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This paper considers exponential stabilization for a class of coupled hybrid stochastic delayed bidirectional associative memory
neural networks (HSD-BAM-NN)with reaction-diffusion terms. A periodically intermittent controller is proposed to exponentially
stabilize such an unstable HSD-BAM-NN, and sufficient conditions of the closed-loop BAM-NN system with exponential
stabilization are derived by using Lyapunov-Krasovskii functional method, stochastic analysis techniques, and integral inequality
property, which decide the basic parameters of the proposed controller. Furthermore, a framework to establish simulation algorithm
with sampled states is presented to implement the stabilization controller. With a HSD-BAM-NNmodel of power synchronization
in a photovoltaic (PV) array field, we illustrate numerical simulation results to verify the correctness and effectiveness of the
proposed controller.

1. Introduction

Spurred by pioneering works on the neural networks models
with BAM in Kosko [1–3], much attention has been paid
to BAM-NN owning to its various applications in image
processing, pattern recognition, automatic control [4, 5],
associate memory, parallel computing [6], and optimization
[7]. It is worth noting that the results of global stability
for BAM models obtained in [1–3] require severe constraint
conditions of symmetric connection weight matrix. In the
neural networks with very large scale circuits, it is difficult
for a practical NN system to satisfy the absolutely symmetric
conditions in BAMmodels. Recently, the stability analysis of
BAM neural networks has been paid considerable attention,
and many stability conditions of such NN models have been
reported in the published literature [8–22]. Since diffusion
effects cannot be avoided in the neural networks, in a physical
sense, when electrons are moving in asymmetric electromag-
netic fields, it is more valuable to consider the alternative
activation of neurons in an available space as well as in a
given time interval. Therefore, the model of BAM neural

networks could be formulated as partial differential equations
(PDE) instead of only ordinary differential equations (ODE)
[9, 11]. Based on PDE models, many contributions have been
published focusing on the stability of BAM neural networks
(BAM-NN)with reaction-diffusion terms by using Lyapunov
functional method and LMI techniques [7, 9, 11–15, 17, 18, 23,
24].

Haykin [25] proposed that in real neural networks sys-
tems, synaptic transmission is a stochastic process with noise
released by random electronic fluctuations of the neurotrans-
mitters and other disturbance. Following the experimental
conclusions, Hossain and Anagnostou [26] further stated
that noise posed a basic problem for information processing
which affected all aspects of nervous system function in a
nervous system.Hence, it is also important to study the effects
of noise perturbations existing in neutral networks dynamics.
Literature [8] investigated the stability of stochastic NN for
the first time, which guided followers exploring novel results
of such problems, especially for stochastic NN with reaction-
diffusion terms, and some striking published contributions
can be found in [7, 11–15, 17, 18, 27].
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It is worth mentioning that the hybrid BAM-NN driven
by continuous-time Markov chains have been used to model
many practical systems where they may experience abrupt
changes in their structure and parameters. To consider the
issues of system structures’ abrupt changes, hybrid dis-
turbance, and unreliable subsystem interconnections, the
evolution dynamics of BAM-NN could be modeled as jump
systems [28, 29]. As Markovian jump system was first intro-
duced in [10], two fundamental components have formed
original ideas of considering a jumping system as continuous
state described by differential equations, and discrete-time
state described by a continuous-time finite-state Markovian
process [28–32]. For theory and techniques recently devel-
oped to analyze BAM-NNwithMarkovian jump factors, here
we mention [11, 22, 24, 28, 29].

In recent literature, a variety of approaches have been
published for the stabilization control of BAM neural net-
works with or without delays and reaction-diffusion terms
which include feedback control [9, 21, 23, 32, 33], impul-
sive control [22, 24, 34], and intermittent control [35–38].
The type of control considered in this paper is intermit-
tent control, which was first introduced to control non-
linear dynamical systems in [39] and has aroused much
interest of researchers due to its merits in engineering
applications. Different from continuous control approaches,
intermittent control is more effective because the system
output is measured intermittently rather than continu-
ously [35]. Some novel contributions of intermittent con-
trol [35, 36, 38] based on the stability analysis of BAM-
NN have been achieved in recent years. Nevertheless, the
complex effects on BAM-NN with stimulation time-varying
delays and stochastic reaction-diffusion terms have not
been considered to use intermittent control in published
results.

Motivated by the above discussion, the main purpose
of this paper is to investigate BAM-NN with delays and
reaction-diffusion terms and focus on its exponential stabi-
lization by designing a periodically intermittent controller
[35, 36, 38]. The main novelties in this paper can be high-
lighted as follows: Firstly, the model under consideration
covers the frequently investigated models which often are
characterized by special cases in structures or systematic
functions. Secondly, most available results have been con-
cerned with the stability problems, and in this technical note,
stochastic stabilization is taken into account and a periodi-
cally intermittent controller with more flexible conditions is
first proposed for such BAM-NN with stochastic reaction-
diffusion terms. Finally, a numerical simulation method
is designed to simulate the behavior of the time-varying
delays stochastic hybrid partial differential equations, which
enriches the theory of delayed stochastic partial differential
equation.

Throughout the paper, we take (Ω,F, {F𝑡}𝑡≥0,P) as a
complete probability space with a filtration {F}𝑡≥0 satisfying
the usual conditions; i.e., {F}𝑡≥0 is right-continuous and {F}0
contains all P-null sets. Let𝑊(𝑡), 𝑡 ≥ 𝑡0, be one-dimensional
Brownian motion defined on the probability space. Let 𝑟(𝑡),𝑡 ≥ 0, be right-continuous Markov chain on the probability
space taking values in a finite-state space S = {1, 2, . . . ,N}

with generator Γ = (𝑟𝑖𝑗)N×N. And the transition probability
from model 𝑖 at time 𝑡 to model 𝑗 at time 𝑡 + Δ is

P {𝑟 (𝑡 + Δ) = 𝑗 | 𝑟 (𝑡) = 𝑖}
= {{{𝛾𝑖𝑗Δ + 𝑜 (Δ) , if 𝑖 ̸= 𝑗1 + 𝛾𝑖𝑖Δ + 𝑜 (Δ) , if 𝑖 = 𝑗 (1)

where Δ > 0 and limΔ󳨀→0𝑜(Δ)/Δ = 0. Here, 𝛾𝑖𝑗 ≥ 0, 𝑖 ̸=𝑗, is the transition probability from model 𝑖 to model 𝑗 and𝛾𝑖𝑖 = −∑𝑁
𝑗=1,𝑗 ̸=𝑖 𝛾𝑖𝑗. We assume that the Markovian chain 𝑟(⋅)

is independent of the Brownian motion𝑊(⋅). It is well known
that almost every sample path of 𝑟(⋅) is right-continuous step
function with a finite number of simple jumps in any finite
subinterval R+.

2. Preliminaries and Problem Formulation

In this paper, we consider the hybrid stochastic BAM neural
network model with reaction-diffusion terms [11–13, 15],
which are formulated as a couple of neurons’ dynamics
indexed by a pair superscripts of (𝑛,𝑚)

d𝑥(𝑛)𝑖 (𝑡, 𝜆(𝑛)) = ( 𝑙(𝑛)∑
𝑘=1

𝜕𝜕𝜆(𝑛)𝑘

⋅ (𝐷(𝑛)
𝑖𝑘 (𝑟 (𝑡)) 𝜕𝑥(𝑛)𝑖 (𝑡, 𝜆(𝑛))𝜕𝜆(𝑛)𝑘

) − 𝑎(𝑛)𝑖 (𝑟 (𝑡)) 𝑥(𝑛)𝑖 (𝑡,
𝜆(𝑛)) + 𝑁(𝑚)∑

𝑗=1

(𝑏(𝑛)𝑗𝑖 (𝑟 (𝑡)) 𝑓(𝑛)
𝑗 (𝑥(𝑚)

𝑗 (𝑡, 𝜆(𝑚))))
+ 𝑁(𝑚)∑

𝑗=1

(𝑐(𝑛)𝑗𝑖 (𝑟 (𝑡)) 𝑓(𝑛)
𝑗 (𝑥(𝑚)

𝑗 (𝑡 − 𝜏(𝑚) (𝑡) , 𝜆(𝑚))))
+ 𝑢(𝑛)𝑖 (𝑡, 𝜆(𝑛), 𝜆(𝑚))) d𝑡 + 𝑁(𝑚)∑

𝑗=1

ℎ(𝑛)𝑗𝑖 (𝑥(𝑛)𝑖 (𝑡, 𝜆(𝑛)) ,
𝑥(𝑚)
𝑗 (𝑡, 𝜆(𝑚)) ,𝑥(𝑚)
𝑗 (𝑡 − 𝜏(𝑚) (𝑡) , 𝜆(𝑚))) d𝑊𝑗 (𝑡)

(2)

where 𝑛,𝑚 denote the index of a couple of neuron networks
(NN) with𝑁(𝑛) and𝑁(𝑚) neurons, respectively; i.e., (𝑛,𝑚) =(1, 2) or (2, 1). The notations 𝑖 = 1, 2, . . . ,𝑁(𝑛) and 𝑗 =1, 2, . . . , 𝑁(𝑚) are, respectively, the indices of the neurons in
the 𝑛th NN and the 𝑚th NN. 𝑙(𝑛) is the dimension of space
variable vector 𝜆(𝑛), and 𝜆(𝑛) = (𝜆(𝑛)1 , 𝜆(𝑛)2 , . . . , 𝜆(𝑛)𝑙(𝑛)

) ∈ Ω0 ⊂
R𝑙(𝑛) whereΩ0 is a compact set and measurable with smooth
boundary 𝜕Ω0 in space R𝑙(𝑛) , 0 < 𝑚𝑒𝑠Ω0 < +∞. The
definition of 𝜆(𝑚) is the same as𝜆(𝑛) andwe let𝜆 = (𝜆(𝑛), 𝜆(𝑚)).𝑥(𝑛)𝑖 = 𝑥(𝑛)𝑖 (𝑡, 𝜆(𝑛)) and 𝑥(𝑚)

𝑗 = 𝑥(𝑚)
𝑗 (𝑡, 𝜆(𝑚)) are the states

of the 𝑖th neuron in 𝑛th NN and the 𝑗th neuron in 𝑚th
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NN at time 𝑡(𝑡 ≥ 0) and in space of 𝜆(𝑛), 𝜆(𝑚), respectively.
For simplicity, we define 𝑥(𝑛) = (𝑥(𝑛)1 , . . . , 𝑥(𝑛)𝑁(𝑛)

)𝑇 ∈ R𝑁(𝑛) ,𝑥(𝑚) = (𝑥(𝑚)
1 , . . . , 𝑥(𝑚)

𝑁(𝑚)
)𝑇 ∈ R𝑁(𝑚) , and 𝑥 = ((𝑥(𝑛))𝑇, (𝑥(𝑚))𝑇)𝑇

to denote the state vectors of the 𝑛th,𝑚th, and whole coupled
neural networks, respectively. 𝜏(𝑛)𝑖 (𝑡) denotes the time delay
satisfying 0 ≤ 𝜏(𝑛)(𝑡) ≤ 𝜏(𝑛), ̇𝜏(𝑛)(𝑡) ≤ 𝜏(𝑛)0 < 1 with constant𝜏(𝑛), 𝜏(𝑛)0 . 𝑓(𝑛)

𝑗 (⋅) denotes the activation function of the 𝑗th
neuron in 𝑚th NN stimulating the 𝑖th neurons in the 𝑛th
NN. 𝑎(𝑛)𝑖 (𝑟(𝑡)) > 0 denotes changing rate of the 𝑖th neuron
under the condition that neural network is disconnected
and no external additional activation exists. 𝑏(𝑛)𝑗𝑖 (𝑟(𝑡)) is the
connection weight of neurons in coupled NN and 𝑐(𝑛)𝑗𝑖 (𝑟(𝑡))
denotes the corresponding delayed connection weight. The
smooth function 𝐷(𝑛)

𝑖𝑘 ((𝑟(𝑡))) ≥ 0 is the transmission diffu-
sion operator of neurons, ℎ(𝑛)𝑗𝑖 is the stochastic disturbance
function of neurons, and 𝑊𝑗(𝑡) is the Brownian motions as
noise acting on the transmission from the 𝑗th neuron to the𝑖th neuron.

