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A cost optimization strategy and a robust control strategy were studied to realize the low-cost robust operation of the supply chain
with lead times. Firstly, for the multiple production lead times which existed in the supply chain, a corresponding inventory state
model and a supply chain cost model were constructed based on the Takagi-Sugeno fuzzy control system. Then, by considering
the actual inventory level, the lead-time compression cost, and the stock-out cost, a cost optimization strategy was proposed.
Furthermore, a fuzzy robust control strategy was proposed to realize the flexible switching among the models. Finally, the simulation
results show that the total cost of the supply chain could be reduced effectively by the cost optimization strategy, and the stable

operation of the supply chain could be realized by the proposed fuzzy robust control strategy.

1. Introduction

With the application of information technology and the
intensification of global competition, price plays an increas-
ingly important role in market competition [1, 2]. In addition,
due to the acceleration of product updates, how to quickly
respond to customers’ demands in a short time has become
a major factor that needs to be considered when enterprises
provide products and services [3, 4]. Therefore, the research
on time management and cost management of supply chain
has been widely concerned by many scholars [5-11]. Many
scholars have studied from the perspective of lead time, that
is, by compressing the lead time to achieve the purpose of
cost reduction. Under the assumption that the lead time was
composed of production time, setup time, and transportation
time, Glock [9] confirmed that a mixture of setup time
and production time reduction can effectively reduce the
expected total costs. For the exponential lead times, Hayya
et al. [11] demonstrated that the lead times reduction can lead
to a reduction in the inventory cost.

The research results of the above literatures have proven
that the cost of the supply chain can be reduced to a
certain extent by compressing the lead time. However, when
the inventory level is less than 0, none of literatures have
considered using the lower stock-out cost to replace the
higher lead-time compression cost. Therefore, it is necessary
to determine whether to compress the lead time according
to the actual situation. In addition, the above literatures did
not take into account the robustness of the supply chain
system after compressing the lead time. In order to improve
the robustness of the system, some scholars have applied the
robust control method and the robust optimization method
[12-19]. For a class of discrete systems with multiple delays
and disturbances, Teng et al. [12] proposed a Takagi-Sugeno
fuzzy approach to achieve the robustness of model predictive
control. Compared with most of the existing methods for 3D
path following, the robust fuzzy control scheme proposed
by Xiang et al. [14] can be more effective in reducing the
implementation costs of complicated dynamics controller
and environmental disturbances. By taking account of the
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location effect, dispersion effect, and model uncertainty of the
multiple responses simultaneously, He et al. [19] developed
a robust fuzzy programming approach to solve the multiple
responses optimization problems, which can ensure the
robustness of the system.

Although the above-mentioned literatures have improved
the robustness of the supply chain system after the application
of the robust method, the literatures did not take into account
the fact that the node enterprises of the supply chain will take
the corresponding production strategy and ordering strategy
to reduce the total cost of the supply chain system under the
different inventory levels.

Therefore, in this paper, by combining with the produc-
tion and ordering strategies of the node enterprises under
different inventory levels, we will first construct a total
cost model and an inventory model of the supply chain
considering the lead-time compression. What is more, in
order to minimize the total operation cost of the supply chain,
a cost optimization strategy will be proposed by comparing
the lead-time compression cost and the stock-out cost at
different inventory levels. Finally, a fuzzy robust control
strategy is proposed to suppress the disturbances and achieve
the low-cost stable operation of the supply chain system.

This paper is structured as follows: Section 2 constructs
a discrete fuzzy model of the dynamic supply chain system
with lead times and proposes a cost optimization strategy.
In Section 3, a fuzzy robust control strategy for the dynamic
supply chain with lead times is proposed. Section 4 gives
a simulation example to illustrate the effectiveness of the
proposed strategies. Section 5 presents some conclusions.

