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Multifractal (or singularity) spectra widths𝑤 allow diagnosing cascade structure through comparing original series’ widths𝑤Orig to
surrogate series’ widths 𝑤Surr. However, interpretations of 0 < 𝑤Orig < 𝑤Surr have been ambiguous. Stochastic multipliers generate
cascades with 0 < 𝑤Orig < 𝑤Surr by diversifying cross-scale interactions using white-noise multipliers. Multifractal detrended
fluctuation analysis (MF-DFA) and Chhabra and Jensen’s method provided two estimates of 𝑤Orig for 200 simulated series at each
value 0.1 ≤ 𝜎 ≤ 1.1 incrementing by 0.05. Increasing 𝜎 draws 𝑤Orig away from 𝑤Surr < 𝑤Orig and towards 0 < 𝑤Orig < 𝑤Surr for both
methods but more for MF-DFA. 0 < 𝑤Orig < 𝑤Surr indicates cascades with cross-scale interactions more diverse than in cascades
with 𝑤Surr < 𝑤Orig.

1. Introduction

Multifractal analysis provides an elegant test for cascade
structure in empirical series [1–3]. Cascades are nonlinear
processes involving iterative branching, splitting, or aggregat-
ing structures across repeated generations [4–6]. Multifractal
analysis computes a spectrumof singularity strengths govern-
ing power-law growth relative to measurement scale. Width
of this multifractal (or singularity) spectrum 𝑤 varies with
the number of estimable power-law relationships.𝑤 depends
on the strength of cascade-like interactions across scales [7].

1.1. Surrogate Comparison. 𝑤 is, however, not a transparent
window onto cascade-like interactivity across scales. Surro-
gate testing is as necessary for proper interpretation of𝑤 as for
any nonlinearmetric [8–11]. Linear features of ameasurement
series spuriously increase𝑤.The sources ofmultifractality are
first nonlinear correlations and second PDF and linear
correlations [12, 13].The former source indicates cascade-like
origins, and the latter does not. Multifractal diagnosis of cas-
cade structure requires comparison of original measurement
series’ multifractal-spectrum width 𝑤Orig to 𝑤Surr, the width

for surrogates matching mean, variance, and autocorrelation
function of the original series. The current preferred surro-
gate algorithm is the Iterative Amplitude Adjusted Fourier
Transform (IAAFT) algorithm preserving linear properties
while randomizing phase by shuffling the order of values in
original series. Because skewed histograms alone can inflate𝑤Orig [14], IAAFT surrogates need not generate nonzero𝑤Surr. The present article addresses the issue of interpreting
the result of 0 < 𝑤Orig < 𝑤Surr.

1.2. The Problem. To our knowledge, diagnosing cascade-
like interactions across scales using multifractal analysis is a
simple dichotomy: evidence for cascades or not.The problem
is that interpretations vary particularly for diagnosing those
cases in which 0 < 𝑤Orig < 𝑤Surr. According to some [15],0 < 𝑤Orig < 𝑤Surr entails the notion that the original series is
monofractal, and cascade structure gives rise only to 𝑤Surr <𝑤Orig. Other interpretations have presumed that 0 ̸= 𝑤Orig ̸=𝑤Surr indicates nonlinear temporal structure [1, 16–19].

We offer the present simulation work, first, to demon-
strate that extremely simple cascades do generate 0 < 𝑤Orig <𝑤Surr and, second, to present a manipulation of interactions
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across time scales in these cascades warranting a more
bidirectional, more continuous interpretation of the cascade
structure when 0 ̸= 𝑤Orig ̸= 𝑤Surr. The next section briefly
reviews binomial cascades as well as our manipulation of
multipliers in this two-daughter-cascade framework.