According to [9, 10], we present the following initial value
condition for (2):𝑥(𝑛)𝑖 (𝑠, 𝜆(𝑛)) = 𝜙𝑖 (𝑠, 𝜆(𝑛)) , (𝑠, 𝜆(𝑛)) ∈ [−𝜏(𝑛), 0) × Ω0 (3)

which is with Dirichlet boundary value.𝑥(𝑛)𝑖 (𝑡0, 𝜆(𝑛)) = 0, (𝑡, 𝜆(𝑛)) ∈ [−𝜏(𝑛), +∞) × 𝜕Ω0 (4)

For convenience, we denote all the possible models of
BAM-NN as 𝐴(𝑛)(𝑟(𝑡)) = diag(𝑎(𝑛)1 (𝑟(𝑡)), ⋅ ⋅ ⋅ , 𝑎(𝑛)𝑁(𝑛)

(𝑟(𝑡))),𝐵(𝑛)(𝑟(𝑡)) = (𝑏(𝑛)𝑗𝑖 (𝑟(𝑡)))𝑁(𝑛)×𝑁(𝑚) , and 𝐶(𝑛))(𝑟(𝑡)) =(𝑐(𝑛)𝑗𝑖 (𝑟(𝑡)))𝑁(𝑛)×𝑁(𝑚) .
Definition 1. A stochastic vector 𝑥 is the solution of system
(2)-(4) if it satisfies the following conditions:

(i) 𝑥 is adapted to {F𝑡}{𝑡≥0},
(ii) for 𝑇0 ∈ R+, 𝑥 ∈ 𝐶𝑏

F0
([0, 𝑇0] × Ω0;R(𝑁(𝑛)+𝑁(𝑚))),

E( max
𝜆(𝑛)∈Ω0

∫𝑇0

0
( 2∑

𝑛=1

(󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)󵄨󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨∇𝑥(𝑛)󵄨󵄨󵄨󵄨󵄨2)) d𝑡) < +∞, (5)

(iii) for 𝑡 ∈ R+,∫
Ω0

𝑥(𝑛)𝑖 d𝜆(𝑛) = ∫
Ω0

𝜙𝑖 (0, 𝜆(𝑛)) d𝜆(𝑛)
+ ∫

Ω0

∫𝑡

0
(−𝑎(𝑛)𝑖 (𝑟 (𝑠)) 𝑥(𝑛)𝑖 (𝑠, 𝜆(𝑛))

+ ∫
Ω0

∫𝑡

0

𝑙(𝑛)∑
𝑘=1

𝜕𝜕𝜆(𝑛)𝑘

(𝐷(𝑛)
𝑖𝑘 (𝑟 (𝑠)) 𝜕𝑥(𝑛)𝑖 (𝑠, 𝜆(𝑛))𝜕𝜆(𝑛)𝑘

) d𝑠d𝜆(𝑛)
+ 𝑁(𝑚)∑

𝑗=1

𝑏(𝑛)𝑗𝑖 (𝑟 (𝑠)) 𝑓(𝑛)
𝑗 (𝑥(𝑚)

𝑗 (𝑠, 𝜆(𝑚))) + 𝑁(𝑚)∑
𝑗=1

𝑐(𝑛)𝑗𝑖 (𝑟 (𝑠))
⋅ 𝑓(𝑛)

𝑗 (𝑥(𝑚)
𝑗 (𝑠 − 𝜏(𝑚) (𝑠) , 𝜆(𝑚)))) d𝑠 d𝜆

+ ∫
Ω0

∫𝑡

0

𝑁(𝑚)∑
𝑗=1

ℎ(𝑛)𝑗𝑖 (𝑥(𝑛)𝑖 (𝑠, 𝜆(𝑛)) , 𝑥(𝑚)
𝑗 (𝑠, 𝜆(𝑚)) ,

𝑥(𝑚)
𝑗 (𝑠 − 𝜏(𝑚) (𝑠) , 𝜆(𝑚))) d𝑊𝑗 (𝑠) d𝜆.

(6)

Definition 2. The HSD-BAM-NN (2)-(4) is exponentially
stable in 𝑝th moment if, for arbitrary model combinations of(𝐴(𝑟), 𝐵(𝑟), 𝐶(𝑟))(𝑟 ∈ S), the states of the system satisfy

lim sup
𝑡󳨀→∞

logE (∑2
𝑛=1 (󵄩󵄩󵄩󵄩󵄩𝑥(𝑛)󵄩󵄩󵄩󵄩󵄩𝑝))𝑡 < 0 (7)

where ‖𝑥(𝑛)‖𝑝 = (∫
Ω0
|𝑥(𝑛)|𝑝d𝜆(𝑛))1/𝑝, 𝑝 ≥ 2. To ensure the

existence and uniqueness of the solution to system (2)-(4),
we suppose the following assumptions.

Assumption 3. For 𝑖 = 1, . . . ,𝑁(𝑛), arbitrary 𝑠1, 𝑠2 ∈ R, the
activation function 𝑓(𝑛)

𝑖 (⋅) is bounded with 𝑓(𝑛)
𝑖 (0) = 0 and

𝐿−𝑖 ≤ 𝑓(𝑛)
𝑖 (𝑠1) − 𝑓(𝑛)

𝑖 (𝑠2)𝑠1 − 𝑠2 ≤ 𝐿+𝑖 (8)

where 𝑠1 ̸= 𝑠2, 𝐿−𝑖 , 𝐿+𝑖 are constants.
Remark 4. In the above assumption, 𝐿−𝑖 , 𝐿+𝑖 could be positive,
negative, or zero. Such an assumption is weaker than the one
in [14] where it demands 𝐿−𝑖 ≡ −𝐿+𝑖 .
Assumption 5. For 𝑠1, 𝑠2, 𝑠3 ∈ R, there exits nonnegative
constant 𝜎(𝑛)𝑗𝑖 satisfying the following.

(ℎ(𝑛)𝑗𝑖 (𝑠1, 𝑠2, 𝑠3))2 ≤ 𝜎(𝑛)𝑗𝑖 (𝑠21 + 𝑠22 + 𝑠23) (9)

As noted in [6, 10], even if the parameters or time-varying
delay in neural networks are appropriately chosen, neural
networks may lead to some phenomena such as instability,
divergence, oscillation, and chaos [10, 11, 40]. In order to
stabilize the BAM-NN system (2)-(4), we introduce the
following periodically intermittent controller

𝑢(𝑛)𝑖 (𝑡, 𝜆(𝑛))
= {{{{{{{

𝑁(𝑛)∑
ℓ=1

𝐾(𝑛)
𝑖ℓ 𝑥(𝑛)ℓ , 𝜇𝑇 ≤ 𝑡 < 𝜇𝑇 + 𝛿0, 𝜇𝑇 + 𝛿 ≤ 𝑡 < (𝜇 + 1) 𝑇

(10)

where 𝑇 denotes the control period, 𝜇 = 0, 1, 2, ⋅ ⋅ ⋅ is the
control periods number, 𝛿(0 < 𝛿 < 𝑇) is called the control
time width, and 𝐾(𝑛)

𝑖ℓ are the control gains.
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Under the periodically intermittent controller (10), the
closed-loop systems of (2)-(4) can be described as follows.

d𝑥(𝑛)𝑖 = ( 𝑙(𝑛)∑
𝑘=1

𝜕𝜕𝜆(𝑛)𝑘

(𝐷(𝑛)
𝑖𝑘 (𝑟 (𝑡)) 𝜕𝑥(𝑛)𝑖𝜕𝜆(𝑛)𝑘

) − 𝑎(𝑛)𝑖 (𝑟 (𝑡))
⋅ 𝑥(𝑛)𝑖 + 𝑁(𝑚)∑

𝑗=1

𝑏(𝑛)𝑗𝑖 (𝑟 (𝑡)) 𝑓(𝑛)
𝑗 (𝑥(𝑚)

𝑗 ) + 𝑁(𝑚)∑
𝑗=1

𝑐(𝑛)𝑗𝑖 (𝑟 (𝑡))
⋅ 𝑓(𝑛)

𝑗 (𝑥(𝑚)
𝑗 (𝑡 − 𝜏(𝑚) (𝑡) , 𝜆(𝑚))) + 𝑁(𝑛)∑

ℓ=1

𝐾(𝑛)
𝑖ℓ 𝑥(𝑛)ℓ ) d𝑡

+ 𝑁(𝑚)∑
𝑗=1

ℎ(𝑛)𝑗𝑖 (𝑥(𝑛)𝑖 , 𝑥(𝑚)
𝑗 ,

𝑥(𝑚)
𝑗 (𝑡 − 𝜏(𝑚) (𝑡) , 𝜆(𝑚))) d𝑊𝑗 (𝑡)

(11)

For the 𝑝th moment of 𝑥(𝑡, 𝜆), we cite the following
lemma to derive the stability conditions of the system.