2. Model Description

2.1. Model of the Compression Cost for Lead Time. In order
to analyze the quantitative relation between the compression
cost and the compression amount for the lead time, we
construct a model of the compression cost for the lead time
as follows:

i—1
¢=¢(t_,—-1)+ ch (bj - aj), T€(r,t,]. (1)
=1

Model (1) adopts the segmental cumulative calculation
method, which starts from the part with the minimum
compression cost, calculates the compression cost of each
independent part of lead times in turn, and adds up the
compression cost of each independent part. In Model (1), ¢,
is the total compression cost of the lead time; 7 is the lead
time existing in each operating sector of the supply chain;
7; is the length of the lead time after compressing one to i
components, i = 1,2,...,n; ¢ is the unit compression cost
of the ith component of the lead time; b, is the standard
operation time of the ith component of the lead time; g; is
the shortest operation time of the ith component of the lead
time after complete compression.

2.2. Model of Dynamic Supply Chain System with Lead Times.
We construct a dynamic supply chain system including n — 1
manufacturers, a retailer, and the customers. The detailed
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constructions of the supply chain system can be seen in
Figure 1.

In Figure 1, x,(k) and x, (k) are the manufacturer a’s
inventory and the retailer’s inventory at period k, respectively;
x,(k) and x,,(k) are the state variables; w, (k) is the customers’
demands at period k; w;(k) is the external disturbance
variable; u,,(k) is the ordering quantity from the retailer to
manufacturer a at period k; u,,(k) is the control variable;
u;(k) is the manufacturer a’s production at period k under
different production strategies, which can be expressed as
follows: (1) u;(k) = u,(k) + u,(k - T;), where u,(k) is the
manufacturer a’s production at period k, u,(k — 7.) is the
manufacturer a’s production within the lead time 7., and 7., is
the initial production lead time; (2) u;(k) = ua(k—‘r;'), where
u,(k —1') is the manufacturer a’s production within the lead
time 7.5 7’ is the compressed production lead time. We will
select one of the different expressions about (k) according
to different circumstances, and the specific selection criteria
can be seen in Note 1.

According to the system structure in Figure 1, the inven-
tory state model and the total cost model of the supply chain
system with lead times can be constructed as follows:

X (k+1) = x, (k) +u, (k) +u, (k=) +u, (k

—T:)—uan(k), a=12,...,n-1,

n—1
X, (k+1) = x, (k) + Y 1y, (k) = w, (K),
! )
n—1
z (k) = Z {Chaxa (k) *+ G [ua (k) T U, (k - TL’l)]
a=1

+ C U, (k - T;,) + gy (K) + Calan (k)}

+ G, (k) S

where z(k) is the total operating cost of the dynamic supply
chain system at period k; ¢, is the manufacturer a’s unit
inventory cost; ¢,, is the manufacturer a’s unit production
cost; ¢, is the manufacturer a’s unit compression cost by
selecting the compression strategy; c,, is the unit ordering
cost from the retailer to manufacturer a; c,,, is the manu-
facturer a’s unit stock-out cost by selecting the out of stock

strategy; ¢, is the retailer’s unit inventory cost.

Note 1. The cost optimization strategy proposed in this paper
includes the following two aspects: (1) The inventory level is
less than the safety inventory: if the lead-time compression
cost is less than the stock-out cost, then the lead time is
compressed, the variables u, (k) and u,(k — T;) do not exist,
and the coefficients ¢,, and c,,, are 0; if not, the lead time is
not compressed, the variable u, (k—T;') does not exist, and the
coefficients ¢, and ¢, are 0; (2) the inventory level is greater
than the safety inventory: the node enterprises can produce
and order the products normally, the variable u,(k — T:) does
not exist, and the coeflicients ¢,, and ¢,,,, are 0.
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FIGURE 1: Dynamic supply chain system with lead times.