1.3. Cascades. Cascades are iterativemanipulations of 𝑛𝑔 cells
over 𝑔 generations that may redistribute the proportion 𝑝𝑖,𝑗
contained in each 𝑖th parent cell in generation 𝑗 (for 𝑗 <𝑔, 𝑖 < 𝑛𝑗) across some number of daughter cells in generation𝑗 + 1 each containing 𝑝𝑘,𝑗+1, for 1 ≤ 𝑘 ≤ 𝑛𝑗+1. For instance,
the standard binomialmultiplicative cascade [20] begins with
a single cell containing unit proportion 𝑝1,1 and proceeds
by fragmenting this unit proportion unevenly, such that the
subsequent generation contains two daughter cells 𝑝1,2 and𝑝2,2, such that 𝑝1,2 ̸= 𝑝2,2 and 𝑝1,2/𝑝2,2 = 𝑐, where 𝑐 is a
constant. This constant ratio 𝑐 defines all parent-to-daughter
cell relationships across all generations; that is, for any parent
cell containing proportion𝑝𝑖,𝑗 in generation 𝑗 of the binomial
multiplicative cascade, the daughter cells appearing in the
next generation 𝑗 + 1 will contain proportions 𝑝2𝑖−1,𝑗+1 = 𝑐 ×𝑝𝑖,𝑗/(𝑐+1) and𝑝2𝑖,𝑗+1 = 𝑝𝑖,𝑗/(𝑐+1) in the same sequence across
the entire generation. Hence, the binomial multiplicative cas-
cade uses the deterministic multipliers 𝑐/(𝑐+1) and 1/(𝑐+1).

Our simulations of cascade processes involve the same
splitting of parent cells into two daughter cells. A key
difference in our approach is the use of stochastic multipliers.
Instead of using constant 𝑐 to define unevenness of propor-
tion 𝑝 across daughter cells, we generated a new additive
Gaussian white-noise 𝑥 process to specify each new gen-
eration; that is, to redistribute proportions contained by 𝑛𝑗
parent cells in generation 𝑗, we defined 𝑥𝑘,𝑗+1 as a vector of
length 2𝑛𝑗 = 𝑛𝑗+1, where 1 ≤ 𝑘 ≤ 𝑛𝑗+1 are numbers randomly
selected from a Gaussian distribution, and these random
numbers served as multipliers to specify the proportion con-
tained in each daughter cell. For parent cells containing pro-
portion 𝑝𝑖,𝑗, the two resulting daughter cells would contain
proportion 𝑝2𝑖−1,𝑗+1 = 𝑥2𝑖−1,𝑗+1 × 𝑝𝑖,𝑗 and proportion 𝑝2𝑖,𝑗+1 =𝑥2𝑖,𝑗+1 × 𝑝𝑖,𝑗. What we held constant across generations was
the mean of 1 and standard deviation 𝜎 for all rows in 𝑥.

Our general hypothesis is that replacing the constant
multipliers defined by the constant ratio 𝑐 with stochastic
multipliers 𝑥 in a similar two-daughter framework might
provide one way to reduce 𝑤Orig into the range 0 < 𝑤Orig <𝑤Surr. Completely even splitting of proportion from parent to
daughter cells would produce a cascade of ideally monofrac-
tal structure (i.e., theCantor set),𝑤Orig = 0. It is the determin-
istic, repeating pattern of unevenness of the constant multi-
pliers across daughter cells that makes the monofractal cas-
cade multifractal with 0 < 𝑤Orig. So, we suspect that stochas-
tic multipliers might at once provide the heterogeneity to
produce a multifractal cascade but also randomize the het-
erogeneity to deterministically favor neither the first nor the
second daughter of each parent cell with greater proportion.
Whereas the binomial multiplicative cascade enforces the
same pattern through all interactions across all scales, sto-
chastic multipliers might make interactions across the scales
of resulting cascades more divergent.
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Figure 1: Schematic of binomial multiplicative cascade with four
generations.

