(2) the sum of the information gain from the unique prior
distribution of W1 multiplied by the cardinality of
set_-W1 plus the gain from the unique prior distribu-
tion of W2 multiplied by the cardinality of set_ W2.

We have not used the Kullback-Leibler Divergence as
its component of log function condenses differences we
would like to use in order to identify the synergetic effect.
When experimenting with a version of the above function
using Dy, the results were slightly inferior. In addition,
we multiplied the information gain by the cardinality of
each relevant set, as the number of words that exist at the
intersecting semantic fields of the words was found to be
associated with the semantic transparency of the compound,
a finding which is in line with the literature indicating the
role of the constituents in determining the transparency of
the compound [12].

5.1.4. Analysis and Results. Table 2 presents the Pearson cor-
relations between the various measures of the linguistic
compounds (N = 616). Only results significant at p <
.001 are reported and the correlations with TRANS are
emphasized.

Hypothesis I. We hypothesized that if our measure of seman-
tic synergy (i.e., SemSyn) is valid, then a negative correlation
should be expected between SemSyn and TRANS (Hypoth-
esis 1 a) as the more synergetic the word compound is, the
less transparent it is semantically, the more the time it takes
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TABLE 3: Pearson correlations between SemSyn and the measures of
the linguistic compounds.

TABLE 4: Results of the classification procedures (rounded percent-
ages).

FAM AoA TRANS IMG Precision Recall Accuracy
SemSyn -.397 439 —-.400 —-.483 CRT 72 87 76
K-NN 69 78 72

to learn it (higher age of acquisition) (Hypothesis 1 b), the
less familiar it is (Hypothesis 1 ¢), and the less imaginable it
is (Hypothesis 1 d). Table 3 presents the correlations of our
synergy measure with the above measures.

All results are statistically significant at p < .001. One
may wonder whether the correlation between TRANS and
SemSyn is influenced by the frequency of W1 and W2 in our
corpus. To address this question, we measured the correlation
again, this time by controlling for the frequency of W1 and
W2. The resulting Pearson correlation was only slightly lower
than the one gained before (r = —.392) indicating that the
frequency of the constituents does not have a major impact
on the correlation between TRANS and SemSyn.

We can see that our first hypothesis with its various
variants has been supported. It is interesting to notice
that, within the measures of the compounds, the highest
correlation TRANS has is with AoA (-.397) and IMG (.394).
This means that the higher the semantic transparency of
the compound is, the earlier it is learned by children and
the more imaginable it is. In this context, it is interesting
to see in Table 3 that the semantic synergy measure was
correlated with TRANS, to the same degree that TRANS
was correlated with AoA and IMG. This result indicates that
the new measure of semantic synergy may predict semantic
transparency to the same level as the compound’s age of
acquisition and its degree of imageability.

Another way of testing the major research hypothesis
(i.e., Hypothesis 1 a) is by comparing the synergy scores of
compounds rated high or low on the semantic transparency
measure. In this case, we apply the extreme groups research
design. We have identified the top 25 percent of the com-
pounds that scored the highest on TRANS (H) and compared
them to the 25 percent of the compound that scored the
lowest (L). Using one-way ANOVA, the difference between
the two groups was found to be statistically significant
(F(1,299) = 85.82, p < .001) with Partial Eta Squared =
0.223, which according to Cohen’s norms in the behavioral
sciences is considered to be a large effect size. As expected,
compounds that were less semantically transparent (L) scored
on average higher on the SemSyn measure (—250 versus —541,

resp.).

Hypothesis 2. The fact that SemSyn was found to be linearly
correlated with TRANS is not an indication of its ability to
successfully classify compounds as transparent or not. Using
SemSyn in a classification task, by applying Machine Learning
procedures, may further support its validity. Therefore, we
have also tested the validity of the semantic synergy measure
in a classification task, where SemSyn was used as the only
feature for classifying the compounds as L or H on semantic
transparency.

* All results are in round percentages and those involving significance tests
are significant at p < .001.