In order to reduce the total cost of the supply chain
system, the manufacturer and the retailer will adopt the
corresponding production strategy and ordering strategy
under different inventory levels. Therefore, different submod-
els will be formed in the established supply chain system.
In the following, the ith submodel is obtained by matrix
transformation of Model (2):

2(n-1)
x(k+1)=Ax(k)+Buk)+ Y Byu(k-1,)
a=1
+B,w(k), (3)
2(n-1)

z(k) = Cx (k) +Du(k)+ Y Dyu(k-1,),
a=1

where x(k) = [x,(k),...,x,(k),..., xn(k)]T is the inventory
state vector at period k; u(k) = [u, (k),...,u,(k),...,u,_(k),
Uy, (k), ... ug,(k), . .. ,u(n_l)n(k)]T is the production and

ordering control vector at period k; ul(k - T,) = [ul(k -
ulk - ], uk - 7)) = [uk - 1)), uk -
T;),...,u(,,_l)(k - Tr',_l)]T is the production control vector

within the initial production lead time T;, u(k- T;’) = [u, (k-
T{'),...,uu(k - T;'),...,un_l(k - T:_l)]T is the production
control vector within the compressed production lead time
T;,; w(k) = [0, 0,...,w1(k)]T is the customers demands
vector at period k; A; is the inventory coeflicient matrix; B;
is the production and ordering coefficient matrix; B;, is the
production coeflicient matrix with lead time, ZZ;} B,, is the
production coefficient matrix of #n — 1 manufacturers within

the initial production lead time 7., and Zi(:",; 2 B,, is the

production coefficient matrix of # — 1 manufacturers within
the compressed production lead time ’; B,,; is the uncertain
customers’ demands coefficient matrix of the supply chain
system; C; is the inventory cost coeflicient matrix; D; is
the production and ordering cost coefficient matrix (or the
stock-out cost coeflicient matrix); D,, is the production cost
coefficient matrix with lead time; ¥~} D, is the production
cost coefficient matrix of n — 1 manufacturers within the
initial production lead time 7’; ZZ(:"”_I) D,, is the production
cost coefficient matrix of n — 1 manufacturers within the
compressed production lead time 7.

2.3. Takagi-Sugeno Fuzzy Model of Dynamic Supply Chain
System with Lead Times. As mentioned above, the dynamic
supply chain system with lead times constructed in this paper
contains different submodels. As the inventory level changes,
the switching actions will occur among the submodels, which
will lead to the fluctuations of the variables in the supply chain
system. In order to effectively suppress the fluctuations of
each variable and achieve the flexible switching among the
submodels, by utilizing Takagi-Sugeno fuzzy control system,
the fuzzy control model of dynamic supply chain system with
lead times can be constructed by the following fuzzy IF-
THEN rules: _

R;:if x, (k) is M3, ..
then

- x(k) is M. .., and x,,_, (k) is M, ,,

x(k+1) =Ax (k) + B;u (k)

2(n—-1)
+ Y Byu(k-1,)+B,w(k),

a=1



2(n-1)
z(k) = Cx (k) +Du(k) + Y Dyu(k-1,),
a=1
x(k)=¢(k),

i=1,2,...,r, k€ {0,1,...,N},

(4)

where R; (i = 1,2,...,r) is the ith control rule of the fuzzy
system and r is the number of IF-THEN rules; M; (G =
1,2,...,n — 1) is the fuzzy set; @(k) is the initial condition
of the dynamic supply chain with lead times.

Based on singleton fuzzification, product inference, and
center-average defuzzification, Model (4) can be inferred as
follows:

X(k+ 1) = Yhi (x(0)

i=1

Ax (k) + B;u (k)

2(n-1)

+ Z Biau (k - Ta) + Bwiw (k):| >
a=1

z (k) = ) by (x (k)

i=1

2(n-1)
+ Z Diuu(k—ra)] ,
a=1

C;x (k) + Dju (k)

where hi(x(k)) = p(x(k)/ XL, w(x(K)), pi(x(k))
H” ‘M i(x;(K)), M}(xj(k)) is the grade of membership of
x; (k) in the fuzzy set Mj., u;(x(k)) is the membership degree

of the ith rule, and h;(x(k)) is abbreviated to h; in the
following.