Lemma 6 (see [36]). Let Ω0 be a super cuboid set and 𝜆 =(𝜆𝑘)1×𝑙, |𝜆𝑘| ≤ 𝜃(𝜃 > 0), 𝑘 = 1, 2, . . . , 𝑙. If 𝑥(𝑡, 𝜆) is a real-
valued continuous derivable function as 𝑥 ∈ C((R+, Ω0);R),𝑥(𝑡, 𝜆)|𝜕Ω0 = 0, then

∫
Ω0

|𝑥 (𝑡, 𝜆)|𝑝 d𝜆
≤ 𝑝2𝜃4 ∫

Ω0

|𝑥 (𝑡, 𝜆)|𝑝−2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝑥 (𝑡, 𝜆)𝜕𝜆𝑘 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2 d𝜆. (12)

3. Main Results

In this section, we present the sufficient conditions for
stability of the controlled HDS-BAM-NN (11). For simplicity,
the following notations are used to state and prove the main
results.

𝜍(𝑛)𝑖 = min
𝑟∈S
𝜇(𝑛)𝑟

{{{
𝑙(𝑛)∑
𝑘=1

4 (𝑝 − 1)𝐷(𝑛)
𝑖𝑘𝑝𝜃2𝑘 + 𝑝𝑎(𝑛)𝑖

− 𝑁(𝑚)∑
𝑗=1

𝑝−1∑
ℓ=1

((𝑏̃(𝑛)𝑗𝑖 )𝑝𝛼(𝑛)ℓ𝑗𝑖 𝐿̃𝑝𝛽(𝑛)ℓ𝑗𝑖𝑗 + (𝑐(𝑛)𝑗𝑖 )𝑝𝜉(𝑛)ℓ𝑗𝑖 𝐿̃𝑝𝜁(𝑛)ℓ𝑗𝑖𝑗 )
− 𝑝 − 12 𝑁(𝑚)∑

𝑗=1

(𝑝−2∑
ℓ=1

󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)ℓ𝑗𝑖 + 󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)(𝑝−1)𝑗𝑖
+ 󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)𝑝𝑗𝑖)) −min
𝑟∈S
𝜇(𝑚)
𝑟

𝑁(𝑚)∑
𝑗=1

((𝑏̃(𝑚)
𝑖𝑗 )𝑝𝛼(𝑛)𝑝𝑗𝑖 (𝑁̃𝑖)𝑝𝛽(𝑛)𝑝𝑗𝑖

+ 𝑝 − 12 (󵄨󵄨󵄨󵄨󵄨𝜎(𝑚)
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)(𝑝−1)𝑖𝑗 + 󵄨󵄨󵄨󵄨󵄨𝜎(𝑚)
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)𝑝𝑖𝑗))

(13)

𝑘(𝑛)𝑖 = min
𝑟∈S
𝜇(𝑛)𝑟 ( 𝑙(𝑛)∑

𝑘=1

4 (𝑝 − 1)𝐷(𝑛)
𝑖𝑘𝑝𝜃2𝑘 + 𝑝𝑎(𝑛)𝑖

− 𝑁(𝑚)∑
𝑗=1

(𝑝−1∑
ℓ=1

((𝑏̃(𝑛)𝑗𝑖 )𝑝𝛼(𝑛)ℓ𝑗𝑖 𝐿̃𝑝𝛽(𝑛)ℓ𝑗𝑖𝑗 + (𝑐(𝑛)𝑗𝑖 )𝑝𝜉(𝑛)ℓ𝑗𝑖 𝐿̃𝑝𝜁(𝑛)ℓ𝑗𝑖𝑗 )
+ 𝑝 − 12 (𝑝−2∑

ℓ=1

󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)ℓ𝑗𝑖 + 󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)(𝑝−1)𝑗𝑖 + 󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)𝑝𝑗𝑖)))
−min

𝑟∈S
𝜇(𝑚)
𝑟

𝑁(𝑚)∑
𝑗=1

((𝑏̃(𝑚)
𝑖𝑗 )𝑝𝛼(𝑛)𝑝𝑖𝑗 (𝑁̃𝑖)𝑝𝛽(𝑛)𝑝𝑖𝑗

+ 𝑝 − 12 (󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)(𝑝−1)𝑖𝑗 + 󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)𝑝𝑖𝑗))

(14)

](𝑛)𝑖 = max
𝑟∈S
𝜇(𝑛)𝑟 (𝑝𝐾(𝑛)

𝑖𝑖 + 𝑁(𝑛)∑
ℓ=1
ℓ ̸=𝑖

𝑝−1∑
ℓ=1

󵄨󵄨󵄨󵄨󵄨𝐾(𝑛)
𝑖ℓ

󵄨󵄨󵄨󵄨󵄨𝑝𝜂ℓ𝑖ℓ
+ 𝑁(𝑛)∑

ℓ=1
ℓ ̸=𝑖

󵄨󵄨󵄨󵄨󵄨𝐾(𝑛)
ℓ𝑖

󵄨󵄨󵄨󵄨󵄨𝑝𝜂𝑝ℓ𝑖)
(15)

𝜂(𝑛)𝑖 = max
𝑟∈S
𝜇(𝑚)
𝑟

𝑁(𝑚)∑
𝑗=1

(𝑝 − 12 (󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)(𝑝−1)𝑖𝑗 + 󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)𝑝𝑖𝑗)
+ (𝑐(𝑛)𝑖𝑗 )𝑝𝜉(𝑛)𝑝𝑖𝑗 (𝑁̃𝑖)𝑝𝜁(𝑛)𝑝𝑖𝑗) (16)

In the above equations, 𝑎(𝑛)𝑖 = min𝑟∈S𝑎(𝑛)𝑖 (𝑟), 𝑏̃(𝑛)𝑗𝑖 =
max𝑟∈S|𝑏(𝑛)𝑗𝑖 (𝑟)|, 𝑐(𝑛)𝑖𝑗 = max𝑟∈S|𝑐(𝑛)𝑗𝑖 (𝑟)|, 𝐷(𝑛)

𝑖𝑘 = min𝑟∈S𝐷(𝑛)
𝑖𝑘 (𝑟),𝐿̃𝑗 = max{|𝐿−𝑗 |, |𝐿+𝑗 |}, 𝑁̃𝑖 = max{|𝑁−

𝑖 |, |𝑁+
𝑖 |}, 𝜇(𝑛)𝑟 > 0, 𝜇(𝑚)

𝑟 >0, and other variable parameters are given as 𝛼(𝑛)
ℓ𝑗𝑖
, 𝛽(𝑛)

ℓ𝑗𝑖
,𝜉(𝑛)

ℓ𝑗𝑖
, 𝜁(𝑛)

ℓ𝑗𝑖
, 𝜖(𝑛)

ℓ𝑗𝑖
, 𝛼(𝑛)

ℓ𝑗𝑖
, 𝛽(𝑛)ℓ𝑗𝑖 , 𝜉(𝑛)ℓ𝑗𝑖 , 𝜁(𝑛)ℓ𝑗𝑖 , 𝜖(𝑛)ℓ𝑗𝑖

∈ (0, 1) and satisfy that∑𝑝

ℓ=1
𝛼(𝑛)
ℓ𝑗𝑖
= ∑𝑝

ℓ=1
𝛽(𝑛)
ℓ𝑗𝑖
= ∑𝑝

ℓ=1
𝜉(𝑛)
ℓ𝑗𝑖
= ∑𝑝

ℓ=1
𝜁(𝑛)
ℓ𝑗𝑖
= ∑𝑝

ℓ=1
𝜖(𝑛)
ℓ𝑗𝑖
=∑𝑝

ℓ=1
𝜖(𝑛)
ℓ𝑖𝑗
= ∑𝑝

ℓ=1
𝛼(𝑛)
ℓ𝑗𝑖
= ∑𝑝

ℓ=1
𝛽(𝑛)ℓ𝑗𝑖 = ∑𝑝

ℓ=1
𝜉(𝑛)ℓ𝑗𝑖 = ∑𝑝

ℓ=1
𝜁(𝑛)ℓ𝑖𝑗 = 1.

In order to establish the sufficient conditions, the follow-
ing two assumptions are further introduced.

Assumption 7. The following inequalities holds:

𝜍(𝑛)𝑖 − ](𝑛)𝑖 −max
𝑟∈S

N∑
𝑞=1

𝛾(𝑛)𝑟𝑞 𝜇(𝑛)𝑞 − 𝜂(𝑛)𝑖1 − 𝜏(𝑛)0

> 0
𝑘(𝑛)𝑖 + 󰜚(𝑛)𝑖 −max

𝑟∈S

N∑
𝑞=1

𝛾(𝑛)𝑟𝑞 𝜇(𝑛)𝑞 − 𝜂(𝑛)𝑖1 − 𝜏(𝑛)0

> 0 (17)

where 󰜚(𝑛)𝑖 > 0.
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Here we define a function

𝐻𝑖 (𝜀𝑖) = 𝜍(𝑛)𝑖 − ](𝑛)𝑖 −max
𝑟∈S

N∑
𝑞=1

𝛾(𝑛)𝑟𝑞 𝜇(𝑛)𝑞 − 𝜀𝑖max
𝑟∈S
𝜇(𝑛)𝑟

− 𝜂(𝑛)𝑖 𝑒𝜀𝑖𝜏(𝑛)1 − 𝜏(𝑛)0

(18)

where 𝜀(𝑛)𝑖 ∈ R+. For 𝐻𝑖(𝜀𝑖) being continuous derivable, by
intermediate value theorem, we could conclude that there
exists 𝜀𝑖0 > 0 satisfying 𝐻𝑖(𝜀𝑖) > 0 with 𝜀𝑖 ∈ (0, 𝜀𝑖0).
Similarly, choose 𝜀𝑖1 > 0 and 𝜀𝑖 ∈ (0, 𝜀𝑖1) to have the following
function.

𝐹𝑖 (𝜀𝑖) = 𝑘(𝑛)𝑖 + 󰜚(𝑛)𝑖 −max
𝑟∈S

N∑
𝑞=1

𝛾(𝑛)𝑟𝑞 𝜇(𝑛)𝑞 − 𝜀𝑖max
𝑟∈S
𝜇(𝑛)𝑟

− 𝜂𝑖𝑒𝜀𝑖𝜏(𝑛)1 − 𝜏(𝑛)0

(19)

Let 𝜀 = min{𝜀𝑖0, 𝜀𝑖1}; we have the uniform inequality as𝐻𝑖(𝜀) > 0, 𝐹𝑖(𝜀) > 0.
Assumption 8. The following inequality holds: 𝜀 − 󰜚(𝑇 −𝛿)/𝜇𝑇 > 0, where 󰜚 = max(max1≤𝑖≤𝑁(𝑛)󰜚(𝑛)𝑖 ,max1≤𝑗≤𝑁(𝑚)󰜚(𝑚)

𝑗 ),𝜇 = min(min𝑟∈S𝜇(𝑛)𝑟 ,min𝑟∈S𝜇(𝑚)
𝑟 ).

Theorem 9. Under Assumptions 3–5 and 7-8, the closed-loop
system of (2)-(4) with the periodically intermittent controller
(10) is exponentially stable in 𝑝th moment.

