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Automatic retrieval of music information is an active area of research in which problems such as automatically assigning genres or
descriptors of emotional content to music emerge. Recent advancements in the area rely on the use of deep learning, which allows
researchers to operate on a low-level description of the music. Deep neural network architectures can learn to build feature
representations that summarize music files from data itself, rather than expert knowledge. In this paper, a novel approach to
applying feature learning in combination with support vector machines to musical data is presented. A spectrogram of the
music file, which is too complex to be processed by SVM, is first reduced to a compact representation by a recurrent neural
network. An adjustment to loss function of the network is proposed so that the network learns to build a representation space
that replicates a certain notion of similarity between annotations, rather than to explicitly make predictions. We evaluate the
approach on five datasets, focusing on emotion recognition and complementing it with genre classification. In experiments, the
proposed loss function adjustment is shown to improve results in classification and regression tasks, but only when the learned
similarity notion corresponds to a kernel function employed within the SVM. These results suggest that adjusting deep learning
methods to build data representations that target a specific classifier or regressor can open up new perspectives for the use of

standard machine learning methods in music domain.

1. Introduction

Recently, in our digital world, there are huge resources of
data, images, video, and music. Advanced methods of auto-
matic processing of music resources remain in the sphere of
interest of many researchers. The goal is to facilitate music
information retrieval (MIR) in a personalized way for the
needs of an individual user. Despite the involvement of
researchers and use of state-of-the-art methods, such as deep
learning, there is a lack of advanced search engines, espe-
cially able to take into account users’ personal preferences.
Observed quick increase in the size of music collections on
the Internet resulted in the emergence of two challenges.
First is the need for automatic organizing of music collec-
tions, and the second is how to automatically recommend
new songs to a particular user, taking into account the user’s
listening habit [1]. To recommend a song according to user’s

expectations, it is beneficial to automatically recognize the
emotions that a song induces to the user and the genre to
which a song belongs.

Music, similarly to a picture, is very emotionally
expressive. In developing system for music indexing and
recommendation, it is necessary to consider emotional char-
acteristics of music [2]. Identifying the emotion induced by
music automatically is not yet solved and the problem
remains a significant challenge. The relationship between
some basic features as timbre, harmony, or lyrics and emo-
tions they can induce is complex [3]. Another problem is a
high degree of subjectivity of emotions induced by music.
Even if we take into account the same listener, then the emo-
tions induced by a given piece of music may depend on their
mood, fatigue, and other factors. All of the above makes the
automatic recognition of emotions (by classification or
regression) a difficult task.
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In emotion recognition, there are categorical [4] and con-
tinuous space [5] models of emotion; both are research topics
[6, 7]. The most popular model is two-dimensional continu-
ous valence-arousal scale. Positive and negative emotions are
indicated on one coordinate axis, and arousal separates low
activation from high on the second. This model of emotions
is derived from research concerning emotions in general.
Authors of [8] consider emotion recognition as a regression
separately for arousal and valence. Other types of emotions
are considered in Geneva Emotional Music Scale (GEMS)
[9]. Categories defined in GEMS are domain-specific. They
are the result of surveys in which participants were asked
to describe emotion induced by listened music. Emotions
in GEMS are organized in three levels: the higher level
contains generic emotion groups; the middle level consists
of nine categories: wonder, transcendence, tenderness, nos-
talgia, calmness, power, joy, tension, and sadness; and the
lowest contains specific nouns.

Another research topic in MIR area is the problem of
automatic classification of music pieces taking into account
genre [10]. In music analysis, genre represents a music
style. Members of the same style (genre) share similar char-
acteristics such as tempo, rhythm patterns, and types of
instruments and thus can be distinguished from other types
of music.

As music data is extremely complex, the key issue when
handling it in machine learning systems becomes summari-
zation of them in a form that a classifier can process. While
research datasets typically employed in MIR studies are not
large in terms of file count, the complexity and variety
within each individual file are significant. For both genre
and emotion recognition, the use of machine learning
methods is largely reliant on the appropriate selection of fea-
tures that describe the music samples. In general, automatic
music analysis such as music classification (or regression
when we deal with emotion recognition) encompasses two
steps: feature extraction and the classification (regression).
Both are difficult and strongly influence the final result.
Early works used manually defined set of features based on
expert domain knowledge. Many researchers have studied
the relationship between emotion and different features that
describe music [5]. In [11], the authors added harmonic fea-
tures to a set of popular music features to the predicting
community consensus task with GEMS categories. They
show that adding harmonic features improves the accuracy
of recognition.

