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We propose here a multiplex network approach to investigate simultaneously different types of dependency in complex datasets.
In particular, we consider multiplex networks made of four layers corresponding, respectively, to linear, nonlinear, tail, and partial
correlations among a set of financial time series. We construct the sparse graph on each layer using a standard network filtering
procedure, and we then analyse the structural properties of the obtained multiplex networks. The study of the time evolution of
the multiplex constructed from financial data uncovers important changes in intrinsically multiplex properties of the network, and
such changes are associated with periods of financial stress.We observe that some features are unique to themultiplex structure and
would not be visible otherwise by the separate analysis of the single-layer networks corresponding to each dependency measure.

1. Introduction

In the last decade, network theory has been extensively
applied to the analysis of financial markets. Financial markets
and complex systems in general are comprised of many inter-
acting elements, and understanding their dependency struc-
ture and its evolution with time is essential to capture the col-
lective behaviour of these systems, to identify the emergence
of critical states, and tomitigate systemic risk arising from the
simultaneous movement of several factors. Network filtering
is a powerful instrument to associate a sparse network to
a high-dimensional dependency measure and the analysis
of the structure of such a network can uncover important
insights on the collective properties of the underlying system.
Following the line first traced by the preliminary work of
Mantegna [1], a set of time series associated with financial
asset values is mapped into a sparse complex network whose
nodes are the assets and whose weighted links represent
the dependencies between the corresponding time series.
Filtering correlation matrices has been proven to be very
useful for the study and characterisation of the underlying

interdependency structure of complex datasets [1–5]. Indeed,
sparsity allows filtering out noise, and sparse networks can
then be analysed by using standard tools and indicators
proposed in complex networks theory to investigate the
multivariate properties of the dataset [6, 7]. Further, the
filtered network can be used as a sparse inference structure to
construct meaningful and computationally efficient predic-
tive models [7, 8].

Complex systems are often characterised by nonlinear
forms of dependency between the variables, which are hard
to capture with a single measure and are hard to map into a
single filtered network. Amultiplex network approach, which
considers the multilayer structure of a system in a consis-
tent way, is thus a natural and powerful way to take into
account simultaneously several distinct kinds of dependency.
Dependencies among financial time series can be described
by means of different measures, each one having its own
advantages and drawbacks, and this has led to the study of
different types of networks, namely, correlation networks,
causality networks, and so on. The most common approach
uses Pearson correlation coefficient to define the weight of a
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link, because this is a quantity that can be easily and quickly
computed. However, the Pearson coefficient measures the
linear correlation between two time series [9], and this
is quite a severe limitation, since nonlinearity has been
shown to be an important feature of financial markets [10].
Other measures can provide equally informative pictures
on assets relationships. For instance, the Kendall correlation
coefficient takes into accountmonotonic nonlinearity [11, 12],
while other measures, such as the Tail dependence, quantify
dependence in extreme events. It is therefore important to
describe quantitatively how these alternative descriptions are
related but also differ from the Pearson correlation coefficient
and also to monitor how these differences change in time, if
at all.

In this work we exploit the power of a multiplex approach
to analyse simultaneously different kinds of dependencies
among financial time series.The theory of multiplex network
is a recently introduced framework that allows describing
real-world complex systems consisting of units connected by
relationships of different kinds as networks with many layers,
where the links at each layer represent a different type of
interaction between the same set of nodes [13, 14]. A mul-
tiplex network approach, combined with network filtering,
is the ideal framework to investigate the interplay between
linear, nonlinear, and Tail dependencies, as it is specifically
designed to take into account the peculiarity of the patterns
of connections at each of the layers but also to describe the
intricate relations between the different layers [15].

The idea of analysing multiple layers of interaction was
introduced initially in the context of social networks, within
the theory of frame analysis [16]. The importance of consid-
ering multiple types of human interactions has been more
recently demonstrated in different social networks, from
terrorist organizations [14] to online communities; in all these
cases, multilayer analyses unveil a rich topological structure
[17], outperforming single-layer analyses in terms of network
modeling and prediction as well [18, 19]. In particular, mul-
tilayer community detection in social networks has been
shown to be more effective than single-layer approaches [20];
similar results have been reported for community detection
on the World Wide Web [21, 22] and citation networks
[23]. For instance, in the context of electrical power grids,
multilayer analyses have provided important insight into the
role of synchronization in triggering cascading failures [24,
25]. Similarly, the analyses on transport networks have high-
lighted the importance of a multilayer approach to optimize
the system against nodes failures, such as flights cancellation
[26]. In the context of economic networks, multiplex analyses
have been applied to study the World Trade Web [27].
Moreover, they have been extensively used in the context of
systemic risk, where graphs are used to model interbank and
credit networks [28, 29].