Proof. Choose a candidate average Lyapunov-Krasovskii
function [41]

𝑉̂ : 𝐶 ([0,∞) × Ω0;R𝑁(𝑛)+𝑁(𝑚)) × S ×R+ 󳨀→ R+

𝑉̂ (𝑥, 𝑟 (𝑡) , 𝑡) = ∫
Ω0

𝑉 (𝑥, 𝑟 (𝑡) , 𝑡) d𝜆, (20)

with

𝑉 (𝑥, 𝑟 (𝑡) , 𝑡) = 2∑
𝑛=1

(𝜇(𝑛)𝑟(𝑡)

𝑁(𝑛)∑
𝑖=1

𝑒𝜀𝑡 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝
+ 𝑒𝜀𝜏(𝑛)(𝑡)1 − 𝜏(𝑛)0

𝑁(𝑛)∑
𝑖=1

𝜂(𝑛)𝑖 ∫𝑡

𝑡−𝜏(𝑛)(𝑡)
𝑒𝜀𝑠 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖 (𝑠, 𝜆(𝑛))󵄨󵄨󵄨󵄨󵄨𝑝 d𝑠)

(21)

where 𝜇(𝑛)𝑟(𝑡) > 0.
By the generalized Itô formula [42], we have the follow-

ing.

E𝑉̂ (𝑥, 𝑟 (𝑡) , 𝑡) = E𝑉̂ (𝜙, 𝜓, 𝑟 (0) , 0)
+ E∫𝑡

0
∫
Ω0

L𝑉 (𝑥, 𝑟 (𝑠) , 𝑠) d𝜆 d𝑠 (22)

For short expression, denote 𝑟(𝑡) = 𝑟, 𝑥(𝑚)
𝑗,𝜏 = 𝑥(𝑚)

𝑗 (𝑡 −𝜏(𝑚)(𝑡), 𝜆(𝑚)), 𝑥(𝑛)𝑖,𝜏 = 𝑥(𝑛)𝑖 (𝑡 − 𝜏(𝑛)(𝑡), 𝜆(𝑛)). By Lemma 2.7 in
[10], we can get the following.

L𝑉 (𝑥, 𝑟, 𝑡) = (2,1)∑
(𝑛,𝑚)=(1,2)

(𝜀𝜇(𝑛)𝑟

𝑁(𝑛)∑
𝑖=1

𝑒𝜀𝑡 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝
+ 𝑝𝜇(𝑛)𝑟 𝑒𝜀𝑡𝑁(𝑛)∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝−1( 𝑙(𝑛)∑
𝑘=1

𝜕𝜕𝜆(𝑛)𝑘

(𝐷(𝑛)
𝑖𝑘 (𝑟) 𝜕𝑥(𝑛)𝑖𝜕𝜆(𝑛)𝑘

)
− 𝑎(𝑛)𝑖 (𝑟) 𝑥(𝑛)𝑖 + 𝑁(𝑚)∑

𝑗=1

𝑏(𝑛)𝑗𝑖 (𝑟) 𝑓(𝑛)
𝑗 (𝑥(𝑚)

𝑗 )
+ 𝑁(𝑛)∑

ℓ=1

𝐾(𝑛)
𝑖ℓ 𝑥(𝑛)ℓ + 𝑁(𝑚)∑

𝑗=1

𝑐𝑗𝑖 (𝑟) 𝑓(𝑛)
𝑗 (𝑥(𝑚)

𝑗,𝜏 )) + 𝜇(𝑛)𝑟 𝑒𝜀𝑡
⋅ 𝑝 (𝑝 − 1)2 𝑁(𝑛)∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝−2
⋅ 𝑁(𝑚)∑
𝑗=1

(ℎ(𝑛)𝑗𝑖 (𝑥(𝑛)𝑖 , 𝑥(𝑚)
𝑗 , 𝑥(𝑚)

𝑗,𝜏 ))2 + N∑
𝑞=1

𝛾(𝑛)𝑟𝑞 𝜇(𝑛)𝑞 𝑒𝜀𝑡
⋅ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝 + 𝑒𝜀𝜏(𝑛)1 − 𝜏(𝑛)0

𝑁(𝑛)∑
𝑖=1

𝜂(𝑛)𝑖 𝑒𝜀𝑡 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝 − 𝑒𝜀𝜏(𝑛)1 − 𝜏(𝑛)0

⋅ 𝑁(𝑛)∑
𝑖=1

𝜂𝑖𝑒𝜀(𝑡−𝜏(𝑛)(𝑡)) 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖,𝜏

󵄨󵄨󵄨󵄨󵄨𝑝 (1 − 𝜏̇(𝑛) (𝑡))
+ N∑

𝑞=1

𝛾(𝑛)𝑟𝑞

𝑒𝜀𝜏(𝑛)1 − 𝜏(𝑛)0

𝑁(𝑛)∑
𝑖=1

𝜂(𝑛)𝑖

⋅ ∫𝑡

𝑡−𝜏(𝑛)(𝑡)
𝑒𝜀𝑠 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖 (𝑠, 𝜆(𝑛))󵄨󵄨󵄨󵄨󵄨𝑝 d𝑠)

(23)

By employing the absolute value inequality and noticing
that ∑N

𝑞=1 𝛾(𝑛)𝑟𝑞 = 0, we can obtain the following.

L𝑉(𝑥, 𝑟, 𝑡) ≤ (2,1)∑
(𝑛,𝑚)=(1,2)

(𝑁(𝑛)∑
𝑖=1

𝑒𝜀𝑡(𝜀𝜇(𝑛)𝑟

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝
+ 𝑝𝜇(𝑛)𝑟

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝−1 𝑙(𝑛)∑
𝑘=1

𝜕𝜕𝜆(𝑛)𝑘

(𝐷(𝑛)
𝑖𝑘 (𝑟) 𝜕𝑥(𝑛)𝑖𝜕𝜆(𝑛)𝑘

)
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+ (𝐾𝑖𝑖 − 𝑎(𝑛)𝑖 (𝑟)) 𝑥(𝑛)𝑖 + 𝑝𝜇(𝑛)𝑟

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝−1
⋅ 𝑁(𝑚)∑
𝑗=1

(󵄨󵄨󵄨󵄨󵄨𝑏(𝑛)𝑗𝑖 (𝑟)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑓(𝑛)
𝑗 (𝑥(𝑚)

𝑗 )󵄨󵄨󵄨󵄨󵄨) + 𝑝𝜇(𝑛)𝑟

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝−1
⋅ 𝑁(𝑚)∑
𝑗=1

(󵄨󵄨󵄨󵄨󵄨𝑐(𝑛)𝑗𝑖 (𝑟)󵄨󵄨󵄨󵄨󵄨 𝑓(𝑛)
𝑗 (𝑥(𝑚)

𝑗,𝜏 )󵄨󵄨󵄨󵄨󵄨) + 𝜇(𝑛)𝑟

⋅ 𝑝 (𝑝 − 1)2 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝−2
⋅ 𝑁(𝑚)∑
𝑗=1

𝜎(𝑛)𝑗𝑖 ((𝑥(𝑛)𝑖 )2 + (𝑥(𝑚)
𝑖 )2 + (𝑥(𝑚)

𝑗,𝜏 )2)
+ 𝑁(𝑛)∑

ℓ=1
ℓ ̸=𝑖

𝑝𝜇(𝑛)𝑟

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝−1 󵄨󵄨󵄨󵄨𝐾𝑖ℓ
󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)ℓ

󵄨󵄨󵄨󵄨󵄨 + N∑
𝑞=1

𝛾(𝑛)𝑟𝑞 𝜇(𝑛)𝑞

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝
+ 𝑒𝜀𝜏(𝑛)1 − 𝜏(𝑛)0

𝜂(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝 − 𝜂(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)
𝑗,𝜏

󵄨󵄨󵄨󵄨󵄨𝑝))
(24)

Applying the fundamental inequality, i.e., 𝑎𝑝1 + 𝑎𝑝2 + ⋅ ⋅ ⋅ +𝑎𝑝𝑝 ≥ 𝑝𝑎1𝑎2 ⋅ ⋅ ⋅ 𝑎𝑝, (𝑎ℎ ≥ 0, ℎ = 1, 2, . . . , 𝑝), yields the
following.

𝑝𝜇(𝑛)𝑟

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝−1 𝑁(𝑚)∑
𝑗=1

(󵄨󵄨󵄨󵄨󵄨𝑏(𝑛)𝑗𝑖 (𝑟)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑓(𝑛)
𝑗 (𝑥(𝑚)

𝑗 )󵄨󵄨󵄨󵄨󵄨)
≤ 𝜇(𝑛)𝑟

𝑁(𝑚)∑
𝑗=1

𝑝 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝−1 𝑏̃(𝑛)𝑗𝑖 𝐿̃𝑗

󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)
𝑗

󵄨󵄨󵄨󵄨󵄨 = 𝜇(𝑛)𝑟

𝑁(𝑚)∑
𝑗=1

𝑝
⋅ 𝑝−1∏
ℓ=1

((𝑏̃(𝑛)𝑗𝑖 )𝛼(𝑛)ℓ𝑗𝑖 𝐿̃𝛽(𝑛)ℓ𝑗𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨) ((𝑏̃(𝑛)𝑗𝑖 )𝛼(𝑛)𝑝𝑗𝑖 𝐿̃𝛽(𝑛)𝑝𝑗𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)
𝑗

󵄨󵄨󵄨󵄨󵄨)
≤ 𝜇(𝑛)𝑟

𝑁(𝑚)∑
𝑗=1

𝑝−1∑
ℓ=1

(𝑏̃(𝑛)𝑗𝑖 )𝑝𝛼(𝑛)ℓ𝑗𝑖 𝐿̃𝑝𝛽(𝑛)ℓ𝑗𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝
+ 𝜇(𝑛)𝑟

𝑁(𝑚)∑
𝑗=1

(𝑏̃(𝑛)𝑗𝑖 )𝑝𝛼(𝑛)𝑝𝑗𝑖 𝐿̃𝑝𝛽(𝑛)𝑝𝑗𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)
𝑗

󵄨󵄨󵄨󵄨󵄨𝑝

(25)

𝜇(𝑛)𝑟

𝑁(𝑛)∑
ℓ=1
ℓ ̸=𝑖

𝑝 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝−1 󵄨󵄨󵄨󵄨𝐾𝑖ℓ
󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)ℓ

󵄨󵄨󵄨󵄨󵄨 = 𝜇(𝑛)𝑟

𝑁(𝑛)∑
ℓ=1
ℓ ̸=𝑖

𝑝
⋅ 𝑝−1∏
ℓ=1

(󵄨󵄨󵄨󵄨𝐾𝑖𝑙
󵄨󵄨󵄨󵄨𝜂ℓ𝑖𝑙 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨) (󵄨󵄨󵄨󵄨𝐾𝑖ℓ
󵄨󵄨󵄨󵄨𝜂𝑝𝑖𝑙 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)ℓ