The sense in which we envision this divergence has to do
with our hope that the promise of “interactions across scales”
in cascade-generated series should maintain all the same
promise of earlier claims regarding nonlinearity. Because
linearity entails an expectation of symmetry across time, non-
linearity opens the door to asymmetries which might unfold
across any of many directions across time. This issue moti-
vates the two-sided comparison, that is, 0 ̸= 𝑤Orig ̸= 𝑤Surr,
of series against linear surrogates: we should not merely test
whether metrics from “nonlinear” analyses (e.g., 𝑤) exceed
values computed for linear surrogates. From the baseline
nonzeromultifractal-spectrumwidth due to histogram skew,
nonlinear interactions across time might be just as likely to
narrow the spectrum width towards 0 < 𝑤Orig < 𝑤Surr as to
widen it towards 𝑤Surr < 𝑤Orig. Nonlinearity might violate
time symmetry through constricting or amplifying complex-
ity of the measurement series.

Wemanipulate the regularity of interactions across scales
with stochastic multipliers to determine whether reducing
this regularity can reshape cascades to yield gradually more
cases of 0 < 𝑤Orig < 𝑤Surr than 𝑤Surr < 𝑤Orig. We will manip-
ulate the variance of the stochasticmultipliers and test for dif-
ferences in one-sample 𝑡-statistics expressing the difference
between 𝑤Orig and a corresponding sample of 𝑤Surr for 50
corresponding IAAFT surrogates, that is, 𝑡MF defined as the
ratio of (𝑤Orig − (1/50)∑50𝑖=1 𝑤Surr(𝑖)) to the standard error of𝑤Surr. The classic binomial multiplicative cascade of identical
interactions across scales unfolds deterministically according
to fixed ratio 𝑐, and it yields a multifractal spectrum with
width 𝑤Surr < 𝑤Orig [21] (e.g., Figure 1) and so positive 𝑡MF
for a multifractal algorithm that, as we will show, is relatively
more likely to generate 0 < 𝑤Orig < 𝑤Surr. This result suggests
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Figure 2: Example of cascades built with two daughter cells replacing each parent cell in each new generation, for 𝜎 = 0.1 (a), 0.6 (b), and 0.9
(c) over the first four generations.

to us that cascades with progressively more heterogeneous
interactions across might generate progressively more cases
of 0 < 𝑤Orig < 𝑤Surr and progressively more negative values
of 𝑡MF.

We enlist the stochasticmultipliers as ameans to diversify
interactions across scales in the same two-daughter frame-
work. Having only two parameters 𝜇 and𝜎, additive Gaussian
white noise offers a simple parameter space for manipulating
stochastic multipliers. We defined each new generation 𝑗 of
every cascade with 𝑛𝑗multipliers independently by randomly
selecting 𝑛𝑗 from a Gaussian distribution with 𝜇 = 1.
We manipulate the multipliers solely on a between-cascade
basis; for example, each cascade will unfold from a process
involving multipliers that have the same standard deviation𝜎 across all generations (Figure 2). More elaborate cascade
architectures with more free parameters for defining stochas-
tic multipliers might accomplish a similar or even stronger
heterogeneity of interactions across scales, but we seek
only an existence proof that diversification of interactions
across scales will move the distribution of multifractal results

significantly much from 𝑤Surr < 𝑤Orig towards 0 < 𝑤Orig <𝑤Surr. We predict that cascades generated with greater 𝜎 will
have a diversity of interactions across scales sufficient to yield
a significant increase in series with narrower multifractal
spectra than those for corresponding series.

2. Methods

2.1. Generating Simulation Data. We manipulated 𝜎 to
increase from 0.1 to 1.1, incrementing 𝜎 by 0.05 and simu-
lating 200 cascade 12-generation series for each value of 𝜎.
In order to control for changes in magnitude with larger 𝜎
after iterating 12 generations, we normalized all final series
to have mean 10 and standard deviation 1. This final step of
normalizing the series to have the same mean and standard
deviation entails the notion that the statistical distribution of
generated time series is not related to the 𝜎 parameter. In
other words, for all levels of 𝜎, the generated series all have
the same mean and standard deviation.