Here, we extend the multiplex approach to financial
market time series, with the purpose of analysing the role
of different measures of dependencies, namely, the Pearson,
Kendall, Tail, and Partial correlation. In particular we con-
sider the so-called Planar Maximally Filtered Graph (PMFG)
[2–4, 7] as filtering procedure to each of the four layers. For
each of the four unfiltered dependence matrices, the PMFG

filtering starts from the fully connected graph and uses a
greedy procedure to obtain a planar graph that connects all
the nodes and has the largest sumofweights [3, 4].ThePMFG
is able to retain a higher number of links, and therefore a
larger amount of information, than the Minimum Spanning
Tree (MST) and can be seen as a generalization of the latter
which is always contained as a proper subgraph [2]. The
topological structures of MST and PMFG have been shown
to provide meaningful economic and financial information
[30–34] that can be exploited for risk monitoring [35–37]
and asset allocation [38, 39]. The advantage of adopting a
filtering procedure is not only in the reduction of noise and
dimensionality but more importantly in the possibility of
generating sparse networks, as sparsity is a requirement for
most of the multiplex network measures that will be used in
this paper [14]. Other kinds of filtering procedures, includ-
ing thresholding based methods [35, 40], could have been
considered. However, PMFG has the advantage to produce
networks with fixed a priori (3𝑁 − 6) number of links
that make the comparison between layers and across time
windows easier. It is worth mentioning that the filtering
of the Partial correlation layer requires an adaptation of
the PMFG algorithm to deal with asymmetric relations. We
have followed the approach suggested in [41] that rules out
double links between nodes. The obtained planar graph
corresponding to Partial correlations has been then converted
into an undirected graph and included in the multiplex.

2. Results

2.1. Multiplex Network of Financial Stocks. We have con-
structed a time-varying multiplex network with𝑀 = 4 layers
and a varying number of nodes. Nodes represent stocks,
selected from a dataset of 𝑁tot = 1004 US stocks which have
appeared at least once in S&P500 in the period between
03/01/1993 and 26/02/2015. The period under study has been
divided into 200 rolling time windows, each of 𝜃 = 1000
trading days. The network at time 𝑇 = 1, 2, . . . , 200 can
be described by the adjacency matrix 𝑎𝛼𝑖𝑗(𝑇), with 𝑖, 𝑗 =1, . . . , 𝑁(𝑇) and 𝛼 = 1, 2, 3, 4. The network at time window𝑇 has 𝑁(𝑇) < 𝑁tot nodes, representing those stocks which
were continuously traded in timewindow𝑇.The links at each
of the four layers are constructed bymeans of the PMFG pro-
cedure fromPearson, Kendall, Tail, and Partial dependencies.
The reason for this choice is to provide a complete picture of
the market dependency structure: Pearson layer accounts for
linear dependency, Kendall layer for monotonic nonlinearity,
and Tail dependency for correlation in the tails of returns
distribution while Partial correlation detects direct asset-
asset relationships which are not explained by themarket (see
Materials and Methods for details).

Figure 1(a) shows how the average link weight of each
of the four dependency networks changes over time. We
notice that the average edge weight is a meaningful proxy for
the overall level of correlation in one of these dependency
layers, since the distribution of edge weights within a layer
is normally quite peaked around its mean. The curves
shown in Figure 1(a) indicate an overall increase of the
typical weights in the examined period 1993–2015 and reveals
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Figure 1: The multiplex nature of dependence among financial assets. The plots report the network analysis of a multiplex whose four layers
are PlanarMaximally FilteredGraphs (PMFGs) obtained from four classical dependencemeasures, namely, Pearson, Kendall, Tail, and Partial
correlation, computed on rolling timewindows of 23 trading days between 1993 and 2015. Each of the four layers provides different information
on the dependency structure of a market. Although market events and trends have a somehow similar effect on the average dependence ⟨𝑤𝑖𝑗⟩
between nodes at the different layers (panel (a)), each layer has a distinct local structure.This is made evident by the plots of the average edge
overlap ⟨𝑂⟩ (panel (b)) and of the fraction 𝑈[𝛼] of edges unique to each layer, which confirm that an edge exists on average on less than two
layers, and up to 70% of the edges of a layer are not present on any other layer. Moreover, the same node can have different degrees across
the four layers, as indicated by the relatively low values of the pairwise interlayer degree correlation coefficient 𝜌[𝛼,𝛽] reported in panel (d) for
three pairs of layers over the whole observation interval.

a strongly correlated behaviour of the four curves (with
linear correlation coefficients between the curves range in[0.91, 0.99]). In particular they all display a steep increase in
correspondence with the 2007-2008 financial crisis, revealing
how the market became more synchronized, regardless of
the dependence measure used. This strong correlation in
the temporal patterns of the four measures of dependence
may lead to the wrong conclusion that the four networks
carry very similar information about the structure of financial
systems. Conversely, we shall see that even basic multiplex
measures suggest otherwise. In Figure 1(b) we report the
average edge overlap ⟨𝑂⟩, that is, the average number of