The authors of [12] proposed the use of feature learning
on low-level representations instead of defining a proper set
of features manually. Codebook methods have been shown
to learn useful features even in shallow architectures [13-
15]. The use of simple autoencoder neural network to learn
features on a spectrogram for predicting community consen-
sus task with GEMS categories gives comparable results as
traditional machine learning with the use of a manually
well-chosen set of features [16]. Deep learning improves
these results further, resulting in state-of-the-art perfor-
mance. Convolutional recurrent neural networks, working
on a low-level representation of sounds, have been used for
learning features that would be useful in classification task
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[17, 18]. While deep learning in itself performs very well, it
creates new opportunities for the use of older machine learn-
ing methods. The features can be taken from the selected
level of deep network and used as an input to a support vector
machine (SVM), or a regression method such as SVR, or any
other classifier [19].

In our research, we are interested in the possibility of
improving the usefulness of traditional machine learning
methods, in particular, SVM, when combined with deep
learning as a feature extractor. For training a deep neural net-
work for classification, typically the softmax activation func-
tion for prediction and minimization of cross entropy loss is
employed. Effectively, the network is trained to maximize the
performance of its final layer, which works as a linear classi-
fier on features from the previous layers. However, one of the
biggest advantages of SVM among standard machine learn-
ing methods is its performance on nonlinear problems. It is
largely reliant on the so-called kernel trick—replacing the
inner product in the solved optimization problem with
kernel functions, which can be understood as similarity
measures. Given that a neural network can be trained to min-
imize any loss differentiable with respect to the network’s
weight matrices, it may be possible to adjust it so that it pro-
duces features specifically fit for a kernel SVM, rather than a
linear classifier. Knowing the basic principle of kernel trick,
we attempt to train the network to replicate certain notion
of similarity between annotations that describe genres or
emotions of the music pieces, within representation space
that is the output of a neural network. The goal of this study
is to test whether the proposed change in the approach to
training the feature extracting network will yield perfor-
mance improvements over simply using an NN for both fea-
ture learning and classification or regression, as well as SVM
deployed on features extracted from a NN learned with a
standard loss function.

Our approach is similar to the one presented in [20],
where the author replaces the softmax layer of an NN by
linear SVM. However, the approach presented by Tang is
concerned with the integration of linear SVM within the
network. In contrast, we treat SVM as a classifier separate
from the feature learning process, assuming the feature learn-
ing takes place first, and then the classifier is trained on fea-
tures extracted by the network. This is in line with the
growing trend of transfer learning, which seeks to reuse the
complex architectures trained on large datasets, for multiple
problems. A feature extracting network could be easily
reused on other similar tasks while only retraining the classi-
fier SVM, similarly to [21].

We consider tasks of classification and regression on five
different datasets. Focusing on emotion, we use three music
mood recognition datasets, one for classification and two
for regression. We complement these with two classification
datasets, one for genre recognition and one for dance style
recognition. The paper is organized into three sections:
“Introduction,” “Materials and Methods,” and “Results and
Discussion.” The second section contains all theoretical
background, dataset descriptions, and other information
required to replicate the study, while in the third, we present
and discuss the obtained results.



Complexity

2. Materials and Methods

The goal of our research is to evaluate the possibility of using
recurrent neural networks as a feature learner while changing
its loss function to one based on pairwise similarity rather
than one explicitly predicting annotations within the net-
work. We hypothesize this approach will better fit an
SVM-based classifier or regressor. This section contains a
description of neural network architectures employed in
the study and the datasets on which we performed our
experiments. Conditions of the experiments, such as hyper-
parameters of the algorithms, are also described. We refrain
from explaining SVM in detail, as our contribution does not
develop the method itself.