Other literature on multifractal analysis often uses much
longer series [7, 12]. However, our work aims to address
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questions about findings appearing in behavioral-science
research that draws on multifractal analysis. A frequent
constraint of behavioral-science research is shorter series of
length much closer to 212 [1]. Hence, our choice of series
length was explicitly intended for an attempt to explain what
may drive multifractal results in series of this size. However,
to test whether significantly negative 𝑡MF (i.e., 0 < 𝑤Orig <𝑤Surr) might be spuriously due to finite-size constraints on
the results of multifractal analysis (e.g., [13]), we drew a
sample of series from a previously published dataset [22] for
which the average series length was a little more than 216.
We used only those 36 series greater than length of 216. We
do not detail the collection of these series because we only
use these series to confirm whether sufficient length makes
significantly negative 𝑡MF (i.e., 0 < 𝑤Orig < 𝑤Surr) impossible.

2.2. Multifractal Analysis: MF-DFA Algorithm. MF-DFA
integrates a time series𝑢(𝑡)of length𝑁 to construct trajectory𝑦(𝑡), as follows:

𝑦 (𝑡) = 𝑡∑
𝑖=1

𝑢 (𝑖) . (1)

Linear fits �̂�(𝑡) to 𝑦(𝑡) over nonoverlapping windows of
length 𝑛, 4 ≤ 𝑛 ≤ 𝑁/4, leave residuals contributing to RMS
fluctuation statistic 𝐹(𝑛, 𝑞) growing according to exponent𝛼(𝑞), estimated from 𝐹(𝑛, 𝑞)/𝑛 on double-logarithmic axes:

𝐹 (𝑛, 𝑞) = ( 1𝑁
𝑁∑
𝑖=1

[(𝑦 (𝑖) − �̂�𝑛 (𝑖))2]𝑞/2)
1/𝑞

𝐹 (𝑛, 𝑞) ∼ 𝑛𝛼(𝑞)
log𝐹 (𝑛, 𝑞) ∼ 𝛼 (𝑞) log 𝑛.

(2)

A Legendre transformation derives multifractal spectrum(ℎ, 𝐷(ℎ)), as
ℎ = 𝛼 (𝑞) + 𝑞�̇� (𝑞)

𝐷 (ℎ) = 𝑞 [ℎ − 𝛼 (𝑞)] + 1, (3)

where �̇�(𝑞) is 𝑑𝛼(𝑞)/𝑑𝑞. ℎmax–ℎmin is multifractal-spectrum
width 𝑤 according to MF-DFA [2]. We tested −20 ≤ 𝑞 ≤ 20
and included only 𝛼(𝑞) for which double-log-scaled 𝐹(𝑛, 𝑞)/𝑛
was linear, 𝑟 > 0.95.
2.3. Multifractal Analysis: Chhabra and Jensen (CJ) Algorithm.
Chhabra and Jensen’s (CJ) [23] canonical “direct” algorithm
samples measurement series 𝑢(𝑡) at progressively larger
scales. Proportion 𝑃𝑖(𝐿) within bin 𝑖 of scale 𝐿 is

𝑃𝑖 (𝐿) = ∑𝑖𝐿𝑘=(𝑖−1)𝐿+1 𝑢 (𝑘)∑𝑢 (𝑡) . (4)

CJ method estimates 𝑃(𝐿) for 𝑁𝐿 nonoverlapping 𝐿-sized
bins of 𝑢(𝑡) using parameter 𝑞 to translate them into mass𝜇𝑖(𝑞, 𝐿):

𝜇𝑖𝑗 (𝑞, 𝐿𝑗) = [𝑃𝑖𝑗 (𝐿𝑗)]𝑞
∑𝑁𝑗𝑖=1 [𝑃𝑖𝑗 (𝐿𝑗)]𝑞 . (5)

For each 𝑞, each estimated 𝛼(𝑞) appears in the multifractal
spectrum only when Shannon entropy of 𝜇(𝑞, 𝐿) scales with𝐿 according to the Hausdorff dimension 𝑓(𝑞), where