layers of the financial multiplex network where a generic pair
of nodes (𝑖, 𝑗) is connected by an edge (see Materials and
Methods for details). Since our multiplex network consists
of four layer, ⟨𝑂⟩ takes values in [1, 4], and in particular
we have ⟨𝑂⟩ = 1 when each edge is present only in one
layer, while ⟨𝑂⟩ = 4 when the four networks are identical.
The relatively low values of ⟨𝑂⟩ observed in this case reveal
the complementary role played by the different dependency
indicators. It is interesting to note that the edge overlap ⟨𝑂⟩
displays a quite dynamic pattern, and its variations seem to be
related to the main financial crises highlighted by the vertical
lines in Figure 1(b). Overall, what we observe is that periods
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of financial turbulence are linked to widening differences
among the four layers. Namely, the effect of nonlinearity in
the cross-dependence increases, as well as correlation on the
tails of returns: the dependence structure becomes richer
and more complex during financial crisis. This might be
related to the highly nonlinear interactions that characterise
investors activities in turbulent periods and that make fat-tail
and power-law distributions distinctive features of financial
returns. Indeed, if returns were completely described by a
multivariate normal distribution, the Pearson layer would be
sufficient to quantify entirely the cross-dependence and its
relation with the other layers would be trivial and would not
change with time. Therefore any variation in the overlapping
degree is a signature of increasing complexity in the market.
In particular, the first event that triggers a sensible decrease
in the average edge overlap is the Russian crisis in 1998,
which corresponds to the overall global minimum of ⟨𝑂⟩ in
the considered interval. Then, ⟨𝑂⟩ starts increasing towards
the end of year 2000 and reaches its global maximum at
the beginning of 2002, just before the market downturn
of the same year. We observe a marked decrease in 2005,
in correspondence with the second phase of the housing
bubble, which culminates in the dip associated with the credit
crunch at the end of 2007. A second, even steeper drop
occurs during the Lehman Brothers default of 2008. After
that, the signal appears more stable and weakly increasing,
especially towards the end of 2014. Since each edge is present,
on average, in less than two layers, each of the four layers
effectively provides a partial perspective on the dependency
structure of the market.This fact is mademore evident by the
results reported in Figure 1(c), where we show, for each layer𝛼 = 1, . . . , 4, the fraction of edges𝑈[𝛼] that exist exclusively in
that layer (see Materials and Methods for details). We notice
that, at any point in time, from 30% to 70% of the edges
of each of the four layers are unique to that layer, meaning
that a large fraction of the dependence relations captured
by a given measure are not captured by the other measures.
For instance, despite the fact that Pearson and Kendall show
similar behaviour in Figure 1(c), still between 30% and 40%
of the edges on each of those layers exist only on that layer.
This indicates that the Pearson and Kendall layers differ for
at least 60% to 80% of their edges. In general, each of the
four layers is contributing information that cannot be found
in the other three layers. It was shown in a recent paper by
some of the authors [36] that information filtering networks
can be used to forecast volatility outbursts.The present results
suggest that a multilayer approach could provide a further
forecasting instrument for bear/bull markets. However, this
requires further explorations. Interestingly, we observe an
increase of 𝑈[𝛼] for all the layers since 2005, which indicates
a build-up of nonlinearity and tail correlation in the years
preceding the financial crisis: such dynamicsmight be related
to early-risk warnings.

Another remarkable finding is that also the relative
importance of a stock in the network, measured for instance
by its centrality in terms of degree [39, 42], varies a lot across
layers. This is confirmed by the degree correlation coefficient𝜌[𝛼,𝛽] for pairs of layers 𝛼 and 𝛽. In general, high values of

𝜌[𝛼,𝛽] signal the presence of strong correlations between the
degrees of the same node in the two layers (see Materials and
Methods for details). Figure 1(d) shows 𝜌[𝛼,𝛽] as a function
of time for three pairs of dependence measures, namely,
Pearson-Kendall, Kendall-Tail, and Tail-Partial. Notice that
the degrees of the layers corresponding to Pearson and
Kendall exhibit a relatively large correlation, which remains
quite stable over the whole time interval. Conversely, the
degrees of nodes in the Kendall and Tail layers are on average
less correlated, and the corresponding values of 𝜌[𝛼,𝛽] exhibit
larger fluctuations. For example, in the tenth time windowwe
find that General Electric stock (GE US) is a hub in Kendall
layer with 71 connections, but it has only 16 connections
in the Tail layer: therefore the relevance of this stock in
the dependence structure depends sensitively on the layer.
A similar pattern in observed in the interlayer correlation
between the degrees of nodes in Partial and Tail. This
might have important implications for portfolio allocation
problems, since the asset centrality in the network is related
to its risk in the portfolio.

The presence of temporal fluctuations in ⟨𝑂⟩, in partic-
ular the fact that ⟨𝑂⟩ reaches lower values during financial
crises, together with the unique patterns of links at each layer,
testified by high values of 𝑈[𝛼] and by relatively weak inter-
layer degree-degree correlations for some pairs of layers, con-
firms that an analysis of relations among stocks simply based
on one dependencemeasure can neglect relevant information
which can however be captured by othermeasures. As we will
show below, a multiplex network approach which takes into
account at the same time all the four dependence measures,
but without aggregating them into a single-layer network, is
able to provide a richer description of financial markets.