󵄨󵄨󵄨󵄨󵄨)

= 𝜇(𝑛)𝑟

𝑁(𝑛)∑
ℓ=1
ℓ ̸=𝑖

(𝑝−1∑
ℓ=1

󵄨󵄨󵄨󵄨𝐾𝑖𝑙
󵄨󵄨󵄨󵄨𝑝𝜂ℓ𝑖𝑙 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝
+ 𝑁(𝑛)∑

ℓ=1
ℓ ̸=𝑖

(󵄨󵄨󵄨󵄨𝐾𝑖𝑙
󵄨󵄨󵄨󵄨𝑝𝜂ℓ𝑖𝑙 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)ℓ

󵄨󵄨󵄨󵄨󵄨𝑝))
(26)

𝑝𝜇(𝑛)𝑟

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝−1 𝑁(𝑚)∑
𝑗=1

(󵄨󵄨󵄨󵄨󵄨𝑐(𝑛)𝑗𝑖 (𝑟)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑓(𝑛)
𝑗 (𝑥(𝑚)

𝑗,𝜏 )󵄨󵄨󵄨󵄨󵄨)
≤ 𝜇(𝑛)𝑟

𝑁(𝑚)∑
𝑗=1

𝑝 (󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝−1 𝑐(𝑛)𝑗𝑖 𝐿̃𝑗

󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)
𝑗,𝜏

󵄨󵄨󵄨󵄨󵄨) = 𝜇(𝑛)𝑟

𝑁(𝑚)∑
𝑗=1

𝑝
⋅ 𝑝−1∏
ℓ=1

((𝑐(𝑛)𝑗𝑖 )𝜉(𝑛)ℓ𝑗𝑖 𝐿̃𝜁(𝑛)ℓ𝑗𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨) ((𝑐(𝑛)𝑗𝑖 )𝜉(𝑛)𝑝𝑗𝑖 𝐿̃𝜁(𝑛)𝑝𝑗𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)
𝑗,𝜏

󵄨󵄨󵄨󵄨󵄨)
≤ 𝜇(𝑛)𝑟

𝑁(𝑚)∑
𝑗=1

𝑝−1∑
ℓ=1

(𝑐(𝑛)𝑗𝑖 )𝑝𝜉(𝑛)ℓ𝑗𝑖 𝐿̃𝑝𝜁(𝑛)ℓ𝑗𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝
+ 𝜇(𝑛)𝑟

𝑁(𝑚)∑
𝑗=1

((𝑐(𝑛)𝑗𝑖 )𝑝𝜉(𝑛)𝑝𝑗𝑖 𝐿̃𝑝𝜁(𝑛)𝑝𝑗𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)
𝑗,𝜏

󵄨󵄨󵄨󵄨󵄨𝑝)

(27)

𝜇(𝑛)𝑟

𝑝 (𝑝 − 1)2 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝−2 𝑁(𝑚)∑
𝑗=1

𝜎1𝑖𝑗 ((𝑥(𝑛)𝑖 )2 + (𝑥(𝑚)
𝑖 )2

+ (𝑥(𝑚)
𝑗,𝜏 )2) = 𝜇(𝑛)𝑟

𝑝 (𝑝 − 1)2 𝑁(𝑚)∑
𝑗=1

𝑝(𝑝−2∏
ℓ=1

󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝜖(𝑛)ℓ𝑗𝑖
⋅ 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨) ((󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝜖(𝑛)(𝑝−1)𝑗𝑖 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨) (󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝜖(𝑛)𝑝𝑗𝑖 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨)
+ (󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝜖(𝑛)(𝑝−1)𝑗𝑖 󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)
𝑗

󵄨󵄨󵄨󵄨󵄨) (󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝜖(𝑛)𝑝𝑗𝑖 󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)
𝑗

󵄨󵄨󵄨󵄨󵄨)
+ (󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝜖(𝑛)(𝑝−1)𝑗𝑖 󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)
𝑗,𝜏

󵄨󵄨󵄨󵄨󵄨) (󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝜖(𝑛)𝑝𝑗𝑖 󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)
𝑗,𝜏

󵄨󵄨󵄨󵄨󵄨)) = 𝜇(𝑛)𝑟

⋅ 𝑝 − 12 𝑁(𝑚)∑
𝑗=1

𝑝−2∑
ℓ=1

󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)ℓ𝑗𝑖 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝 + 𝜇(𝑛)𝑟

𝑝 − 12
⋅ 𝑁(𝑚)∑
𝑗=1

(󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)(𝑝−1)𝑗𝑖 + 󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)𝑝𝑗𝑖) (󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝 + 󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)
𝑗

󵄨󵄨󵄨󵄨󵄨𝑝
+ 󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)

𝑗,𝜏

󵄨󵄨󵄨󵄨󵄨𝑝)

(28)

Substituting (25)-(28) into (24) leads to the following.



Complexity 7

L𝑉(𝑥, 𝑟, 𝑡) ≤ (2,1)∑
(𝑛,𝑚)=(1,2)

(𝑁(𝑛)∑
𝑖=1

𝑒𝜀𝑡((𝜀𝜇(𝑛)𝑟 + 𝑝𝜇(𝑛)𝑟 𝑘𝑖𝑖 − 𝑝𝜇(𝑛)𝑟 𝑎(𝑛)𝑖 + N∑
𝑞=1

𝛾(𝑛)𝑟𝑞 𝜇(𝑛)𝑞 + 𝜇(𝑛)𝑟

𝑝 − 12 𝑁(𝑚)∑
𝑗=1

𝑝−2∑
ℓ=1

󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)ℓ𝑗𝑖
+ 𝜇(𝑛)𝑟

𝑁(𝑚)∑
𝑗=1

𝑝−1∑
ℓ=1

((𝑏̃(𝑛)𝑗𝑖 )𝑝𝛼(𝑛)ℓ𝑗𝑖 𝐿̃𝑝𝛽(𝑛)ℓ𝑗𝑖𝑗 + (𝑐(𝑛)𝑗𝑖 )𝑝𝜉(𝑛)ℓ𝑗𝑖 𝐿̃𝑝𝜁(𝑛)ℓ𝑗𝑖𝑗 ) + 𝜇(𝑛)𝑟

𝑁(𝑛)∑
ℓ=1
ℓ ̸=𝑖

𝑝−1∑
ℓ=1

󵄨󵄨󵄨󵄨𝐾𝑖ℓ
󵄨󵄨󵄨󵄨𝑝𝜂ℓ𝑖𝑙

+ 𝑁(𝑚)∑
𝑗=1

(𝜇(𝑚)
𝑟 (𝑏̃(𝑚)

𝑖𝑗 )𝑝𝛼(𝑛)𝑝𝑖𝑗 (𝑁̃𝑖)𝑝𝛽(𝑛)𝑝𝑖𝑗 + (𝜇(𝑛)𝑟 (󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)(𝑝−1)𝑗𝑖 + 󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)𝑝𝑗𝑖) + 𝜇(𝑚)
𝑟 (󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)(𝑝−1)𝑖𝑗 + 󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)𝑝𝑖𝑗)) 𝑝 − 12 ))
⋅ 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝 + 𝜇(𝑛)𝑟

𝑁(𝑛)∑
ℓ=1
ℓ ̸=𝑖

󵄨󵄨󵄨󵄨𝐾𝑖ℓ
󵄨󵄨󵄨󵄨𝑝𝜂𝑝𝑖𝑙 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)ℓ

󵄨󵄨󵄨󵄨󵄨𝑝 + 𝑒𝜀𝑡𝜂(𝑛)𝑖1 − 𝜏(𝑛)0

+ 𝜇(𝑚)
𝑟

𝑁(𝑚)∑
𝑗=1

(𝑐(𝑚)
𝑖𝑗 )𝑝𝜉(𝑛)𝑝𝑖𝑗 𝑁̃𝑝𝜁

(𝑛)

𝑝𝑖𝑗

𝑖

󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)
𝑗,𝜏

󵄨󵄨󵄨󵄨󵄨𝑝 + 𝜇(𝑚)
𝑟

𝑝 − 12
⋅ 𝑁(𝑚)∑
𝑗=1

(󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)(𝑝−1)𝑖𝑗 + 󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)𝑝𝑖𝑗) 󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)
𝑗,𝜏

󵄨󵄨󵄨󵄨󵄨𝑝 − 𝜂(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)
𝑗,𝜏

󵄨󵄨󵄨󵄨󵄨𝑝)+ 𝑁(𝑛)∑
𝑖=1

𝑒𝜀𝑡𝑝𝜇(𝑛)𝑟

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝−1( 𝑙(𝑛)∑
𝑘=1

𝜕𝜕𝜆(𝑛)𝑘

(𝐷(𝑛)
𝑖𝑘 (𝑟) 𝜕𝑥(𝑛)𝑖𝜕𝜆(𝑛)𝑘

)))

(29)

Let

𝜍(𝑛)𝑖 = min
𝑟∈S
𝜇(𝑛)𝑟 (𝑝𝑎(𝑛)𝑖

− 𝑁(𝑚)∑
𝑗=1

𝑝−1∑
ℓ=1

((𝑏̃(𝑛)𝑗𝑖 )𝑝𝛼(𝑛)ℓ𝑗𝑖 𝐿̃𝑝𝛽(𝑛)ℓ𝑗𝑖𝑗 + (𝑐(𝑛)𝑗𝑖 )𝑝𝜉(𝑛)ℓ𝑗𝑖 𝐿̃𝑝𝜉(𝑛)ℓ𝑗𝑖𝑗 )
− 𝑝 − 12 𝑁(𝑚)∑

𝑗=1

𝑝−2∑
ℓ=1

󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)ℓ𝑗𝑖 − 𝑝 − 12

⋅ 𝑁(𝑚)∑
𝑗=1

(󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)(𝑝−1)𝑗𝑖 + 󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)𝑝𝑗𝑖))
−min

𝑟∈S
𝜇(𝑚)
𝑟

𝑁(𝑚)∑
𝑗=1

((𝑏̃(𝑚)
𝑖𝑗 )𝑝𝛼(𝑛)𝑝𝑖𝑗 𝑁̃𝑝𝛽

(𝑛)

𝑝𝑖𝑗

𝑖

+ 𝑝 − 12 (󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)(𝑝−1)𝑖𝑗 + 󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑝𝜖(𝑛)𝑝𝑖𝑗))
(30)

and by (22), we get the following inequality.