𝑓 (𝛼 (𝑞)) = − lim
𝑁𝑗→∞

∑𝑁𝑗𝑖=1 𝜇𝑖𝑗 (𝑞, 𝐿𝑗) ln [𝜇𝑖𝑗 (𝑞, 𝐿𝑗)]
ln𝑁𝑗

𝑓 (𝛼 (𝑞)) = lim
𝐿𝑗→0

∑𝑁𝑗𝑖=1 𝜇𝑖𝑗 (𝑞, 𝐿𝑗) ln [𝜇𝑖𝑗 (𝑞, 𝐿𝑗)]
ln 𝐿𝑗

(6)

and where

𝛼 (𝑞) = − lim
𝑁𝑗→∞

∑𝑁𝑗𝑖=1 𝜇𝑖𝑗 (𝑞, 𝐿𝑗) ln [𝑃𝑖𝑗 (𝐿𝑗)]
ln𝑁𝑗

𝛼 (𝑞) = lim
𝐿𝑗→0

∑𝑁𝑗𝑖=1 𝜇𝑖𝑗 (𝑞, 𝐿𝑗) ln [𝑃𝑖𝑗 (𝐿𝑗)]
ln 𝐿𝑗 .

(7)

For −300 ≤ 𝑞 ≤ 300 and including only linear relationships
with correlation coefficient 𝑟 > 0.995 for (6) and (7), the
generally single-humped curve (𝛼(𝑞), 𝑓(𝑞)) is the multifrac-
tal spectrum. 𝛼max–𝛼min is multifractal-spectrum width 𝑤
according to the CJ algorithm.

2.4. Calculating 𝑡𝑀𝐹 from Comparison to Iterated Amplitude
Adjusted Fourier-Transform Surrogates. 50 IAAFT surrogates
were produced for each original simulation series, using
1000 iterations of randomizing the phase spectrum from the
Fourier transform, taking the inverse-Fourier transform of
the original series’ amplitude spectrum with the randomized
phase spectrum, and replacing the inverse-Fourier series with
rank-matched values of the original series. We calculated𝑡MF as the difference (𝑤Orig − (1/50)∑50𝑖=1 𝑤Surr(𝑖)) divided
by the standard error of 𝑤Surr. Hence, positive or negative𝑡MF indicated wider or narrower, respectively, spectra than
surrogates. We evaluated significance at the 𝑝 < 0.05 level.

Cascades are implicated most directly in nonlinear corre-
lations that appear only partially reflected in the phase spec-
trum of the Fourier transform, but cascades are not necessary
to generate the linear correlations specified by the Fourier
transform’s amplitude spectrum. Hence, the most rigorous
test for identifying cascade processes frommultifractal results
does require the sample of IAAFT surrogates to preserve both
probability distribution function (PDF) and linear correla-
tions [13]. If we were to generate surrogates only by shuffling,
that might preserve the PDF but it would not preserve linear
correlations, and, in this case, our actual null hypothesis of no
cascade-driven nonlinear correlations would be confounded
with the null hypothesis of no linear correlations. There may
be ample reason to test against the null hypothesis of cor-
relations both linear and nonlinear, but, given that demon-
strating cascade-driven origins requires specifically and only
nonlinear interactions, then we have no reason to omit linear
correlations as an important part of the null hypothesis.

2.5. Regression of Counts for Negative 𝑡𝑀𝐹. We modeled
the change in frequency of significantly negative 𝑡MF using
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ordinary least-squares (OLS) regression, fitting a linear term
for 𝜎 to estimate the effect of incrementing the standard
deviation of multipliers, an intercept term for𝐴CJ to estimate
the average difference of 𝑡MF as calculated by the CJ algorithm
rather than the MF-DFA algorithm, and an interaction term𝜎×𝐴CJ to estimate any differences of 𝑡MF calculated by the CJ
algorithm in response to incrementing 𝜎.
2.6. Regression of Rank Ordering of All 𝑡-Tests. Again using
OLS regression, wemodeled the change in these distributions
with increasing 𝜎 by fitting all 𝑡MF values as a negative cubic
function of rank order,