We have hypothesized that SemSyn will provide us with
a significant increase in prediction of which compound has
been rated low on transparency. This significant increase
in prediction is judged by comparing the probability that
a compound is rated low on transparency given that the
classifier predicted it as such (i.e., the precision of the
classifier). The precision is compared to the prediction we
may gain using the base rate of L cases in our dataset. In our
dataset, 50% of the compounds are tagged as L and therefore
any measure of precision which is higher than 50% may
be considered significant. We used two Machine Learning
classification procedures:

(1) The Classification and Regression Tree (CRT) model
with a tenfold cross validation procedure

(2) The k-nearest neighbors algorithm (K-NN) with an
Euclidean metric for distance computation and ten-
fold cross validation procedure

The results are presented in Table 4 where following the
norms of Machine Learning and natural language processing,
the precision, recall, and accuracy of the classifier are used to
evaluate its performance.

Precision is the true percentage of L words out of the
words identified as L cases. Recall is the percentage of cases
of the classifier identified as L out of all L cases in our
dataset. Accuracy is the overall measure of the classifier’s
correct identification of L cases (i.e., compounds that were
correctly identified by the classifier as characterized by low
semantic transparency) and correct identification of non-
L cases, out of the total cases. The measures of precision
and recall refer to the success in predicting compounds with
low transparency. We can see that both classifiers produced
a significant improvement in prediction over the base rate
(50%) with an average improvement of 20%. These results
further support the validity of our measure.

In the first experiment, we have validated our measure
of semantic synergy in the context of word compounds. It
is highly important to emphasize the fact that we have used
the context of word compounds to validate our measure and
have no intentions whatsoever to compete with algorithms
that aim to predict various aspects of word compounds
such as semantics transparency. We have mentioned some
of these attempts (e.g., [11]) but in this paper have a totally
different aim. Nevertheless, it is interesting to examine the
predictive value of our semantic synergy measure with
regard to the predictive power of measures of semantic
distance. It is reasonable to hypothesize that the semantic
transparency of a compound can be predicted based on



the semantic distance between the compound and its con-
stituents. Whether the semantic synergy measure has any
contribution beyond the predictive value of these semantic
distances is an open question. To answer this question, we
used a vector space model of semantics [14] by specifically
using the term-to-context matrix developed by [16]. We
prefer this matrix over term-to-document LSA models as
it preserves the common sensical meaning of similarity in
terms of term-to-lexical-context association and since it has
been successfully used in various studies of cognitive and
social computing. Using the term-to-document matrix, we
have measured the semantic distance between each word
compound and its first constituent and titled this new
measure wl_compound. Similarly, we have measured the
semantic distance between the compound and the second
word and titled the new measure w2_compound. To recall,
the Pearson correlation between our synergy measure and
the semantic transparency of the compound was —0.40. The
Pearson correlation between wl_compound and TRANS was
r =.325 (p < .001) and between w2_compound and TRANS
was r = .299 (p < .001). SemSyn was negatively correlated
with wl_compound (r = —.496) and w2_compound (r =
—-.547, p < .001), meaning that the higher that semantic
synergy of the constituents, the lower the distance between
their vectors and the vector of the word compound, as
trivially expected. A better way of measuring the relative
contribution of wl_compound, w2_compound, and SemSyn
for predicting the semantic transparency of the compound is
by repeating the CRT analysis and classifying the compounds
into low transparency compounds and high transparency
compounds. Using the CRT classifier with tenfold cross
validation and wl_compound and w2_compound as features
gave us better precision than the one we have gained by using
only SemSyn (76% versus 72%, resp.), but a lower recall (69%
versus 87%, resp.) and slightly lower accuracy (74% versus
76%, resp.). When entering wl_compound, w2_compound,
and SemSyn into the model, we have gained the highest
precision (82%) and accuracy (77%) but a slightly lower recall
(71%). The normalized importance of the features shows that
SemSyn had the highest normalized importance in the model
(100%) followed by w1_compound (89%) and w2_compound
(40%). Again, designing the best algorithm for predicting
semantic transparency is totally beyond the scope of the
current paper. However, the supplementary analysis we have
conducted proves that our semantic synergy measure may
contribute to the prediction of semantic transparency beyond
the contribution of the semantic distance of the constituents,
as measured by a powerful model.