3. Fuzzy Robust Control of Dynamic Supply
Chain System

For the impacts of the lead time and the uncertain external
demands on the operation of the supply chain system, the
fuzzy robust control approach can guarantee the robust stable
operation of the dynamic supply chain system by controlling
the production variables and ordering variables through the
inventory state variables. In this paper, the parameter y is
introduced to represent the suppression degree of the supply
chain system for the above-mentioned disturbances, which
can be expressed as follows:

zh (x (K)) [Cx(k) +Dyu (k) + nZI)Dmu(k . )]
2

Iw ()l ©)

<y,

where || - ||, is I, € [0, 00). Inequality (6) describes the system
gain characteristic from the customers’ demands to the total
cost of the dynamic supply chain. The smaller the parameter
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y is, the stronger the ability of the system to suppress the
disturbances will be.

The local feedback controller for each submodel of the
dynamic supply chain fuzzy system can be designed as
follows. ‘ _

Controller Rule K': if x; (k) is My, . ..

x,_1(k) 1sM _;» then

,x;(k)is M, .., and

u(k) = -Kx(k),

(7)
u (k - Ta) = _Kiax (k - Ta) >

where K; is the state feedback constant gain matrix and K,
is the state feedback constant gain matrix with lead times.
Then, the overall state feedback controller of the supply chain
system can be expressed as follows:

wk) = - YK k),

i=1

r ®)

u(k-1,)= —ZhiKiax (k-1,).

i=1
Thus, (5) can be further expressed as
x(k+1)=Y Y hh; | (A -BK;)x (k)
i=1j=1
2(n-1)
- Z B, K x(k-1,)+B, w(k):|
)

z(k) =Y Y hh;

i=1j=1

2(n—1)
- Z D, K x (k - Ta):| )

(Ci-DK;)x (k)

a=1
Two Definitions are introduced as follows.

Definition 1 (see [20]). A cluster of fuzzy sets {F;”, m =
1,2,...,q,} are said to be a standard fuzzy partition (SFP) in
the universe X if each F]m (m=1,2,...,q;) is full-overlapped
in the universe X. g; is said to be the number of fuzzy
partitions of the jth input variable on X.

Definition 2 (see [20]). For a given fuzzy system, an
overlapped-rules group with the largest amount of rules is
said to be a maximal overlapped-rules group (MORG).

In order to realize the robustly stable operation of the
supply chain fuzzy system (9), the modified Theorem 2
proposed by us in [21] can be seen as follows.

Theorem 3. For the supply chain fuzzy system (9) with lead
times and SFP inputs, if there exists a given scalar y >
0, local common positive definite matrices P, and Q,,., and
matricesK;., K., K., K, in G, such that the following linear

ic> TN jor PNac> N jac
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FIGURE 2: The sketch map of the fuzzy membership functions.

matrix inequalities (LMIs) are satisfied, then the supply chain
fuzzy system (9) is robustly asymptotically stable under the
performance y:

2(n—1)
-P.+ Z Q. = * % %
a=1 e
0 -Q * %
) <0, iel,
0 0 —pTI = =
A;-BK, -II B, -P. =
C,-DK, -II, 0 0 -I]
r 2(n-1) 1 (10)
—4P, +4 ) Q, * x -
a=1 -
0 -4Q * % %
0 0 4T = =
A, - BinC + Aj - BjKiC -®, B, + Bwj -P. x
_C,-—DinC+Cj—D]-K,-C -0, 0 0 -Ij

<0, i<j, i,jel,

where 6 = dlag {Qlc ! Qac QZ(n—l)C}’ Hl

[BilKilc o BiKige - Bi2(n—1)Ki2(n—1)C]) IL, =
DK+ DiKige ~** Dy Kinguye)s @1 = [B;1 Ky +
B; K. - BiKj,e + BiKj B K- +
BjZ(nfl)KiZ(nfl)c]’ D, = [DilKjlc + Dleilc Diquac +

ja*Niac DiZ(n—l)KjZ(n—l)c + Dj2(n—1)Ki2(n—l)c]) Ic is the
set of the rule numbers included in G,, G, denotes the cth
MORG, ¢ = 1,2,...,]_[;':1(mj — 1), and m; is the number of
the fuzzy partitions of the jth input variable.