𝑡MF ∼ 3∑
𝑖=0

𝐵rank𝑖 × rank (𝑡MF)𝑖 , (8)

from the highest to the lowest (i.e., most positive to most
negative) values of 𝑡MF, where 𝐵rank is a vector of four
regression weights addressing the intercept as well as the
linear, quadratic, and cubic components of the third-order
polynomial. Visual inspection of rank-ordered 𝑡MF indicated
that the extreme values on either side of the medians of
these distributions were relatively rare, and most values
clustered around the median. Cubic approximations are apt
formodeling rank-ordered values with these features because
the derivative of cubic functions approaches zero near the
median values of 𝑡MF and increases (or decreases for the neg-
ative cubic) at an increasing rate on either side of the origin.
We did not explicitly force the cubic term of the regression
model to take a negative value. We submitted ranked 𝑡MF to
a regression model with orthogonalized polynomial terms
to ensure that the intercept and linear, quadratic, and cubic
terms would not be collinear.

We sought to test whether 𝜎 significantly changed the
form of the function fit in (8) across all simulations; for
example,

𝑡MF ∼ 3∑
𝑖=0

𝐵rank𝑖 × rank (𝑡MF)𝑖 + 3∑
𝑖=0

𝐵𝜎×rank𝑖𝜎
× rank (𝑡MF)𝑖 ,

(9)

where, comparable to 𝐵rank introduced in (8), coefficient𝐵𝜎×rank is a vector of regression weights addressing how the
intercept as well as the linear, quadratic, and cubic compo-
nents of the third-order polynomial changes in ranked 𝑡MF
with 𝜎. We simultaneously model this cubic relation for 𝑡MF
calculated using both multifractal algorithms, fitting addi-
tional but analogous terms 𝐵rank×CJ and 𝐵𝜎×rank×CJ to model
the difference of 𝑡MF between the CJ algorithm and the MF-
DFA algorithm.

3. Results

3.1. Increasing 𝜎 Increased the Number of Spectra Significantly
Narrower Than Corresponding Surrogates. Figure 3 depicts
the observed frequencies of significantly negative 𝑡MF for each
simulated value of 𝜎. Ordinary least-squares (OLS) regres-
sion demonstrated that increasing standard deviation 𝜎 of the

Table 1: Coefficients from regression modeling the frequency of
significantly negative 𝑡MF.

Predictor B SE 𝑝
Intercept 65.76 5.45 <0.0001𝜎 37.14 8.11 <0.0001𝐴CJ 23.50 7.71 <0.01𝜎 × 𝐴CJ −25.27 11.46 <0.05
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Figure 3: Counts of significantly negative 𝑡MF for each 𝜎, according
to MF-DFA and by CJ algorithms.

multipliers generating the cascades led to an increase in the
number of significantly negative 𝑡MF. Specifically, the coeffi-
cient in Table 1 for 𝜎 of 37.14 indicates that increasing 𝜎 of
the multipliers by 1 would produce approximately 37 new sig-
nificantly negative values of 𝑡MF. Because we incremented 𝜎
by 0.05 for each successive simulation, this coefficient means
that, on average, each successive simulationwith 0.05-greater𝜎 produced about 1.86 ≈ 2 new negative values of 𝑡MF. That
amounts to 2 new series, with each incrementing of𝜎 by 0.05,
for which 0 < 𝑤Orig < 𝑤Surr.

Additional features of the OLS model in Table 1 address
the differences by multifractal algorithm. We had applied
both MF-DFA and CJ’s direct-canonical algorithms. The
significant effect of 𝐴CJ (𝐵 = 23.50, SE = 7.71, 𝑝 < 0.0001)
indicates that the significantly negative values of 𝑡MF were ini-
tially more frequent for multifractal spectra calculated using
the CJ algorithm. The effect of 𝜎 (𝐵 = 37.14, SE = 6.98, 𝑝 <0.0001) indicated that the number of negative 𝑡MF increased
significantlywith the increase in𝜎, by roughly (37.14 × 0.05 =
1.86 ≈) 2 new multifractal spectra in each new simulation
with .05 increment in 𝜎. The significant interaction term for𝜎×𝐴CJ (𝐵 = −25.27, SE = 11.46, 𝑝 < 0.0001) indicates that the
frequency of significantly negative 𝑡MF increased much more
slowly for multifractal spectra calculated using the CJ algo-
rithm. This slower increase entailed the notion that, for each
new simulation incrementing 𝜎 by 0.05, the average increase
in number of significantly negative 𝑡MF is practically negli-
gible (37.14 × 0.05 − 25.27 × 0.05 = 0.5935 ≈ 1).
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Table 2: Coefficients from regression modeling the entire distribution of 𝑡MF.