2.1. Gated Recurrent Neural Networks. Recurrent neural net-
works (RNN) are useful for modelling time series [22]. A
basic recurrent layer is defined by

h,=0(Wx, + Uh,_; +b), (1)

where o is an activation function, which can be logistic
sigmoid function (og,) or hyperbolic tangent activation
(0nh); W and U are matrices of weight; and b is the
bias vector. x, is a current input, in a series of [ input vectors,
(%1, %, ..., x;). Matrices W and U and the bias vector b are
learned using backpropagation algorithm.

As the more complex models, with the use of gating
mechanisms, have been applied to natural language pro-
cessing with success, they became a common research sub-
ject within the deep learning area. In these, a special “unit”
replaces a recurrent layer. It consists of multiple intercon-
nected layers. Outputs can be multiplied or added element-
wise. When element-wise multiplication of any output with
an output of a log-sigmoid layer is applied, a “gating” mech-
anism is created. The log-sigmoid layer is a kind of gate
that decides if the output passes (multiplication by 1) or
not (multiplication by 0). Long short-term memory (LSTM)
[23] network is the most popular model that uses gating.
LSTM is defined by

r, = asig(Wrxt +U,h,_, +b,),

iy = 0go(Wix, + Uh,_, +b,),

0 = 0gq(Wox, + Uphy_y +b,), (2)
=106 +i00,m(Wox, +Uh,_ +b,),

hy =04 © Oynn(€;)s

where r,, i,, and o, are the outputs of gates (standard
log-sigmoid recurrent layers); W,, U,, W,, U,, W, and U,
are weight matrices; b,, b;, and b, are bias vectors; and o
denotes element-wise multiplication. ¢, is a cell memory stat;
it is calculated using the two weight matrices W, and U, and
a bias vector b,.

The authors of [24] present a simplified version of gated
model that gives results similar to LSTM. Gated recurrent
unit (GRU) reduces the internal complexity of a unit; it is
defined by

Zp = Usig(wzxt + Uzht—l + bz)’
ry= Gsig (Wrxt + Urhtfl + br)’

(3)

¢ =roh_y,
hy=z,oh_; + (1=2;) 0 Opun (WX, + Upc, + by,).

In GRU, the memory state is not separated from the out-
put. The output depends only on the current input and the
value of the previous output. GRU uses two gates z, and r,.
As ¢, represents the previous output after gating, there is no
need to store it between timesteps. The numbers of weight
matrices and bias vectors are reduced in GRU to six matrices
(W,,U,W,U,W,,andU,) and three bias vectors (b,,b;,
andb,). Chung et al. compared GRU and LSTM in [25]. Both
networks perform similarly and better than standard recur-
rent neural networks. The advantage of GRU lies in its sim-
plicity, comparing to LSTM; therefore, we prefer GRU
networks in our studies.

2.2. Similarity-Based Loss for a Neural Network. A GRU net-
work produces a sequence of feature vectors in its final layer.
For a sequence of n output vectors (h,, h,, ... , h,), that is, the
result of input (x;, x5, ... , X,,), we can calculate the average to
obtain a feature vector f describing the whole music piece:

)=, (@)

t=1

X15X95 eue
flx%,

where the sequence (h,, h,, ..., h,) is calculated according to
(3). The standard approach for training recurrent networks
for sequence classification is to use this vector as an input
to a final nonrecurrent layer. A loss function is then calcu-
lated using mean square error or (after applying softmax
function over outputs) cross entropy. We seek an adjustment
to loss function that would take into account the properties of
SVM as nonlinear classifiers and the fact we can simply
ignore the need of a nonrecurrent layer if we use the network
as a dedicated feature learner.