E𝑉̂ (𝑥, 𝑟 (𝑡) , 𝑡) ≤ E𝑉̂ (𝜙, 𝜓, 𝑟 (0) , 0)
− (2,1)∑

(𝑛,𝑚)=(1,2)

(E∫𝑡

0
∫
Ω0

𝑁(𝑛)∑
𝑖=1

𝑒𝜀𝑠(𝜍(𝑛)𝑖 − 𝜀max
𝑟∈S
𝜇(𝑛)𝑟 − ](𝑛)𝑖 −max

𝑟∈S

N∑
𝑞=1

𝛾(𝑛)𝑟𝑞 𝜇(𝑛)𝑞 − 𝑒𝜀𝜏(𝑛)𝜂(𝑛)𝑖1 − 𝜏(𝑛)0

) 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖 (𝑠, 𝜆(𝑛))󵄨󵄨󵄨󵄨󵄨𝑝 d𝜆(𝑛)d𝑠
− E∫𝑡

0

𝑛∑
𝑖=1

𝑒𝜀𝑠 ∫
Ω0

𝑝𝜇𝑟(𝑠) 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖 (𝑠, 𝜆(𝑛))󵄨󵄨󵄨󵄨󵄨𝑝−1( 𝑙(𝑛)∑
𝑘=1

𝜕𝜕𝜆(𝑛)𝑘

(𝐷(𝑛)
𝑖𝑘 (𝑟) 𝜕𝑥(𝑛)𝑖𝜕𝜆(𝑛)𝑘

)) d𝜆(𝑛)d𝑠)
(31)

According toDirichlet boundary conditions, by Lemma 6, we
can derive the integral part of evolution dynamics as follows.

∫
Ω0

𝑝 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖 (𝑠, 𝜆(𝑛))󵄨󵄨󵄨󵄨󵄨𝑝−1( 𝑙(𝑛)∑
𝑘=1

𝜕𝜕𝜆(𝑛)𝑘

⋅ (𝐷(𝑛)
𝑖𝑘 (𝑟) 𝜕𝑥(𝑛)𝑖 (𝑠, 𝜆(𝑛))𝜕𝜆(𝑛)𝑘

)) d𝜆(𝑛)

≤ − 𝑙(𝑛)∑
𝑘=1

4 (𝑝 − 1)𝐷(𝑛)
𝑖𝑘 (𝑟)𝑝𝜃2𝑘 ∫

Ω0

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖 (𝑠, 𝜆(𝑛))󵄨󵄨󵄨󵄨󵄨𝑝 d𝑠
≤ − 𝑙(𝑛)∑

𝑘=1

4 (𝑝 − 1)𝐷(𝑛)
𝑖𝑘𝑝𝜃2𝑘 ∫

Ω0

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖 (𝑠, 𝜆(𝑛))󵄨󵄨󵄨󵄨󵄨𝑝 d𝑠
(32)

Using It𝑜’s formula (E𝑉(𝑡))󸀠 = E(L𝑉(𝑡)), we obtain
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E𝑉̂ (𝑥, 𝑟 (𝑡) , 𝑡) ≤ E𝑉̂ (𝜙, 𝜓, 𝑟 (0) , 0)
− (2,1)∑

(𝑛,𝑚)=(1,2)

(E∫𝑡

0
∫
Ω0

𝑁(𝑛)∑
𝑖=1

𝑒𝜀𝑠(𝜍(𝑛)𝑖 +min
𝑟∈S
𝜇(𝑛)𝑟

𝑙(𝑛)∑
𝑘=1

4 (𝑝 − 1)𝐷(𝑛)
𝑖𝑘𝑝𝜃2𝑘 − 𝜀max

𝑟∈S
𝜇(𝑛)𝑟 − ](𝑛)𝑖 −max

𝑟∈S

N∑
𝑞=1

𝛾(𝑛)𝑟𝑞 𝜇(𝑛)𝑞 − 𝑒𝜀𝜏(𝑛)𝜂(𝑛)𝑖1 − 𝜏(𝑛)0

) 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖 (𝑠, 𝜆(𝑛))󵄨󵄨󵄨󵄨󵄨𝑝 d𝜆(𝑛)d𝑠)
≤ E𝑉̂ (𝜙, 𝜓, 𝑟 (0) , 0) − (2,1)∑

(𝑛,𝑚)=(1,2)

(E∫𝑡

0
∫
Ω0

𝑁(𝑛)∑
𝑖=1

𝑒𝜀𝑠(𝜍(𝑛)𝑖 − 𝜀max
𝑟∈S
𝜇(𝑛)𝑟 − ](𝑛)𝑖 −max

𝑟∈S

N∑
𝑞=1

𝛾(𝑛)𝑟𝑞 𝜇(𝑛)𝑞 − 𝑒𝜀𝜏(𝑛)𝜂(𝑛)𝑖1 − 𝜏(𝑛)0

) 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖 (𝑠, 𝜆(𝑛))󵄨󵄨󵄨󵄨󵄨𝑝 d𝜆(𝑛)d𝑠)
≤ E𝑉̂ (𝜙, 𝜓, 𝑟 (0) , 0)

(33)

where (𝑡, 𝜆(𝑛)) ∈ [𝜇𝑇, 𝜇𝑇 + 𝛿] × Ω0.
Similarly, when (𝑡, 𝜆(𝑛)) ∈ [𝜇𝑇+𝛿, (𝜇+1)𝑇]×Ω0, we have

E𝑉̂ (𝑥, 𝑟 (𝑡) , 𝑡) ≤ E𝑉̂ (𝑥 (𝜇𝑇 + 𝛿, 𝜆) , 𝑟 (𝜇𝑇 + 𝛿) , 𝜇𝑇
+ 𝛿) − E∫𝑡

0
∫
Ω0

𝑁(𝑛)∑
𝑖=1

𝑒𝜀𝑠 [[𝑘(𝑛)𝑖 + 󰜚(𝑛)𝑖 − 𝜀max
𝑟∈S
𝜇(𝑛)𝑟

− ](𝑛)𝑖 −max
𝑟∈S

N∑
𝑞=1

𝛾(𝑛)𝑟𝑞 𝜇(𝑛)𝑞 − 𝑒𝜀𝜏(𝑛)𝜂(𝑛)𝑖1 − 𝜏(𝑛)0

]]⋅ 󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖 (𝑠, 𝜆(𝑛))󵄨󵄨󵄨󵄨󵄨𝑝 d𝜆 d𝑠 ≤ E𝑉̂ (𝑥 (𝜇𝑇 + 𝛿,
𝜆) , 𝑟 (𝜇𝑇 + 𝛿) , 𝜇𝑇 + 𝛿) + 󰜚𝜇E∫𝑡

0
𝑉̂ (𝑥, 𝑟 (𝑠) , 𝑠) d𝑠

(34)

where 󰜚 = max{max1≤𝑖≤𝑁(𝑛)󰜚𝑖,max1≤𝑗≤𝑁(𝑚)󰜚(𝑚)
𝑗 }, 𝜇 =

min{min𝑙∈S𝜇(𝑛)𝑟 ,min𝑙∈S𝜇(𝑚)
𝑟 }.

By using the Gronwall inequality to (34) it yields the
following.

E𝑉̂ (𝑥, 𝑟 (𝑡) , 𝑡)≤ E𝑉̂ (𝑥 (𝜇𝑇 + 𝛿, 𝜆) , 𝑟 (𝜇𝑇 + 𝛿) , 𝜇𝑇 + 𝛿)⋅ 𝑒(󰜚/𝜇)(𝑡−𝜇𝑇−𝛿) (35)

From (33)-(35), we can conclude that
(I) for (𝑡, 𝜆) ∈ ([0, 𝛿), Ω0) and (𝑡, 𝜆) ∈ ([𝑇, 𝑇 + 𝛿),Ω0), by

(33), we can, respectively, have

E𝑉̂ (𝑥, 𝑟 (𝑡) , 𝑡) ≤ E𝑉̂ (𝑥 (0, 𝜆) , 𝑟 (0) , 0) , (36)

and

E𝑉̂ (𝑥, 𝑟 (𝑡) , 𝑡) ≤ E𝑉̂ (𝑥 (𝑇, 𝜆) , 𝑟 (𝑇) , 𝑇)≤ E𝑉̂ (𝑥 (0, 𝜆) , 𝑟 (0) , 0) 𝑒(󰜚/𝜇)(𝑇−𝛿) (37)

(II) for (𝑡, 𝜆) ∈ ([𝛿, 𝑇),Ω0) and (𝑡, 𝜆) ∈ ([𝑇 + 𝛿, 2𝑇),Ω0), by
(35), we can, respectively, have

E𝑉̂ (𝑥, 𝑟 (𝑡) , 𝑡) ≤ E𝑉̂ (𝑥 (0, 𝜆) , 𝑟 (0) , 0) 𝑒(󰜚/𝜇)(𝑡−𝛿), (38)

and

E𝑉̂ (𝑥, 𝑟 (𝑡) , 𝑡)≤ E𝑉̂ (𝑥 (𝑇 + 𝛿, 𝜆) , 𝑟 (𝑇 + 𝛿) , 𝑇 + 𝛿) 𝑒(󰜚/𝜇)(𝑡−𝑇−𝛿)≤ E𝑉̂ (𝑥 (0, 𝜆) , 𝑟 (0) , 0) 𝑒(𝜌/𝜇)(𝑡−2𝛿). (39)

Repeating above procedure (I)-(II), for (𝑡, 𝜆) ∈ [𝜇𝑇, 𝜇𝑇+𝛿)×Ω0, then 𝜇 ≤ 𝑡/𝑇 and

E𝑉̂ (𝑥, 𝑟 (𝑡) , 𝑡) ≤ E𝑉̂ (𝑥 (𝜇𝑇, 𝜆) , 𝑟 (𝜇𝑇) , 𝜇𝑇)≤ E𝑉̂ (𝑥 (0, 𝜆) , 𝑟 (0) , 0) 𝑒(󰜚/𝜇𝑇)(𝑇−𝛿)𝑡 (40)

and for (𝑡, 𝜆) ∈ [𝜇𝑇 + 𝛿, (𝜇 + 1)𝑇) × Ω0, then 𝑡/𝑇 < 𝜇 + 1 and
E𝑉̂ (𝑥, 𝑟 (𝑡) , 𝑡)≤ E𝑉̂ (𝑥 (𝜇𝑇 + 𝛿, 𝜆) , 𝑟 (𝜇𝑇 + 𝛿) , 𝜇𝑇 + 𝛿)⋅ 𝑒(󰜚/𝜇)(𝑡−𝜇𝑇−𝛿) ≤ E𝑉̂ (𝑥 (0, 𝜆) , 𝑟 (0) , 0) 𝑒(󰜚/𝜇𝑇)(𝑇−𝛿)𝑡. (41)

Hence, for arbitrary (𝑡, 𝜆) ∈ [0,∞) × Ω0,

E𝑉̂ (𝑥, 𝑟 (𝑡) , 𝑡) ≤ E𝑉̂ (𝑥 (0, 𝜆) , 𝑟 (0) , 0) 𝑒(󰜚/𝜇𝑇)(𝑇−𝛿)𝑡. (42)