2.2. Multiedges and Node Multidegrees. As a first example
of useful quantities that can be investigated in a multiplex
network, we have computed the so-called multidegree 𝑘→𝑚𝑖
for each node 𝑖 in the network, corresponding to different
multiedges (see Materials and Methods) [43]. In particular,
we have normalised the multidegree of node 𝑖 dividing it by
the corresponding node overlapping degree 𝑜𝑖, so that the
resulting 𝑘→𝑚𝑖 /𝑜𝑖 is the fraction of multiplex edges of node 𝑖
that exist only on a given subset of layers. In Figure 2 we
report the average normalised multidegree of each of the 10
industry sectors of the Industry Classification Benchmark
(ICB) classification. We focus on the edges existing exclu-
sively in one of the four layers and on the combination
of multiedges associated with edges existing in either of
the Kendall, Tail, or Partial layer, but not in the Pearson
layer. As shown in Figure 2, the multidegree exhibits strong
variations in time and high heterogeneity across different
industries. Industries such as Oil & Gas, Utilities, and Basic
Materials show low values of normalised multidegree in all
the four panels (Figures 2(a)–2(d)). Conversely, the edges
of nodes corresponding to Industrials, Finance, Technology,
Telecommunications, and Consumer Services tend to con-
centrate in one layer or in a small subset of layers only.
For instance, we observe a relatively high concentration
of edges at the Kendall layer for nodes corresponding to
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Figure 2: Multidegrees reveal the different role of industrial sectors during crises. The plots of the average multidegree of the nodes of
the same industrial sector restricted to edges existing exclusively on the (a) Pearson, (b) Kendall, (c) Tail, and (d) Partial layers clearly
show that some dependence measures can reveal structures which are unnoticed by other measures. In particular, the plot of the average
multidegree associated with edges existing on at least one layer among Kendall, Tail, and Partial, but not on Pearson (panel (e)), reveals that
Pearson correlation does not capture many important features such as the prominent role of Basic Materials, Financial, Consumer Goods,
and Industrials during crises and the increasing importance of Technology and Consumer Services after the 2007-2008 crisis.
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Finance, Industrials, and Consumer Goods stocks in the
period preceding the dot-com bubble and the 2002 down-
turn, a feature not visible in the Pearson layer in Figure 2(a).
This implies that for stocks belonging to those industries
nonlinearity was a feature of their cross-dependency more
important than for other stocks. Analogously, we notice a
sudden increase of edges unique to the Tail layer for nodes
in Consumer Goods, Consumer Services, and Health Care
after the 2007-2008 crisis.Therefore, during this crisis period,
the synchronization in the tail region has become a more
relevant factor in their dependency structure than before
the crisis: this has important implications for portfolio risk,
as high Tail dependence can lead to substantial financial
losses in case of large price movements.The presence of large
heterogeneity and temporal variations in the relative role of
different industrial sectors confirms the importance of using
a multiplex network approach to analyse dependence among
assets. Since industrial sectors have been often used for risk
diversification, these findings point out that their use as a
diversification benchmark might benefit remarkably from a
continuous monitoring based on multiplex: an increase of
edges in one layer for an industry can indicate the need of
using the corresponding dependency measure for assessing
the industry’s risk and diversification potential. The fact that
different industries display different degrees of nonlinearity
and Tail dependence is not surprising after all, given that
each industrial sector can be affected in a different way by
new information: this industrial specific sensitivity might
translate in different cross-dependency properties.

From this perspective it is particularly interesting to
discuss the plot of multidegree restricted to edges that are
present on either Kendall, Partial, or Tail layer but are
not present in the Pearson layer as reported in Figure 2(e).
Despite the fact that Pearson correlation coefficient is the
most used measure to study dependencies, the plot reveals
that until 2002 an analysis of the financial network based
exclusively on Pearson correlations would have missed from
40% up to 60% of the edges of assets in sectors such as Basic
Materials, Financial, Consumer Goods, and Industrials. The
study of evolution with time in Figure 2(e) reveals that the
relative role of such industrial sectors in Kendall, Tail, and
Partial layers becomes relatively less important between the
two crises in 2002 and in 2007, but then such sectors become
central again during the 2007-2008 crisis and beyond. This
prominent role is quite revealing but it would not had been
evident from the analysis of the Pearson layer alone. Let us
also note that the period following the 2007-2008 crisis is
also characterised by a sensible and unprecedented increase
of the normalised multidegree on Kendall, Partial, and Tail
layers of stocks belonging to Technology and Telecommuni-
cations sectors, whose importance in the market dependence
structure has been therefore somehow underestimated over
the last ten years by the studies based exclusively on Pearson
correlation.

2.3. Multiplex Cartography of Financial Systems. To better
quantify the relative importance of specific nodes and groups
of nodes we computed the overlapping degree and participa-
tion coefficient, respectively, measuring the total number of

edges of a node and how such edges are distributed across
the layers (see Materials andMethods for details). We started
by computing the average degree 𝑘[𝛼]𝐼 at layer 𝛼 of nodes
belonging to each ICB industry sector 𝐼, defined as 𝑘[𝛼]𝐼 =(1/𝑁𝐼) ∑𝑖∈𝐼 𝑘[𝛼]𝑖 𝛿(𝑐𝑖, 𝐼), where by 𝑐𝑖 we denote the industry of
node 𝑖 and 𝑁𝐼 is the number of nodes belonging to industry
sector 𝐼. Figures 3(a)–3(d) show 𝑘[𝛼]𝐼 as a function of time for
each of the four layers.

Notice that nodes in the Financial sector exhibit a quite
high average degree, nomatter the dependencemeasure used,
with a noticeable peak before the dot-com bubble in 2002.
After that, the average degree of Financials has dropped
sensibly, with the exception of the 2007-2008 crisis. Apart
from the existence of similarities in the overall trend of
Financials across the four layers, the analysis of the average
degree suggests again the presence of high heterogeneity
across sectors and over time.

In the Pearson layer, Basic Materials is the second most
central industry throughout most of the observation interval,
whereas Industrials and Oil & Gas acquired more connec-
tions in the period following the 2007-2008 crisis.The degree
in the Kendall layer is distributed more homogeneously
among the sectors than in the Pearson layer. Interestingly,
the plot of degree on the Tail layer looks similar to that of
the Pearson layer. Finally, in the Partial layer we observe the
highest level of concentration of links in Finance (consistently
to what was found in [41]) and, after the 2007-08 crisis, in
Basic Materials.