A particularly well-known way to improve the perfor-
mance of SVMs is to use the so-called kernel trick.
Assume an optimization problem that is posed in such a
way that it does not require access to a full data matrix
D, but rather, a product of the matrix and its transpose
DD'. Linear SVM is an example of such problem. Then,
we can replace DDT with a matrix K(D, D), built using
a real-valued kernel function:

KX, Y) o = k(%02 7p)> (5)

whereby K, denote an element of matrix K in ath row, bth
column, while x, denotes the ath row of matrix X. In other
words, the kernel function k replaces the inner product dur-
ing optimization. If there is a mapping ¢ such that

k(x,y) = ¢(x) $(»), (6)

we can say that the problem is instead being solved in an
implicit feature space, where the coordinates of the classified
samples x and y are ¢(x) and ¢ (), respectively. In this space,



certain classification problems which were not linearly sepa-
rable in the original feature space may become linearly sepa-
rable. Similarly, for regression problems in which linear
regression produced a bad fit, regression in implicit feature
space often improves results. The advantage of kernel trick
is that it allows operating within the implicit feature space
without actually calculating ¢(x) and ¢(y).

Kernel functions typically employed in SVM training can
be understood as measures of similarity. Our intuition for the
feature learning NN is, therefore, to attempt to replicate cer-
tain similarity relations between the annotations in the
learned feature space. We can stack feature vectors calculated
according to (4) for different files in the dataset as rows of a
feature vector matrix F. Similarly, known annotation vectors
for these files form an annotation matrix A. For regression
problem in a multidimensional space, these annotations
consist of all regressed values. For example, for a music piece
annotated with two values regarding its position on valence-
arousal plane, a vector of two real values is the annotation.
For classification, we can consider one-hot encoding of clas-
ses. We can define a similarity-based loss function as

L(X) = | K(E, F) - K(A, A) | (7)

where K can be built using an arbitrary notion of similarity
k(x,y), by analogy to kernel SVM, as in (5), and || ... ||
denotes Frobenius norm. For batch learning, which is cur-
rently the standard procedure for learning neural networks
due to performance considerations, the matrices K(F, F)
and K(A, A) can be calculated over batches instead of full
dataset. We described this approach in less general terms in
[19] as semantic embedding, borrowing the idea from the
domain of text processing [26]. Semantic embedding in texts
seeks to learn similarity between documents using pairs of
similar and dissimilar files and could be considered a special
case of the described idea (with cosine similarity as the k
function and K(A, A) being built as a matrix of ones and
zeroes from known relation of similarity, rather than calcu-
lated from annotations).

2.3. Measures of Similarity between Vectors. To define a
similarity-based loss, we need to define a similarity function
that will be used. For the purpose of this study, we focus on
three similarity measures:

(i) Cosine: the similarity notion that we used in the ear-
lier paper [19], where we first tackled learning simi-
larity. It was previously used in the approach to
learning similarity between documents called
semantic embedding.

(ii) Radial basis function (RBF) kernel: one of the
popular kernels often employed in support vector
machines and the one we use in the SVM classifier
or regressor deployed on learned features.

(iii) Polynomial kernel: the other popular kernel
employed in support vector machines which we
use for comparison. We need this comparison to
establish whether the performance gains are related
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to fitting specific similarity notion to the kernel
employed in SVM or simply rewriting loss function
to use similarity yields benefits over a loss function
that tries to predict labels directly

Cosine similarity is a simple measure that normalizes
both compared vectors, therefore ignoring their norm and
only focusing on the direction (i.e, for a vector x, cos
(x,2x) =1). The function is defined as

X T)/

= Tl )

kcos (x’ y)

Cosine similarity is bound between 0 and 1 regardless of
space dimensionality, which may be a useful property for our
purposes as annotation space and learned feature space could
have largely varying dimensionalities. Radial basis function
kernel is defined as

krbf(x’y) = e’V”x’)’Hz . (9)

The exponent guarantees that the value is in the (0, 1]
interval and the similarity between two vectors never equals
0. In practice, the lower bound of this measure will be affected
by the maximal distance between vectors which will exist in
real datasets. For example, for annotation space of n dimen-
sions, if we assume all labels can range from 0 to 1 (as in the
Emotify dataset), the distance between two annotations can
be at the most square root of n. The lower bound for similar-
ity is therefore e™".