Another complementary analysis to the main research
question may involve the role of Lexeme Meaning Domi-
nance [10]. Lexeme Meaning Dominance (LMD) measures
the relative dominance of the first/second lexeme in deter-
mining the meaning of the entire compound. In our dataset,
LMD is measured on a scale ranging from 0 (i.e., the meaning
of the entire compound is in the first lexeme) to 10 (i.e.,
the meaning of the entire compound is determined by the
second lexeme). In [10], compounds that scored 4 or lower
on the LMD measured were titled as “Headed” and those that
scored 6 or higher were titled as “Tailed.” In our dataset, 139
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compounds have been identified as “Headed” (45%) and the
rest, 167, have been identified as “Tailed” (55%), indicating the
dominance of the second lexeme.

To recall, we have calculated the information gained in
trying to approximate the vector of the compound through
the vector of the first lexeme (i.e., Gain_W1) and the second
lexeme (i.e., Gain_-W2). The higher the Gain score is, the more
difficult it is to approximate the meaning of the compound
using the vector of the constituent. LMD can be interpreted
by using these measures, as the relative dominance of the
first and second lexeme should be expressed in terms of
the information gained when trying to approximate the
meaning of the compound by using the vector of each
constituent. Therefore, we may hypothesize that significant
differences will be found when comparing Headed and Tailed
compounds on the gain measures.

Using MANOVA with LMD as the factor (i.e., Headed
versus Tailed compounds) and the two gain measures as
the independent variables, a statistically significant difference
was found between the groups (F(2,303) = 9.82, p < .001).
However, the difference was statistically significant only for
the Gain_.W2 measure (p < .001) where Tailed compounds
scored lower (M = 1674 versus M = 2038, resp.). This means
that Tailed compounds, where the second lexeme determines
the whole meaning of the compound, are compounds in
which the context vector of the second lexeme is much
“closer” to the meaning of the context vector of the whole
compound. Interestingly, there was no symmetry with regard
to the information gain of the first lexeme, indicating that
lexical semantic dominance is not symmetrically and trivially
associated with the information provided by the first and the
second lexeme.

5.2. Experiment 2. In the first experiment, we have used
word compounds in order to validate our measure. We
hypothesized that if the semantic synergy score of the
compound is valid, then a significant negative correlation
should be found between the semantic synergy score and
the semantic transparency score. The results provide some
empirical support for the validity of our measure. However,
validating the measure cannot be exhausted by a single
case as semantic synergy does not have to be necessarily
expressed in semantic compounds. Another test case involves
the abstractness/concreteness rating of words as explained in
the next section.

As suggested by [17], the meaning of words may be
attributed to two dimensions: experiential and distributional.
The experiential dimension concerns the perceptual aspect of
the meaning. For instance, the meaning of a Cherry is to a
large extent determined by the perceptual aspects of cherries,
being red, small, round, sweet, and so forth. As can be
immediately comprehended, the meaning of concrete words
seems to lean more heavily on their perceptual experiential
dimension or the perceptual dimension of words collocated
with them. Identifying the collocations of Cherry in COCA
and grouping them in mind, we may easily identify that they
are organized around the themes of Nature (e.g., Tree) and
Food (e.g., Pie).



Complexity

The distributional dimension of meaning concerns the
way in which the meaning of a word is derived from
its connections with other words. For instance, the word
Democracy denotes a concept that has no reference to a
perceptible entity. The meaning of Democracy is exclusively
determined by its connections with other words that deter-
mine its meaning as a specific form of government. As we
can see, the distributional dimension of meaning is deeply
connected with the abstractness level of a word. The meaning
of words that are more abstract relies more heavily on the
distributional dimension. In this context, we may hypothesize
that the concreteness/abstractness rating of a word should be
correlated with its score of semantic synergy as the meaning
on an abstract word cannot be trivially reduced to any
perceptual entity or to the meaning of other words through
which it is defined; while the meaning of Democracy may
be a synergetic product of other words defining its semantic
network, the meaning of a Cherry is probably less synergetic
as it relies on a simple sum of its perceptual constituents (e.g.,
color, shape, size, and taste) or the meaning of words to which
it is linked in the semantic network (e.g., apple, strawberry).
Therefore, we have hypothesized that the abstractness of
a word will be positively correlated with our measure of
semantic synergy.