We have also calculated for each industry 𝐼 the average
overlapping degree 𝑜𝐼 ≡ ⟨𝑜𝑖⟩𝑖∈𝐼, where 𝑜𝑖 is the overlapping
degree of node 𝑖, which quantifies the overall importance of
each industrial sector in the multiplex dependence network.
The average overlapping degree of each industry is shown
as a function of time in Figure 3(e). As we can see, 𝑜𝐼 is
able to highlight the prominent role played in the multiplex
network by Financials, BasicMaterials, Oil &Gas, and Indus-
trials sectors, revealing also the presence of four different
phases between 1997 and 2015. The first phase, during which
Financials is the only prominent industry, covers the period
between 1997 and 2000. The second phase, between 2000
and the 2007-08 crisis, is characterised by the emergence of
Basic Materials as the secondmost central sector. In the third
phase, between 2009 and 2014, Financials loses its importance
in favour of Industrials, Oil & Gas, and Basic Materials
(that becomes the most central one). Finally, in 2014 a new
equilibrium starts to emerge, with Financials and Industrials
gaining again a central role in the system.

The participation coefficient complements the informa-
tion provided by the overlapping degree, quantifying how the
edges of a node are distributed over the layers of the multi-
plex. In particular, the participation coefficient of node 𝑖 is
equal to 0 if 𝑖 has edges in only one of the layers, while it is
maximum and equal to 1when the edges of node 𝑖 are equally
distributed across the layers (see Materials and Methods for
details). In Figure 3(f) we report, as a function of time, the
average participation coefficient 𝑃𝐼 for each ICB industry 𝐼.
Interestingly, the plot reveals that the increase of the over-
lapping degrees of Financials, Basic Materials, Industrials,
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(b) Degree Kendall
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(c) Degree Tail
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(d) Degree Partial
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(f) Participation coefficient

Figure 3: Average node degree as a proxy of the importance of an industry.The plots of average degree of the nodes belonging to the different
industrial sectors restricted to the (a) Pearson, (b) Kendall, (c) Tail, and (d) Partial layers and of the average overlapping degree reported in
panel (e) confirm the relative importance of Financials. However, the average participation coefficient (panel (f)) suggests that the dependence
structure of some sectors such as BasicMaterials, Industrials, andOil &Gas has becomemore heterogeneous, that is, focusing only on a subset
of the four layers, after the 2007-2008 crisis.
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and Oil & Gas sectors shown in Figure 3(e) is normally
accompanied by a substantial decrease of the corresponding
participation coefficients. This indicates that those sectors
accumulated degree on just one or two layers, confirming
what we found in multidegree analysis. A somehow more
detailed analysis of the temporal evolution of participation
coefficient for each sector is reported in Section 4.5.

3. Discussion

By using filtered networks from different correlation mea-
sures we have demonstrated that a multiplex network
approach can reveal features that would have otherwise been
invisible to the analysis of each dependency measure in
isolation. Although the layers produced, respectively, from
Pearson, Kendall, Tail, and Partial correlations show a certain
overall similarity, they exhibit distinct features that are
associated with market changes. For instance, we observed
that average edge overlap between the first three layers drops
significantly during periods of market stress revealing that
nonlinear effects are more relevant during crisis periods. The
analysis of the average multidegree associated with edges not
present on the Pearson layer, but existing on at least one
of the three remaining layers, indicates that Pearson corre-
lations alone can miss detecting some important features.
We observed that the relative importance of nonlinearity
and tails on market dependence structure, as measured
by mean edge overlap between the last three layers, has
dropped significantly in the first half of the 2000s and then
risen steeply between 2005 and the 2007-08 crisis. Overall,
financial crises trigger remarkable drops in the edge overlap,
widening therefore the differences among the measures of
dependence just when evaluation of risk becomes of the high-
est importance. Different industry sectors exhibit different
structural overlaps. For instance, Financials, Industrials, and
Consumer Goods show an increasing number of connections
only on Kendall layer in the late 90s/early 2000s, at the
edge of the dot-com bubble. After the 2007-08 crisis these
industries tend to have many edges on the Kendall, Tail,
and Partial which are not present on the Pearson layer. This
observation questions whether we can rely on the Pearson
estimator alone, when analysing correlations between stocks.
A study of the overlapping degree and of the participation
coefficient shows that asset centrality, an important feature for
portfolio optimization [39, 40], changes considerably across
layers with largest desynchronized changes occurring during
periods of market distress. Overall our analysis indicates
that different dependency measures provide complementary
pieces of information about the structure and evolution of
markets and that a multiplex network approach can be useful
in capturing systemic properties that would otherwise go
unnoticed.

4. Materials and Methods

4.1. Dataset. The original dataset consists of the daily prices
of 𝑁tot = 1004 US stocks traded in the period between
03/01/1993 and 26/02/2015. Each stock in the dataset has been
included in S&P500 at least once in the period considered.
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Figure 4: Number of stocks in each ICB industry in time. Number
of stocks that are continuously traded in each time window together
with their partition in terms of ICB industries.