Proof. The proof processes of Theorem 3 are the same as those
of Theorem 2 in [21]. O

4. Simulation Analysis

In this section, we will select a type of sports shoes supply
chain system with two manufacturers and a retailer as the

simulation object to analyze the effectiveness of the proposed
cost optimization strategy and the fuzzy robust control
strategy.

The semi-trapezoid membership functions are adopted
as the fuzzy membership functions of the two sports shoes
manufacturers in the simulation, which can be seen in
Figure 2.

x, (k) and x, (k) are the inventories of Manufacturer 1 and
Manufacturer 2, respectively; Ff(xl(k)) and F,(x,(k)) (t,s =
1,2) are the fuzzy partitions of x, (k) and x,(k), respectively,
which meet the conditions of SFP; D,,,, is the safety inventory
of Manufacturer I; D,,,, is the expected inventory of Manufac-
turer 1; D,, is the safety inventory of Manufacturer 2; D, is
the expected inventory of Manufacturer 2. Let M| = M; =
Fl, M{ = M{ = F}, M, = M, = F), M; = M; = F,
Dy, = 8, Dy, = 20, D, = 10, and D,, = 25 (x10° pairs).

As can be seen from Figure 2, this sports shoes supply
chain system contains a MORG named S including 4 fuzzy
rules (R}, R,, R;, and R,), and 4 fuzzy rules represent
the different production strategies and ordering strategies
adopted by manufacturers and retailers at different inventory
levels. Tables 1 and 2 show the quantitative relations between
the compression cost and the compression amount of the lead
times for Manufacturer 1 and Manufacturer 2, respectively.
Let ¢, = G, = 1.78 (x10% Yuan). The detailed quantitative
relations can be seen in Tables 1 and 2.

By comparing the stock-out costs data with the data in
Tables 1 and 2, we can see that the lead-time compression
amounts of Manufacturer 1 and Manufacturer 2 reached the
limits of 1.12 days and 0.97 days (i.e., compressing all 4 lead-
time components); the stock-out costs ¢,,,; (1.78) and ,,,,(1.78)
(x10* Yuan) are greater than the cumulative sums of the
compression costs of lead times c,; (1.415) and c,,(1.222) (x10?
Yuan), respectively. Therefore, when the inventory level is
less than 0, according to the cost optimization strategy put
forward in Note 1, both Manufacturer 1 and Manufacturer 2
will choose to compress the lead times to minimize the cost
of the supply chain.
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Through the above analysis, the models of the supply
chain system with lead times can be expressed as

Rl

xp(k+ 1) =u (k-1) —up k),

Xy (k+ 1) =uy (k-13) —ups (K),

x; (k +1) = x5 (k) + 145 (k) + 1y (k) — w, (k)

(11)
z (k) = G35 (k) + cuy (k= 17")
+ ety (k= 13) + cquys (K)
+ Colys (k)
Rz
xy(k+ 1) =uy (k-1) —up k),
Xy (k+1) = x, (k) + 1y (k) + 1y (k= 73) — 15 (K),
X3 (k +1) = x5 (k) + 5 () + 14y (k) — w, (K), .
z (k) = 6%y (K) + G5 (k) + ey (k- 17')
+ G [ty (k) + uy (k= 1,)]
+ iy (K) + cotiyy (k)
R3
xy (k+1) = x, (k) + uy () + uy (k= 1)) = w3 (K),
xy (k+ 1) = xy (k) + 1y (k) + 1y (k= 13) = 5 (K),
x5 (k+ 1) = x5 (k) + 1y (k) + 15 (k) — wy (k)
2 (k) = Gux, (K) + 6%, (K) + Gax5 (k) (13)
+ G [ty () + 1y (k—17)]
+ G [ty () + 11y (k= 13)]
+cttys (k) + Cotiys (K)
R4
xy (k+1) = x; (k) +uy (k) +uy (k=1)) —uy5 (k)
X (k+ 1) =1, (k=17 ) = ups (K),
X3 (k+ 1) = x5 (k) + 145 (k) + thys (K) — w, (K),
2 (k) = g, (k) + Gxs (k) (14)