5.2.1. Dataset. We have used a dataset that includes the
concreteness ratings of 37,058 English words, obtained from
over 4,000 participants [18]. Each participant was asked to
rate the word using a 5-point rating scale ranging from
abstract to concrete. We have identified the nouns in the
dataset and selected the top 150 concrete words and the top
150 abstract words.

5.2.2. Procedure. Let us denote each of the target words we
have analyzed (N = 300) as Abs. We have first identified
the collocations of each target word according to the same
procedure used in Experiment 1. Next, we selected the two
top rated collocations (nouns only), denoted as W1 and W2,
and recursively identified their own collocations. From this
point on, the procedure was exactly the same as the one used
in Experiment 1, but with Abs as analogously standing for
W1W?2. The idea was that, according to the distributional
dimension of meaning, updating our beliefs from the prior
context vectors of words that form the semantic context of the
target, to the a posteriori context vector of the target, requires
more efforts. Hence, abstractness will be positively correlated
with semantic synergy.

5.2.3. Analysis and Results. There were N = 296 words in our
dataset, 149 of them denoting the most concrete nouns in the
database (51%) and the rest the most abstract words (49%).
The Pearson correlation between abstractness and SemSyn
was found to be statistically significant (r = .537, p < .001),
where the sign of SemSyn has been turned to negative in
order to provide a simple interpretation of the results where
the abstraction ranking starts with the concrete to abstract.
Linear Regression was calculated to predict abstraction level

TABLE 5: Results of the classification procedures (rounded percent-
ages).

Precision Recall Accuracy
CRT 72 85 76
K-NN 70 76 71

of a word based on its synergy score. A statistically signif-
icant regression equation was found (F(1,292) = 118.23,
p < .001), with an R* of 0.288. In an attempt to examine
the predictive power of SemSyn, we have applied the two
Machine Learning classification procedures. The results are
presented in Table 5.

Given that the base rate of abstract words in our dataset
is 49%, the average precision is 71% which means 22%
improvement in prediction. These results are indicative of the
predictive power of synergy and hence provide another layer
of empirical support for its validity.

6. Conclusions

The famous Gestalt slogan “the whole is different from the
sum of its parts” is a clear indication of the way emerging
structures bear the fingerprint of synergetic processes. It
must be noted that this synergy is difficult, at least the-
oretically, to capture through measures relying on mutual
information. Synergy involves a shift in scales of analysis
while the measure of mutual information does not directly
address this change in scaling. This theoretical point may be
explained through the physics of computation and Landauer’s
principle [19]. Reference [19] argued that whenever a system
erases some information then this process is irreversible
and is accompanied by a minimal price of entropy which
is released to the environment. This price is evident in a
process of computation where a certain output is produced
from certain inputs, such as in the case of the formation of
abstract semantic categories from particular instances [20].
For instance, the computation of Hotdog from Hot and Dog
requires that some information about the constituents will be
lost when the new structure of Hotdog is computed. In other
words, the formation of the compound requires that some
information is lost and some information is gained when
shifting between different scales of analysis in a process of
irreversible natural computation. In this context, a mutual
information-based measure of synergy cannot be used for
directly representing the gain and loss accompanying the
emergence of semantic structures.

In this paper, we have made a first step in developing
a measure of semantic synergy. This measure, which takes
into account the information gain (and loss) accompanying
the shift between context vectors, preserves the idea of
information gain/loss that accompanies a synergetic process
as well as the semantic representations on which the vectors
operate in the context of semantic synergy.

This measure of semantic synergy has various applica-
tions beyond the specific and limited contexts in which it has
been validated in this specific study. For instance, one may
be interested in studying the way in which the meaning of



certain concepts (e.g., God, Love, and Darwinism) has been
changed through history. One possible way of addressing this
challenge is by tracing the changes undergone by the semantic
fields of these concepts as instantiated by their context
vectors. However, quantifying this change is far from trivial.
One possible approach derived from our measure of semantic
synergy is to trace the way in which the semantic synergy
of a concept has been changed. Analyzing the trajectory of
this measure may be used for identifying “tipping points”
in the evolution of the concept and historical landmarks
where its meaning has been transformed. This idea and others
are probably worth developing by researchers to whom the
concept of semantic synergy may be of value.
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