By calculation, we obtain

E𝑉̂ (𝑥, 𝑟 (𝑡) , 𝑡) ≥ 𝑒𝜀𝑡𝜇E(∫
Ω0

𝑁(𝑛)∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝 d𝜆(𝑛)
+ ∫

Ω0

𝑁(𝑚)∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)
𝑗

󵄨󵄨󵄨󵄨󵄨𝑝 d𝜆(𝑛)) (43)

E𝑉̂ (𝑥 (0, 𝜆) , 𝑟 (0) , 0)
≤ max

𝑟∈S
𝜇(𝑛)𝑟 E∫

Ω0

𝑁(𝑛)∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝜙𝑖 (0, 𝜆(𝑛))󵄨󵄨󵄨󵄨󵄨𝑝 d𝜆(𝑛)
+ sup

−𝜏(𝑛)≤𝑠≤0

(( max
1≤𝑖≤𝑁(𝑛)

𝜂(𝑛)𝑖 ) 𝜏(𝑛)𝑒𝜀𝜏(𝑛)1 − 𝜏(𝑛)0

× E∫
Ω0

𝑁(𝑛)∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝜙𝑖 (𝑠, 𝜆(𝑛))󵄨󵄨󵄨󵄨󵄨𝑝 d𝜆(𝑛))
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+max
𝑟∈S
𝜇(𝑚)
𝑟 E∫

Ω0

𝑁(𝑚)∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝜓𝑗 (0, 𝜆(𝑛))󵄨󵄨󵄨󵄨󵄨𝑝 d𝜆(𝑛)
+ sup

−𝜏(𝑛)≤𝑠≤0

[[( max
1≤𝑗≤𝑁(𝑚)

𝜂 (𝑚)𝑗) 𝜏(𝑛)𝑒𝜀𝜏(𝑛)1 − 𝜏(𝑛)0

⋅ E∫
Ω0

𝑁(𝑚)∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝜓𝑗 (𝑠, 𝜆(𝑛))󵄨󵄨󵄨󵄨󵄨𝑝 d𝜆(𝑛)]] = 𝜇0
(44)

so

E(∫
Ω0

𝑁(𝑛)∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑥(𝑛)𝑖

󵄨󵄨󵄨󵄨󵄨𝑝 d𝜆(𝑛) + ∫
Ω0

𝑁(𝑚)∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑥(𝑚)
𝑗

󵄨󵄨󵄨󵄨󵄨𝑝 d𝜆(𝑛))
≤ 𝜇0𝜇 𝑒−(𝜀−(󰜚/𝜇𝑇)(𝑇−𝛿))𝑡.

(45)

Under Assumption 8, Theorem 9 holds.
In Theorem 9, if we let 𝜍(𝑛)𝑖 = 𝑘(𝑛)𝑖 , then 𝛼(𝑛)

ℓ𝑗𝑖
= 𝛼(𝑛)

ℓ𝑗𝑖
, 𝛽(𝑛)

ℓ𝑗𝑖
=𝛽(𝑛)

ℓ𝑗𝑖
, 𝜉(𝑛)

ℓ𝑗𝑖
= 𝜉(𝑛)

ℓ𝑗𝑖
, 𝜁(𝑛)

ℓ𝑗𝑖
= 𝜁(𝑛)

ℓ𝑗𝑖
, 𝜖(𝑛)

ℓ𝑗𝑖
= 𝜖(𝑛)

ℓ𝑗𝑖
, 𝜖(𝑛)

ℓ𝑗𝑖
= 𝜖(𝑛)

ℓ𝑗𝑖
, 𝛼(𝑛)

ℓ𝑗𝑖
= 𝛼(𝑛)

ℓ𝑗𝑖
,𝛽(𝑛)ℓ𝑗𝑖 = 𝛽(𝑛)ℓ𝑗𝑖 , 𝜉(𝑛)ℓ𝑗𝑖 = 𝜉(𝑛)ℓ𝑗𝑖 , 𝜁(𝑛)ℓ𝑗𝑖 = 𝜁(𝑛)ℓ𝑗𝑖 , 󰜚𝑖 = −](𝑛)𝑖 . Thus, we can

obtain the following corollary.

Corollary 10. Under Assumptions 3–5, system (2)-(4) with
periodically intermittent controllers (10) is exponentially stable
in 𝑝th moment if the following conditions hold:

(I) ](𝑛)𝑖 < 0, 𝜍(𝑛)𝑖 − ](𝑛)𝑖 − max𝑟∈S∑N
𝑞=1 𝛾(𝑛)𝑟𝑞 𝜇(𝑛)𝑞 − 𝜂(𝑛)𝑖 /(1 −𝜏(𝑛)0 ) > 0.

(II) 𝜀 − ](𝑇 − 𝛿)/𝜇𝑇 > 0, where ] = max{max1≤𝑖≤𝑁(𝑛) |](𝑛)𝑖 |,
max1≤𝑗≤𝑁(𝑚) |](𝑚)

𝑗 |}, 𝜇 = min{min𝑟∈S𝜇(𝑛)𝑟 ,min𝑟∈S𝜇(𝑚)
𝑟 }.

In Theorem 9, letting 𝜍(𝑛)𝑖 = 1/𝑝, 𝜍(𝑚)
𝑗 = 1/𝑝 which means

that 𝛼(𝑛)
ℓ𝑗𝑖
= 1/𝑝, 𝛽(𝑛)

ℓ𝑗𝑖
= 1/𝑝, 𝜉(𝑛)

𝑙𝑗𝑖
= 1/𝑝, 𝜁(𝑛)

𝑙𝑗𝑖
= 1/𝑝 and 𝜖(𝑛)

ℓ𝑗𝑖
=1/𝑝, we can get the following.

𝜍(𝑛)𝑖 = 𝑘̃(𝑛)𝑖 = min
𝑟∈S
𝜇(𝑛)𝑟 ( 𝑙(𝑛)∑

𝑘=1

4 (𝑝 − 1)𝐷(𝑛)
𝑖𝑘𝑝𝜃2𝑘 + 𝑝𝑎(𝑛)𝑖

− (𝑝 − 1)𝑁(𝑚)∑
𝑗=1

(𝑏̃(𝑛)𝑗𝑖 𝐿̃𝑗 + 𝑐(𝑛)𝑗𝑖 𝐿̃𝑗)
− 𝑝 (𝑝 − 1)2 𝑁(𝑚)∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑗𝑖

󵄨󵄨󵄨󵄨󵄨) −min
𝑟∈S

(𝜇(𝑚)
𝑟 )

𝑙

⋅ 𝑁(𝑚)∑
𝑗=1

(𝑏̃(𝑚)
𝑖𝑗 𝑁̃𝑖 + (𝑝 − 1) 󵄨󵄨󵄨󵄨󵄨𝜎(𝑛)𝑖𝑗

󵄨󵄨󵄨󵄨󵄨)
(46)

We can also have a further extended corollary.

Corollary 11. Under Assumptions 3 to 5, the BAM-NN sys-
tem (2)-(4) with periodically intermittent controllers (10) is

exponentially stable in 𝑝th moment if the following conditions
hold:

(I) 𝜍(𝑛)𝑖 − ]̃(𝑛)𝑖 −max𝑟∈S∑N
𝑞=1 𝛾(𝑛)𝑟𝑞 𝜇(𝑛)𝑞 − 𝜂(𝑛)𝑖 /(1 − 𝜏(𝑛)0 ) > 0.

(II) 𝜍(𝑛)𝑖 + 󰜚(𝑛)𝑖 −max𝑟∈S∑N
𝑞=1 𝛾(𝑛)𝑟𝑞 𝜇(𝑛)𝑞 − 𝜂(𝑛)𝑖 /(1 − 𝜏(𝑛)0 ) > 0,󰜚(𝑛)𝑖 > 0.

(III) 𝜀−󰜚(𝑇−𝛿)/𝜇𝑇 > 0, where 󰜚 = max{max1≤𝑖≤𝑁(𝑛) |󰜚(𝑛)𝑖 |,
max1≤𝑗≤𝑁(𝑚) |󰜚(𝑚)

𝑗 |},𝜇 = min{min𝑟∈S𝜇(𝑛)𝑟 ,min𝑟∈S𝜇(𝑚)
𝑟 }.

Remark 12. Unlike the result in [22], which only considered
the mean square exponential stability of stochastic BAM-
NN with time-varying delays and reaction-diffusion terms,
we design a periodically intermittent controller to exponen-
tially stabilize the unstable neural network in 𝑝th moment.
Moreover, the controller (10) is linear which can be easily
implemented in practice.

Algorithm 13. For the periodically intermittent controller (10)
of the BAM-NN system (2)-(4), we summarize the following
algorithm to implement the controller.

(1) By instigating a practical system’s structure and dynam-
ics’ characterization with its disturbance, we can develop a
model of the BAM-NN system, i.e., S, 𝛾𝑖𝑗. Supposing and
examining the transition probability P(⋅) as well as the main
parameters of each mode, we can have 𝐴(𝑛)(𝑟(𝑡)), 𝐵(𝑛)(𝑟(𝑡)),𝐶(𝑛))(𝑟(𝑡)) and other relations of their states.

(2) By using (13)-(16) and Corollary 11, we can calculate the
values of stabilization indices of the system and the controller
gains𝐾𝑖𝑗 with the parameters of BAM-NN.

(3) Choose a numerical solution to the stochastic partial
differential equation (SPDE) to simulate the sample states
of BAM-NN. Here we use a so-called estimation-correction
method, which is based on the following main steps [43].

Firstly, with given steps 𝐻,𝐿 of simulation time interval𝑡 ∈ [0, 𝑡𝑓] and space 𝜆𝑘 ∈ [𝜆𝑚𝑖𝑛𝑘, 𝜆𝑚𝑎𝑥𝑘] ∈ Ω0, we can get the
grids of time and space, i.e., 𝑡ℎ = ℎΔ𝑡, ℎ = 0, 1, 2, . . . , 𝐻, 𝜆𝑙 =𝑙Δ𝜆, 𝑙 = 0, 1, 2, . . . , 𝐿, by which we define a numerical solution
to BAM-NN as 𝑥ℎ𝑙 = 𝑥(𝑡ℎ, 𝜆𝑙) = [𝑥(1)(𝑡ℎ, 𝜆𝑙), 𝑥(2)(𝑡ℎ, 𝜆𝑙)]𝑇.
Then we denote Σ𝐹(𝑥ℎ𝑙 ) = 𝐴(𝑟(𝑡ℎ))𝑥ℎ𝑙 + 𝐵(𝑟(𝑡ℎ))𝑓(𝑥ℎ𝑙 ) +𝐶(𝑟(𝑡ℎ))𝑓(𝑥ℎ−𝜏ℎ𝑙 )+𝐾𝑥ℎ𝑙 +ℎ(𝑥ℎ𝑙 , 𝑥ℎ−𝜏ℎ𝑙 )((𝑊(𝑡ℎ)−𝑊(𝑡ℎ−1))/Δ𝑡),
where 𝜏ℎ ≈ 𝜏(𝑡ℎ)/Δ𝑡 is an integer times of 𝜏(𝑡ℎ) to Δ𝑡.