+ Gy [ul (k) + uy (k - TI,)]
+ ¢l (k - T;I) + ¢y (k)

+ Colys (k).
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The above 4 different fuzzy rules (R;, R,, R;, and R,)
represent the different strategies taken by manufacturers at
different inventory levels. The details of the rules can be
expressed as follows: R;: both Manufacturer 1 and Manufac-
turer 2 take the lead-time compression strategy, that is, the
emergency production of sports shoes; R,: Manufacturer 1
takes the lead-time compression strategy and Manufacturer
2 produces the sports shoes normally; R;: both Manufacturer
1 and Manufacturer 2 produce the sports shoes normally;
R,: Manufacturer 1 produces the sports shoes normally and
Manufacturer 2 takes the lead-time compression strategy. In
the above 4 rules, the retailers can order the sports shoes
normally.

The above supply chain models under the different rules
can be converted into the following Takagi-Sugeno fuzzy
model: ' _

R :if x, (k) is M} and x, (k) is M, then

4
x(k+1)=Yh

i=1

Ax (k) + B;u (k)

2x(3-1)
+ Z Biau (k - Ta) + Bwiw (k):| >
a=1

) (15)
z(k)=Yh

i=1

2x(3-1)
+ Z D,»au(k—ra)] .

a=1

Cix (k) + D,u (k)

Based on the above Takagi-Sugeno fuzzy model, the fuzzy
state feedback controller of the system can be designed as
follows: 4 '

K':if x, (k) is M and x, (k) is M}, then

4
u(k) = -y hK;x k),

i=1

4
u, (k - T{) = _ZhiKmX (k - T{) ,

i=1

4
u, (k - T;) = —ZhiKmx (k - TZ') , (16)

i=1

4
u, (k - T{’) = _ZhiKle (k - T{,) ,
i=1

4
w,(k-1)) ==Y hKyx(k-1,).
i=1

Based on the actual operating data, all parameters are set
as follows:

Gn = 0015 (x10% Yuan),

G = 0018 (x10” Yuan),
¢ = 0.020 (><102 Yuan) ,

G =110 (x10* Yuan),
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G =120 (x10* Yuan), 700007
B,=B,=[0100],
¢ =125 (><102 Yuan), 22 32
(000 0]
¢, = 1.40 (x10* Yuan),
* ( ) 00 107
2
Cp1 = Cma = 1.78 (><10 Yuan), B,=B,,=[0000],
¢y = 1415 (x10% Yuan), (000 0]
¢y = 1222 (x10° Yuan), 000 07
B,,=B,=[0000],
r 00 33 43
(000 0]
A = 0,
i 1] 7000 0]
"0 0 01 B,=B,=[000 1],
A, = 10/, (000 0]
[0 0 1] 7000 07
(10 07 B,,=B,, =000 0],
A, = 10/, (000 0]
[0 0 1] 00 0
1 ] BlUI:BLUZ:BLU3=BU)4= 000 >
A,=|000], 00 -1
1
] ) C,=[0 0 gz,
i -1 0 S ]
= Gy Gnl,
B1= 0 -1 , 2 h2 “h3
L 1 1] Cs=[Gn G Gl
00 -1 0] Cy =l 0 gsl,
Bz— 1 0 _1 > DI:[O 0 Csl Csz],
00 1 1]
- D,=[0 ¢, ¢y ¢,
(10 -1 0
B,=|01 0 -1}, D; = [y 6o € ol
00 1 1] D4—[5105s1 CSZ]’
[10 -1 0] D, =D,;=[0 0 0 0],
B, = 0 -1|,
=D 00 0],
L 1 1- 31 41 [1 ]
) i D,=D,=[0 0 0 0],
B,=B,,=[0000], Dy =Dy =[0 ¢, 0 0],
L0000 D;; =D, =[0 0 ¢; 0],
1 .
Dy; =D, =0 0 0 0],
B;, =B, = >
D14:D44:[0 00 Crz]’
(000 0] D,, =Dy =[0 0 0 0],
B,=B,=[0000], y = 0.95.
L0 OO0 0] (17)