Polynomial kernel is defined as

Kpol (%, ) = (xTy + b)P. (10)

The polynomial kernel is not bound to a particular inter-
val (although for even p result is always nonnegative), and the
result is greater when comparing vectors with larger norms.
Polynomial kernel properties are not theoretically fit for
our task since dimensionality would largely affect the simi-
larity score between vectors. However, in preliminary stud-
ies, we found it performed surprisingly well in classification
tasks even despite the fact that SVM was using an RBF ker-
nel. Therefore, we include it in the study as a possible RBF
kernel alternative.

2.4. Datasets. We performed our experiments on five data-
sets, two for regression and three for classification. These
datasets represent three distinctive label types, with focus
on emotion recognition. Links to all datasets are provided
at the end of the article, in the “Data Availability” statement.
A short summary is presented in Table 1.

We chose both datasets that were previously tested in
[19] and three complementary datasets. Complementary
data represents an important form of emotion regression
(predicting the values of valence and arousal) and two music
classification tasks not concerning emotion. We found it
important to extend our research to V-A emotion recogni-
tion, as it is the most common form of annotating emotion
in the existing literature.
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TaBLE 1: Summary of the datasets.

Dataset Label type Task Labels Files
Lastfm Emotion Classification 4 2906
Emotify Emotion Regression 9 400
Songs Emotion Regression 2 744
GTZAN Genre Classification 10 1000
Ballroom Dance style Classification 9 754

The Lastfm dataset [27] is the largest one we test. It
contains more than 2000 files annotated with labels inferred
from user-generated tags on the music-centric social net-
work https://www.last.fm/. There are four classes, repre-
senting four quadrants of a valence-arousal plane: happy,
sad, angry, and relaxed. The labels are unreliable and the
classification task very hard, with previous research show-
ing 54% classification accuracy as the top result. Despite
that, we believe it represents a realistic scenario of musical
data acquisition and the problems one may face when
attempting to infer emotional content from unregulated
tagging by a large community. Songs in the dataset are
30-second long excerpts.

Emotify game dataset [28], similarly to Lastfm, is based
on crowd-sourced annotations, although the gathering pro-
cess was much more controlled. Nine emotional labels repre-
sent nine middle emotions of GEMS, and the predicted
values represent the percentage of users agreeing that partic-
ular emotion is induced by a particular music piece. It is
important to note the explicit distinction between induced
emotion versus perceived emotion. The dataset focuses on
the former, and as a result, disagreement between annotators
is very common. This disagreement is in part a result of var-
iables that cannot be accounted for by music alone, including
individual mood during annotation and individual connota-
tions regarding specific words used to describe emotions.
Because of that, predictions one can obtain through music
audio analysis are poor on average: regarding Pearson’s R
coeflicient, the correlation between predicted and actual
values achieved in the first paper on this dataset was 0.47,
averaged between all emotions (i.e., less than 25% of variance
explained). However, there is a significant variance in figures
of merit between specific emotions. For example, the emo-
tion of amazement is almost unpredictable (below 0.3 corre-
lation), while for joyful activation, Pearson’s R above 0.7 is
possible to achieve. Excerpts in the dataset are of varying
lengths, 30- to 60-second long.

MediaEval 2013 data, also known as “1000 songs” dataset
[29], is a set created for machine learning benchmarking. It
consists of 744 (after duplicate removal) unique song
excerpts. The dataset was annotated by crowd workers on
Amazon Mechanical Turk platform, separately in valence
and arousal dimensions, with each song receiving ten anno-
tations. The publicly available data contains both mean and
standard deviation of these evaluations. Songs in the dataset
are 45-second excerpts.

GTZAN [30] is a famous dataset concerning genre recog-
nition, and one of the most cited of all music information
retrieval datasets. While it has been criticized for faults in

its construction [31], as our research does not concern genre
recognition specifically, we find it acceptable to use GTZAN
for the sake of comparison between presented methods.
GTZAN contains 30-second excerpts and is annotated as a
classification dataset with ten genre labels.

Ballroom data [32] was originally meant for tempo esti-
mation tasks. However, as the dataset offers clear split
between classes corresponding to different dancing styles,
we use these labels as a basis for a classification problem. It
is interesting, as the distinction between dance styles is signif-
icantly more dependent on tempo and rhythm than the usual
MIR tasks. Eight dance styles represented in the dataset are
chacha, rumba, samba, quickstep, tango, slow waltz, and
Viennese waltz.