Hence the stocks considered provide a representative picture
of the US stock market over an extended time window of 22
years and cover all the 10 industries listed in the Industry
Classification Benchmark (ICB) (Figure 4). It is important
to notice that most of the stocks in this set are not traded
over the entire period. This is a major difference with respect
to the majority of the works on dynamic correlation-based
networks, in which only stocks continuously traded over the
period under study are considered, leading to a significant
“survival bias.” For each asset 𝑖 we have calculated the series
of log-returns, defined as 𝑟𝑖(𝑡) = log(𝑃𝑖(𝑡)) − log(𝑃𝑖(𝑡 − 1)),
where 𝑃𝑖(𝑡) is stock price at day 𝑡. The construction of the
time-varying multiplex networks is based on log-returns and
has been performed in moving time windows of 𝜃 = 1000
trading days (about 4 years), with a shift of 𝑑𝑇 = 23 trading
days (about onemonth), adding up to 200 different multiplex
networks, one for each time window. For each time window𝑇, four different𝑁(𝑇)×𝑁(𝑇) dependencematrices have been
computed, respectively, based on the four different estimators
illustrated in Section 4.2. Since the number of active stocks
changes with time, dependence matrices at different times
can have different number of stocks 𝑁(𝑇), as shown in
Figure 4. In the figure the ICB industry composition of our
dataset in each time window is also shown, confirming that
we have a representative sample of all market throughout the
period. We have verified that the results we are discussing in
the following are robust against change of 𝜃 and 𝑑𝑇.
4.2. Dependence among Financial Time Series. We have con-
sidered four different measures of dependence between two
time series 𝑟𝑖(𝑢) and 𝑟𝑗(𝑢), 𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑢 = 1, 2, . . . , 𝜃,
indicated in the following, respectively, as Pearson, Kendall,
Tail, and Partial.
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4.2.1. Pearson Dependence. It is a measure of linear depen-
dence between two time series and is based on the evaluation
of the Pearson correlation coefficient [44]. We have used
the exponentially smoothed version of this estimator [45], in
order to mitigate excessive sensitiveness to outliers in remote
observations:
𝜌𝑤𝑖𝑗
= ∑𝜃𝑢=1 𝑤𝑢 (𝑟𝑖 (𝑢) − 𝑟𝑖𝑤) (𝑟𝑗 (𝑢) − 𝑟𝑗𝑤)

√∑𝜃𝑢=1 𝑤𝑢 (𝑟𝑖 (𝑢) − 𝑟𝑖𝑤)2√∑𝜃𝑢=1 𝑤𝑢 (𝑟𝑗 (𝑢) − 𝑟𝑗𝑤)2
, (1)

with

𝑤𝑢 = 𝑤0 exp(𝑢 − 𝜃𝑇∗ ) , (2)

where 𝑇∗ is the weight characteristic time (𝑇∗ > 0) that
controls the rate at which past observations lose importance
in the correlation and 𝑤0 is a constant connected to the
normalisation constraint ∑𝜃𝑢=1 𝑤𝑢 = 1. We have chosen 𝑇∗ =𝜃/3 according to previously established criteria [45].

4.2.2. Kendall Dependence. It is ameasure of dependence that
takes into account the nonlinearity of a time series. It is based
on the evaluation of the so-called Kendall’s 𝜏 rank correlation
coefficient, starting from the quantities 𝑑𝑘(𝑢, V) ≡ sgn(𝑟𝑘(𝑢)−𝑟𝑘(V)). The estimator counts the number of concordant pairs,
that is, pairs of observations such that 𝑑𝑖(𝑢, V) and 𝑑𝑗(𝑢, V)
have equal signs, minus the number of discordant pairs [11].
As for the case of the Pearson dependence, we have used the
exponentially smoothed version of the estimator [45]:

𝜏𝑤𝑖𝑗 =
𝜃∑
𝑢=1

𝜃∑
V=𝑢+1

𝑤𝑢,V𝑑𝑖 (𝑢, V) 𝑑𝑗 (𝑢, V) , (3)

with

𝑤𝑢,V = 𝑤0 exp(𝑢 − 𝜃𝑇∗ ) exp(V − 𝜃𝑇∗ ) , (4)

where 𝑇∗ is again the weight characteristic time.

4.2.3. Tail Dependence. It is a nonparametric estimator of tail
copula that provides a measure of dependence focused on
extreme events. It is based on the evaluation of the following
estimator [46]:

𝐶𝑖𝑗 (𝑝1, 𝑝2) = ∑𝜃𝑢=1 1{𝐹𝑖(𝑟𝑖(𝑢))<𝑝1∧𝐹𝑗(𝑟𝑗(𝑢))<𝑝2}
∑𝜃𝑢=1 1{𝐹𝑖(𝑟𝑖(𝑢))<𝑝1∨𝐹𝑗(𝑟𝑗(𝑢))<𝑝2} , (5)

where 𝐹𝑖 and 𝐹𝑗 are the empirical cumulative probabilities
of returns 𝑟𝑖(𝑢) and 𝑟𝑗(𝑢), respectively, and 𝑝1 and 𝑝2 are
two parameters representing the percentiles above which an
observation is considered (lower) tail. We focus on lower
tails since we are interested in risk management applications,
where the attention is on losses. It can be shown that this is a
consistent estimator of tail copula [46]. In this work we have
chosen 𝑝1 = 𝑝2 = 0.1 (i.e., we consider tail every observation
below the 10th percentile), as a trade-off between the need of
statistic and the interest in extreme events.

4.2.4. Partial Dependence. It is a measure of dependence
that quantifies to what extent each asset affects other assets
correlation. The Partial correlation 𝜌𝑖𝑘|𝑗, or correlation influ-
ence, between assets 𝑖 and 𝑘 based on 𝑗, is the Pearson
correlation between the residuals of 𝑟𝑖(𝑢) and 𝑟𝑘(𝑢) obtained
after regression against 𝑟𝑗(𝑢) [47]. It can be written in terms
of a Pearson correlation coefficient as follows [41]:

𝜌𝑖𝑘|𝑗 = 𝜌𝑖𝑘 − 𝜌𝑖𝑗𝜌𝑘𝑗
√[1 − 𝜌2𝑖𝑗] [1 − 𝜌2

𝑘𝑗
]
.