Predictor B SE p
Intercept 13.35 0.34 <0.0001𝜎 −9.48 0.50 <0.0001𝐴CJ −13.83 0.47 <0.0001𝜎 × 𝐴CJ 7.90 0.71 <0.0001
Rank (linear) −1893.25 30.92 <0.0001
Rank (quadratic) 1136.95 30.92 <0.0001
Rank (cubic) −806.96 30.92 <0.0001𝜎 × rank (linear) 785.13 46.00 <0.0001𝜎 × rank (quadratic) −430.98 46.00 <0.0001𝜎 × rank (cubic) 315.75 46.00 <0.0001𝐴CJ × rank (linear) 1141.30 43.72 <0.0001𝐴CJ × rank (quadratic) −1080.71 43.72 <0.0001𝐴CJ × rank (cubic) 653.20 43.72 <0.0001𝜎 × 𝐴CJ × rank (linear) −708.45 65.06 <0.0001𝜎 × 𝐴CJ × rank (quadratic) 354.30 65.06 <0.0001𝜎 × 𝐴CJ × rank (cubic) −426.51 65.06 <0.0001
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Figure 4: Rank-ordered 𝑡MF according to CJ algorithm for each 𝜎.

3.2. Increasing 𝜎Moved and Reshaped the Entire Distribution
of 𝑡𝑀𝐹 for Spectra Calculated Using MF-DFA but Less So for
Spectra Calculated Using the CJ Algorithm. Figures 4 and 5
depict both distributions of 𝑡MF, with these statistics appear-
ing for spectra calculated usingMF-DFA and CJ, respectively.
Table 2 contains all individual coefficients from the model
described above in (9) and subsequent interactions.

3.3. Intercept Terms ShowThat Incrementing 𝜎Drives Changes
in Median 𝑡𝑀𝐹 for MF-DFA Algorithm but Slower Changes
in Median 𝑡𝑀𝐹 for CJ Algorithm. Intercept effects in this
model address the predicted median 𝑡MF. Increasing 𝜎 led to
a significant reduction (𝐵 = −9.48, SE = 0.50, 𝑝 < 0.0001) in
intercept, suggesting that the median value of 𝑡MF calculated
usingMF-DFAdecreased by roughly (9.48×0.05 =) 0.47 with
each increment of 0.05 in 𝜎. Themodel’s significant intercept
(𝐵 = 13.34, SE = 0.34, 𝑝 < 0.0001) indicated that the median
value of 𝑡MF calculated using the MF-DFA algorithm on 𝜎 =0.1 cascades algorithmwas roughly (13.34−9.48×0.1 =) 12.39.
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Figure 5: Rank-ordered 𝑡MF according to MF-DFA algorithm for
each 𝜎.