10
s 120 T T T
2 Manufacturer 1’s inventory
§ Manufacturer 2’s inventory
5, 100 } / .
5 —
tailer’s inventory
g K -
% Fo ) U P L. S ————— i~ E
>
L
B~
5 60 g
=
5
>
g 40 L L L L L L L
=
0 1 2 3 4 5 6 7 8 9 10

Period k (hour)

FIGURE 3: Evolution processes of inventories with cost optimization
strategy (x10° pairs).
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FIGURE 4: Evolution processes of productions and ordering quanti-
ties with cost optimization strategy (x10> pairs).

By solving the inequalities (10) in Theorem 3, we can get
the following results:

62.2597 0.0149 0.0663

P, = 0.0149 62.2581 0.0637 |,
0.0663 0.0637 62.5223
Qi =Q =Q35 =Qy (18)

12.4471 -0.0001 -0.0003
=|-0.0001 12.4471 -0.0003
—0.0003 -0.0003 12.4460

The above results satisfy the robust stability conditions of
Theorem 3, so we know that the supply chain system with lead
times is robustly stable. In addition, the supply chain system
is described by the actual values; that is, the simulation results
are equal to the deviation values plus the normal values. Let
the initial values be x,(0) = -2, x,(0) = -3, and x5(0) = 4
(x10° pairs); the normal values be 71(k) = 105, 72(k)
95, X;(k) = 85, U, (k) = 110, u,(k) = 98, U ;(k)
90, and U,3(k) = 80 (x10° pairs). Suppose the customers’
demands follow the normal distribution disturbance, that is,
w,(k) ~ N(6, 0.8%). The simulation results are shown in
Figures 3-6, where Figures 3-5 show the simulation results of
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FIGURE 5: Evolution process of total cost with cost optimization
strategy (x10° Yuan).
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FIGURE 6: Evolution process of total cost without cost optimization
strategy (x10° Yuan).

the inventory levels, the productions, the ordering quantities,
and the total cost with the cost optimization strategy, and
Figure 6 shows the simulation result of the total cost without
the cost optimization strategy.

It can be seen from Figures 3-6 that the fuzzy robust
control strategy proposed in this paper makes the state
variables, control variables, and total cost fluctuate in a small
range and ensures the stable operation of the whole system.
According to Note 1, the total cost of the supply chain with
the cost optimization strategy can be expressed as z(k) =
Z;’;i {enax, (k) +cqu, (k- ‘r:) + CoqUn (K)} + 6%, (k), while the
total cost of the supply chain without the cost optimization
strategy can be expressed as z(k) = ZZ: {eax,(K)+c 1, (k) +
gk = )] + Cpathan(K)} + Gy, (). Therefore, it can be seen
from the comparison between Figures 5 and 6 that the cost
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optimization strategy adopted in different inventory levels
can effectively reduce the total cost of the supply chain system.

5. Conclusion

In this paper, we have constructed a dynamic supply chain
model with lead times in consideration of the inventory
levels, production strategy, ordering strategy, lead-time com-
pression cost, stock-out cost, and customers’ demands in
supply chain node enterprises and proposed the cost opti-
mization strategy and the fuzzy robust control strategy for
the dynamic model. Through the comparison and analysis
of the simulation results, we get the following conclusions:
(1) compared to the supply chain without the cost optimiza-
tion strategy, the supply chain with the cost optimization
strategy can reduce the total cost of the supply chain system
effectively; (2) the proposed fuzzy robust control strategy
can effectively suppress the impacts of the external stochastic
demands and lead time disturbances on the supply chain
system and guarantee the stable operation of the supply chain
system.
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