(6)

This measure represents the amount of correlation between𝑖 and 𝑘 that is left once the influence of 𝑗 is subtracted.
Following [41], we define the correlation influence of 𝑗 on the
pair 𝑖, 𝑘 as

𝑑 (𝑖, 𝑘 | 𝑗) = 𝜌𝑖𝑘 − 𝜌𝑖𝑘|𝑗. (7)

𝑑(𝑖, 𝑘 | 𝑗) is large when a significant fraction of correlation
between 𝑖 and 𝑘 is due to the influence of 𝑗. Finally, in order
to translate this into a measure between 𝑖 and 𝑗, the so-called
Partial dependence, we average it over the index 𝑘:

𝑑 (𝑖 | 𝑗) = ⟨𝑑 (𝑖, 𝑘 | 𝑗)⟩𝑘 ̸=𝑖,𝑗 . (8)

𝑑(𝑖 | 𝑗) is the measure of influence of 𝑗 on 𝑖 based on Partial
correlation. It is worth noting that, unlike the other measures
of dependence, 𝑑(𝑖 | 𝑗) provides a directed relation between
assets (as in general 𝑑(𝑖 | 𝑗) ̸= 𝑑(𝑗 | 𝑖)). In the rest of
the paper we refer to this indicator as “Partial dependence,”
even though strictly speakingwe are analysing the correlation
influence based on Partial correlation.

4.3. Graph Filtering and the Construction of the Multiplex
Network. For each of the 200 time windows we have then
constructed a multiplex network with𝑀 = 4 layers obtained,
respectively, by means of the four dependence indicators.
In order to reduce the noise and the redundance contained
in each dependence matrix we have applied the Planar
Maximally Filtered Graph [2–4, 7]. It is worth mentioning
that the filtering of the correlation influence layer requires an
adaptation of the PMFG algorithm to deal with asymmetric
relations. We have followed the approach suggested in [41]
that rules out double links between nodes. The obtained
planar graphs have been then converted into undirected
graphs and included in the multiplex.

4.4. Multiplex Measures. Let us consider a weighted mul-
tiplex network M on 𝑁 nodes, defined by the 𝑀-
dimensional array of weighted adjacency matrices W ={𝑊[1],𝑊[2], . . . ,𝑊[𝑀]}, where𝑊[𝛼] = {𝑤[𝛼]𝑖𝑗 } are the matrices
of weights that determine the topology of the 𝛼th layer
though the PMFG filtering. Here the weight 𝑤[𝛼]𝑖𝑗 represents
the strength of the correlation between node 𝑖 and node 𝑗 on
layer 𝛼, where the different layers are obtained through differ-
ent correlation measures. In the following we will indicate by𝑊[𝛼] the weighted adjacency matrix of the PMFG associated
with layer 𝛼 and by 𝐴[𝛼] the corresponding unweighted
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adjacency matrix, where 𝑎[𝛼]𝑖𝑗 = 1 if and only if 𝑤[𝛼]𝑖𝑗 ̸= 0.
We denote by 𝐾[𝛼] = (1/2)∑𝑖𝑗 𝑎[𝛼]𝑖𝑗 the number of edges on
layer 𝛼 and by 𝐾 = (1/2)∑𝑖,𝑗[1 − ∏𝛼(1 − 𝑎[𝛼]𝑖𝑗 )] the number
of pairs of nodes which are connected by at least one edge on
at least one of the 𝑀 layers. Notice that since the network at
each layer is a PMFG, then we have 𝐾[𝛼] = 3(𝑁 − 2) ∀𝛼 by
construction.

We consider some basic quantities commonly used to
characterise multiplex networks [14, 43]. The first one is the
mean edge overlap, defined as the average number of layers
on which an edge between two randomly chosen nodes 𝑖 and𝑗 exists:

⟨𝑂⟩ = 12𝐾∑
𝑖,𝑗

∑
𝛼

𝑎[𝛼]𝑖𝑗 . (9)

Notice that ⟨𝑂⟩ = 1 only when all the𝑀 layers are identical;
that is, 𝐴[𝛼] ≡ 𝐴[𝛽] ∀𝛼, 𝛽 = 1, . . . ,𝑀, while ⟨𝑂⟩ = 0
if no edge is present in more than one layer, so that the
average edge overlap is in fact a measure of howmuch similar
the structures of the layers of a multiplex network are. A
somehow dual quantity is the fraction of edges of layer 𝛼
which do not exist on any other layer:

𝑈[𝛼] = 12𝐾[𝛼]∑𝑖,𝑗 𝑎
[𝛼]
𝑖𝑗 ∏
𝛽 ̸=𝛼

(1 − 𝑎[𝛽]𝑖𝑗 ) (10)

which quantifies how peculiar the structure of a given layer 𝛼
is, since 𝑈[𝛼] is close to zero only when almost all the edges
of layer 𝛼 are also present on at least one of the other 𝑀 − 1
layers.