Secondly, according to the basic formulation of SPDE (2)
with its discretized time and space, we have an estimation
formula for the numerical solution 𝑥ℎ𝑙

𝑥ℎ𝑙 + Δ𝑡2 Σ𝐹 (𝑥ℎ𝑙 ) = −𝜌2𝐷𝑥ℎ+1/2𝑙+1 + (𝐼 + 𝜌𝐷)𝑥ℎ+1/2𝑙− 𝜌2𝐷𝑥ℎ+1/2𝑙−1

(47)

where 𝑥ℎ+1/2𝑙 = 𝑥(𝑡ℎ+(1/2)Δ𝑡, 𝜆𝑙), 𝜌 = Δ𝑡/Δ𝜆2, 𝐼 is an identity
matrix with suitable dimensions. By the boundary function
(4), we can calculate the values of 𝑥ℎ+1/20 and 𝑥ℎ+1/2𝐿 . Then we
can solve three diagonal linear equations from (47) to get an
estimated value of 𝑥ℎ+1/2𝑙 .
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· · ·· · ·
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Inverter 1

Inverter 2

Inverter n

Utility Grid

Figure 1: Equivalent topology structure of a grid-connected PV power system with series multiple inverters.

Finally, based on the estimated value of 𝑥ℎ+1/2𝑙 , we have a
further correction formula as follows.− 𝜌2𝐷𝑥ℎ+1𝑙+1 + (𝐼 + 𝜌𝐷)𝑥ℎ+1𝑙 − 𝜌2𝐷𝑥ℎ+1𝑙−1= 𝜌2𝐷𝑥ℎ𝑙+1 + (𝐼 − 𝜌𝐷)𝑥ℎ𝑙 + 𝜌2𝐷𝑥ℎ𝑙−1+ Δ𝑡Σ𝐹 (𝑥ℎ+1/2𝑙 )

(48)

Similarly, we also transfer formulation (48) to three diagonal
linear equations and calculate the numerical solution 𝑥ℎ𝑙 with
permitted calculation errors.

(4) Comparing the sampled data profiles of the simulation
states from (1)-(3) in Algorithm 13 with the measured data
profiles from the aimed practical system, we can identify the
validness of the model and performance of the controlled BAM-
NN system. Furthermore, we can improve the parameters and
control gains to obtain a better model by repeating steps (1)-(3).

4. Numerical Simulation of
an Illustrative Application

For a grid-connected photovoltaic (PV) power generation
system with series-connected inverters, which is illustrated
by it is equivalent topology structure in Figure 1, every
branch-circuit with a group of PV panels penetrates power
into utility grid via a inverter. Since the current/power(𝐼𝑖, 𝑃𝑖) generated by the 𝑖th group of PV panels is strongly
dependent on operating conditions and field factors, such as
sun geometric locations, their irradiation levels (𝑅𝑖) of the
sun and the ambient temperature (𝑇𝑖) stochastically fluctuate
with the environmental factors of PV power fields. Thus it
is technically necessary to maintain power synchronization
of series-connected inverters to improve their output power
and standard voltage and current [44]. For this purpose, we
need to develop a model with power and current difference
between every couple-connected PV inverter based on basic
photovoltaic model of PV panels [44, 45], which can bemod-
eled as a HSD-BAM-NN ((2)-(4)), and the power/current
difference (Δ𝑃𝑖𝑗, Δ𝐼𝑖𝑗) is taken as states 𝑥(𝑡) with irradiation
levels (𝑅𝑖) as the space variable 𝜆. It is assumed that the
temperature difference can be ignored. By [44, 45], we

formulate every part of BAM-NN ((2)-(4)) and calculate the
parameters in the model; i.e., the modeled BAM-NN (2) has
the same coefficient matrix, which is denoted as follows.

𝐷𝑟 = ([4.96 6.34] 00 [8.05 6.76])
𝐴𝑟 = ([0.28 00 0.18] 0

0 [0.42 00 0.35])

𝐵𝑟 = ([0.3 0.412 0.3] 0
0 [0.2 0.210 −0.5])

𝐶𝑟 = ([0.1 0.30.2 0.3] 0
0 [−0.2 0.2−0.4 −0.1])

(49)

Firstly, we get the initial value conditions

𝑥(1) (𝑠, 𝜆(1)) = 𝑒𝑠 (cos (2𝜋𝜆(1)) − 1)𝑥(2) (𝑠, 𝜆(2)) = 𝑒2𝑠 sin (4𝜋𝜆(2)) (50)

where (𝑠, 𝜆(2)) ∈ [−2, 0] × Ω0, Ω0 = [0.5, 8.6]. And the
boundary value functions are taken as follows.

𝑥(1) (𝑡, 0.5) = 2.3,𝑥(1) (𝑡, 8.6) = 6.95𝑥(2) (𝑡, 0.5) = 1.8,𝑥(2) (𝑡, 8.6) = 0.34,𝑡 ≥ −2
(51)
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Figure 2: Unstable sample state surface of 𝑥(1)(𝑡, 𝜆) in HSD-BAM-
NN’s simulation with no control.
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Figure 3: Unstable sample state surface of 𝑥(2)(𝑡, 𝜆) in HSD-BAM-
NN’s simulation with no control.

Denote 𝜏(1)(𝑡) = 0.8 sin((𝜋/4)𝑡 + 0.2), 𝜏(2)(𝑡) = 1/(1 + 0.3𝑒𝑡);
the generator of the Markovian chain is as follows.

Γ = (−45 4512 −12) (52)

The activation functions are 𝑓(𝑥) = (3/4) sin 𝑥 + (1/4)𝑥,𝑔(𝑥) = (1/2)(|𝑥 + 1| − |𝑥 − 1|), and the stochastic disturbed
functions are ℎ21(𝑠1, 𝑠2, 𝑠3) ≤ 0.01(𝑠21 + 𝑠22 + 𝑠23), ℎ22(𝑠1, 𝑠2, 𝑠3) ≤0.02(𝑠21 + 𝑠22 + 𝑠23).

According to the given structure and parameters of the
BAM-NN (2)-(4), we can perform the numerical simulations
in instability and stabilization cases.

(1) Instability. Using Algorithm 13 in Section 3, the sample
states 𝑥(𝑡, 𝜆) of BAM-NN (2) are calculated, and the surfaces
of (𝑡, 𝜆) versus 𝑥(𝑡, 𝜆) are shown in Figures 2 and 3, while the𝑡 versus 𝑥(𝑡, 𝜆) profile curves are shown in Figures 4 and 5.
These figures show the instability behavior.

(2) Stabilization. Let 𝑝 = 2, 𝜇(1)1 = 𝜇(2)1 = 1, 𝜇(1)2 = 𝜇(2)2 = 2.
By (13)-(16), we can calculate that 𝐿− = −1/2, 𝐿+ = 1,𝑁− =0,𝑁+ = 1, 𝜏(𝑛) = 1, 𝜏(𝑛)0 = 1/4, 𝜍(𝑛)𝑖 = 𝑘̃𝑖 = −1.43, 𝜂𝑖 = 2.84,𝜍(2)𝑗 = 𝑘̃(2)𝑗 = −1, 33, 𝜂(2)𝑗 = 2.82, 𝑗 = 1, 2. The gain coefficients
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Figure 4: Unstable sample state profiles of 𝑥(1)(𝑡, 𝜆) in HSD-BAM-
NN’s simulation with no control.

−100

0

100

200

300

400

500


(2
) (

,
)

1 2 3 4 5 60
t

Figure 5: Unstable sample state profiles of 𝑥(2)(𝑡, 𝜆) in HSD-BAM-
NN’s simulation with no control.

of periodically intermittent controllers (10) are obtained as
follows by sufficient conditions

𝐾 = −(2.95 2.863.42 1.6 ) (53)

Furthermore, we can get the indices’ values of the stable
conditions of HSD-BAM-NNwith ]̃(1)1 = ]̃(1)2 = −18.56, ]̃(2)1 =
]̃(2)2 = −25.02, 𝜍(1)𝑖 −]̃(1)𝑖 −max𝑟∈S∑N

𝑞=1 𝛾(1)𝑟𝑞 𝜇(1)𝑞 −𝜂(1)𝑖 /(1−𝜏(1)0 ) >0, 𝜍(2)𝑖 − ]̃(2)𝑖 −max𝑟∈S∑N
𝑞=1 𝛾(2)𝑟𝑞 𝜇(2)𝑞 −𝜂(2)𝑖 /(1−𝜏(2)0 ) > 0, 𝑖 = 1, 2.

Also, we have 𝜀(1)1 = 𝜀(1)2 = 3.15, 𝜀(2)1 = 𝜀(2)2 = 8.399. From
(III) in Corollary 11, we know that 𝜀 − ]̂(𝑇 − 𝛿)/𝜇𝑇 > 0.
Letting 𝛿 = 3.6, 𝑇 = 5, we can calculate the sample stabilized
states of the controlled system. The trend surfaces of (𝑡, 𝜆)
versus 𝑥(𝑡, 𝜆) are shown in Figures 6 and 7 with the profile
curves of 𝑡 versus 𝑥(𝑡, 𝜆) in Figures 8 and 9. From the states’
trends, we can see that an unstable system (2)-(4) can be
stabilized by the controller (10) with appropriate parameters,
which theoretically shows that the output power of connected
PV panels can be synchronized to a given level with its BAM-
NNmodel, even though the power stochastically fluctuate.
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Figure 6: Sample state surface of 𝑥(1)(𝑡, 𝜆) in HSD-BAM-NN’s
simulation with controller (10).
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Figure 7: Sample state surface of 𝑥(2)(𝑡, 𝜆) in HSD-BAM-NN’s
simulation with controller (10).
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Figure 8: Sample state profiles of 𝑥(1)(𝑡, 𝜆) in HSD-BAM-NN’s
simulation with controller (10).
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Figure 9: Sample state profiles of 𝑥(2)(𝑡, 𝜆) in HSD-BAM-NN’s
simulation with controller (10).

5. Conclusion

In this paper, a hybrid stochastic delayed BAM neural
network is considered for its stabilization problem and a
periodically intermittent controller is designed to stabilize
an unstable HSD-BAM-NN with an exponential conver-
gence property. The sufficient conditions of exponential
stabilization of HSD-BAM-NN are derived by Lyapunov-
Krasovskii functionalmethod, stochastic analysis techniques,
and integral inequality. And the framework is established
to give a solution algorithm to the sufficient conditions.
The simulation results of the grid-connected photovoltaic
(PV) power generation system verify the effectiveness of the
proposed controller.
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