The significant intercept effect for𝐴CJ (𝐵 = −13.83, SE = 0.47,𝑝 < 0.0001) indicated that the median 𝑡MF calculated using
the CJ algorithm is statistically not different from zero (i.e.,13.34−13.83 = −0.49).The significant interaction for 𝜎×𝐴CJ
(𝐵 = 7.90, SE = 0.71, 𝑝 < 0.0001) indicated an increase in𝑡MF calculated using CJ with the increase in 𝜎, counteracting
the foregoing negative effect of 𝜎 indicating decreases in𝑡MF calculated using MF-DFA. With each 0.05 incrementing
of 𝜎, whereas median 𝑡MF calculated using the MF-DFA
algorithm decreased by 0.47, median 𝑡MF calculated using the
CJ algorithm decreases by (−9.48× 0.05+ 7.90× 0.05 =) 0.08.
3.4. First- through Third-Order Polynomial Terms Show 𝜎-
Dependence of the Entire 𝑡𝑀𝐹 Distribution for MF-DFA
Algorithm but Less for CJ Algorithm. Beyond effects on the
predicted median value of 𝑡MF all indicated by the intercept
terms above, regression modeling confirmed the suitability
of a cubic approximation of the entire distributions of ranked
values of 𝑡MF. The regression model yielded an adjusted
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𝑅2 of 0.72, indicating that this model predicted 72% of the
variability in 𝑡MF, and as Table 2 shows, all individual effects
were significant, 𝑝 < 0.0001. The basic form of the cubic
approximation involved a negative cubic term (𝐵 = −806.96,
SE = 30.92, 𝑝 < 0.0001), a positive quadratic term (𝐵 =1136.95, SE = 30.92, 𝑝 < 0.0001), and a negative linear term
(𝐵 = −1893.26, SE = 30.92,𝑝 < 0.0001).The effect of increas-
ing 𝜎 served to counteract each component of the basic third-
order polynomial (e.g., positive linear and negative quadratic
terms, 𝐵𝑠 = 785.13 and −430.98, both SEs = 46.00, both 𝑝s <0.0001), with the strongest counteraction of this polynomial
by 𝜎 being a positive cubic term (𝐵 = 315.75, SE = 46.00,𝑝 < 0.0001). The interactions of these first- through third-
order polynomial terms with 𝐴CJ and with 𝜎 × 𝐴CJ followed
were of slightly smaller absolute value but opposite sign of all
coefficients corresponding to the linear, quadratic, and cubic
terms. These significant but oppositely signed terms indicate
that the values of 𝑡MF calculated using the CJ algorithm
exhibited a similarly cubic term but dramatically less of any
change with 𝜎 in the shape of the distribution.

Finite-size effect does not explain negative 𝑡MF because
longer series do not show any diminishing of frequency of
negative 𝑡MF (i.e., 0 < 𝑤Orig < 𝑤Surr). From the 36 series
from [22] with length greater than 216, only 12 of these series
yielded significantly wider spectra than their corresponding
surrogates, two series were not significantly different, and the
remaining 61% of the series yielded significantly narrower
spectra than their corresponding surrogates. Against the
possibility that therewas a systematic change in the frequency
of negative 𝑡MF with greater length, we found no linear
relationship of resulting 𝑡 statistic with length, 𝑟 = 0.014142.
4. Discussion

We hypothesized that cascades with stochastic multipliers
defined as additive white Gaussian noise would producemul-
tifractal spectra significantly narrower than those calculated
for their corresponding surrogates. We further hypothesized
that increasing the standard deviation 𝜎 of stochastic mul-
tipliers would increase the number of spectra significantly
narrower than for their corresponding surrogates. Results
supported this hypothesis, with a greater increase in the num-
ber of these narrower-than-surrogates spectra for which 0 <𝑤Orig < 𝑤Surr as calculated by MF-DFA rather than by the CJ
algorithm. The effect of greater standard deviation 𝜎 for the
stochastic multipliers served not only to change the number
of significantly narrower-than-surrogate spectra but also to
foster broader migration of the entire distribution of spectra
to be narrower than those for corresponding surrogates.

The present work is only a preliminary existence proof in
whatmight be a larger program of cascade simulationmanip-
ulating a broader set of parameters. However, we have shown
that it does not require elaborate parametrization to produce
cascades giving rise to progressively narrower spectra than for
corresponding surrogates 0 < 𝑤Orig < 𝑤Surr. It is sufficient
to introduce stochastic multipliers defined for entire gener-
ations into the relatively simple cascade form in which each
parent cell gives rise to two daughters in the next generation.

Rather thanmultifractal analysis only providing a dichot-
omous diagnosis of cascade structure, the direction of the𝑤Orig ̸= 𝑤Surr difference might indicate continuous differ-
ences in the form of the cascade’s interactions across scales.
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