More accurate information about the contribution of each
node to a layer (or to a group of layers) can be obtained by the
so-called multidegree of a node 𝑖. Let us consider the vector→𝑚 = (𝑚1, 𝑚2, . . . , 𝑚𝑀), with𝑀 equal to the number of layers,
where each 𝑚𝛼 can take only two values {1, 0}. We say that a
pair of nodes 𝑖, 𝑗 has a multilink →𝑚 if they are connected only
on those layers𝛼 for which𝑚𝛼 = 1 in→𝑚 [43].The information
on the 𝑀 adjacency matrices 𝑎𝛼𝑖𝑗 (𝛼 = 1, . . . ,𝑀) can then be
aggregated in the multiadjacency matrix 𝐴→𝑚𝑖𝑗 , where 𝐴→𝑚𝑖𝑗 = 1
if and only if the pair 𝑖, 𝑗 is connected by a multilink →𝑚.
Formally [13, 43]

𝐴→𝑚𝑖𝑗 ≡
𝑀∏
𝛼=1

[𝑎𝛼𝑖𝑗𝑚𝛼 + (1 − 𝑎𝛼𝑖𝑗) (1 − 𝑚𝛼)] . (11)

From the multiadjacency matrix we can define the multide-
gree →𝑚 of a node 𝑖, as the number of multilinks →𝑚 connecting𝑖:

𝑘→𝑚𝑖 = ∑
𝑗

𝐴→𝑚𝑖𝑗 . (12)

This measure allows us to calculate, for example, how many
edges node 𝑖 has on layer 1 only (𝑘→𝑚𝑖 choosing 𝑚1 = 1, 𝑚𝛼 =0, ∀𝛼 ̸= 1), integrating the global information provided by𝑈[𝛼].

The most basic measure to quantify the importance of
single nodes on each layer is by means of the node degree𝑘[𝛼]𝑖 = ∑𝑗 𝑎[𝛼]𝑖𝑗 . However, since the same node 𝑖 is normally
present at all layers, we can introduce two quantities to
characterise the role of node 𝑖 in the multiplex [14], namely,
the overlapping degree

𝑜𝑖 = ∑
𝛼

𝑘[𝛼]𝑖 (13)

and the multiplex participation coefficient:

𝑃𝑖 = 𝑀𝑀 − 1 [1 − ∑
𝛼

(𝑘[𝛼]𝑖𝑜𝑖 )] . (14)

The overlapping degree is just the total number of edges
incident on node 𝑖 at any layer, so that node are classified as
hubs if they have a relatively large value of 𝑜𝑖. The multiplex
participation coefficient quantifies the dispersion of the edges
incident on node 𝑖 across the layers. In fact, 𝑃𝑖 = 0 if the
edges of 𝑖 are concentrated on exactly one of the𝑀 layers (in
this case 𝑖 is a focused node), while 𝑃𝑖 = 1 if the edges of 𝑖
are uniformly distributed across the 𝑀 layers, that is, when𝑘[𝛼]𝑖 = 𝑜𝑖/𝑀 ∀𝛼 (in which case 𝑖 is a truly multiplex node).
The scatter plot of 𝑜𝑖 and𝑃𝑖 is calledmultiplex cartography and
has been used as a synthetic graphical representation of the
overall heterogeneity of node roles observed in a multiplex.

In a multiplex network, it is important also to look at
the presence and sign of interlayer degree correlations. This
can be done by computing the interlayer degree correlation
coefficient [15]:

𝜌[𝛼,𝛽] = ∑𝑖 (𝑅[𝛼]𝑖 − 𝑅[𝛼]) (𝑅[𝛽]𝑖 − 𝑅[𝛽])
√∑𝑖 (𝑅[𝛼]𝑖 − 𝑅[𝛼])2∑𝑗 (𝑅[𝛽]𝑗 − 𝑅[𝛽])2

, (15)

where 𝑅[𝛼]𝑖 is the rank of node 𝑖 according to its degree on
layer 𝛼 and 𝑅[𝛼] is the average rank by degree on layer 𝛼. In
general 𝜌[𝛼,𝛽] takes values in [−1, 1], where values close to +1
and −1, respectively, indicate the strong positive and negative
correlations, while 𝜌[𝛼,𝛽] ≃ 0 if the degrees at the two layers
are uncorrelated.

4.5. TimeEvolution of theAverage ParticipationCoefficient. In
Figure 5 we plot the time evolution of the average participa-
tion coefficient 𝑃𝐼 (𝑥-axis) of stocks in the industrial sector 𝐼
against the average overlapping degree 𝑜𝐼 (𝑦-axis). Each circle
corresponds to one of the 200 time windows, while the size
and colour of each circle represent different time windows.
Each panel corresponds to one industrial sector 𝐼. The
diagrams reveal that in the last 20 years the role of different
sectors has changed radically and in different directions.
For instance, stocks in the Financials sector evolved from a
relatively large overlapping degree and a small participation
coefficient in the late 1990s to a smaller number of edges,
distributed more homogeneously across the layers, towards
the end of the observation period. Conversely, Industrials
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Figure 5: Continued.
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Figure 5: Industries evolution in the overlapping degree/participation coefficient plane. Fixing an industry 𝐼, we have plotted for each time
window a circle whose 𝑦 coordinate is the average overlapping degree 𝑜𝐼 and whose 𝑥 coordinate is the average participation coefficient𝑃𝐼. Points at different times are characterised by different sizes (small to large) and colours (legend on the right). In (a)–(j) we show the
results, respectively, for Basic Materials, Consumer Goods, Consumer Services, Financials, Health Care, Industrials, Oil & Gas, Technology,
Telecommunications, and Utilities.

stocks have acquired degree on some of the layers, resulting
in a considerable decrease of participation coefficient. This
is another indication of the importance of monitoring all
the layers together, as an increase in the structural role
of an industry (as measured by the overlapping degree) is
typically due to only a subset of layers (as indicated by the
corresponding decrease of the participation coefficient).
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