2.5. Dataset Enhancement. As training of neural network
models is strongly dependent on the quantity of available
data, research datasets currently available for MIR tasks
may pose the problem of insufficient files. We approach this
issue using dataset enhancement, artificially expanding the
number of possible training samples.

We use the following dataset enhancement scheme: dur-
ing training, in each epoch instead of full feeding sequences
corresponding to all music files in the dataset to the network,
we choose a short excerpt of each file. This excerpt contains
frames from ¢ to ¢ + 100 for a t randomly drawn from a uni-
form distribution.

Regarding dataset size, this approach hugely increases
the number of potentially different samples a neural net-
work will see during training. Consider a dataset of 1000
files, which are represented by sequences of 1200 vectors,
40 elements in a vector. These numbers correspond to
spectrograms of 30-second files with extraction parameters
employed in this article. Dimensions of the dataset are there-
fore 1000 x 1200 x 40. However, with the enhancement,
every 1200-frame long sequence has 1200 — 100 = 1100 pos-
sible shorter excerpts of length 100. We are therefore effec-
tively sampling from 1,100,000 possible excerpts that are
sequences of 100 vectors, that is 1,100,000 x 100 x 40.

It should be noted that the samples largely overlap and
the network is likely to finish training before seeing every
possible one. Additionally, this approach equates to learning
on 2.5-second-long excerpts, thus ignoring any dependencies
between frames separated by a time interval longer than 2.5
seconds within a music file. Nevertheless, the enhancement
scheme allows us to test feature learning methods in a very
efficient manner. We have previously shown [33] that this
approach improves both convergence speed and the final
result of the learning process for multiple music classification
tasks when compared to training neural networks (both GRU
and LSTM) on complete music files.

2.6. Common Conditions of the Experiments. For each of the
performed experiments, we kept a similar core structure of
the neural network and parameters for the said network.
The network consists of two GRU recurrent layers, respec-
tively, 100 and 50 units, and an additional nonrecurrent out-
put layer in case of the baseline approach. The network is
trained with Adadelta adaptive gradient descent method
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[34]. Implementation of neural network logic and gradient
operations uses the Theano library [35].

For SVM, we use an existing implementation from the
scikit-learn python library. The hyperparameters of SVM
were fit on the smallest dataset, Emotify, and reused in
other experiments. Parameter C was set to 1, and the RBF
kernel was employed with y=0.5. We ensured that on
other datasets, a change in SVM parameters does not alter
the results drastically, but we did not attempt further tun-
ing the parameters for each dataset, as the resulting boost
in performance was small, at the expense of creating unre-
alistic experimental conditions.

As an input to the feature extracting NN, we use a mel-
frequency spectrogram with logarithmic power scale. The
inputs are normalized to zero mean and standard deviation
equal to 1 over each frequency bin, for each dataset indepen-
dently. Frames of spectrogram are 50 ms long with 25ms
overlap, and we use 40 mel-frequency bins (the parameters
were derived from defaults in MIRToolbox [36], a popular
MATLAB toolbox for MIR feature extraction).

The input sequence to a recurrent network consists of
80-element vectors. These vectors contain the values of 40
spectrogram bins and the approximate of the first deriva-
tive (change from previous value) for each bin.

3. Results and Discussion

In the experiments, we seek to establish whether the pro-
posed approach of learning a feature extracting neural net-
work and supplying learned features to another classifier or
regressor can improve results. As the main proposition of
this paper is to adjust the learning goal (i.e., loss function)
for a feature learning NN to one based on a notion of similar-
ity as well as use a specific classifier on the learned features,
we need two baselines for comparison. First one is a result
of a full neural network-based approach, where the GRU net-
work directly predicts classes or regressed variables. The sec-
ond one is a result of an SVM deployed on bottleneck
features (representation in a penultimate layer) from the
aforementioned neural network. Altogether, we will compare
five approaches:

(i) Baseline neural network approach (NN): GRU neu-
ral network approach in which the network is
trained to classify or predict continuous values with
standard sum square error loss.

(ii) SVM with baseline feature learning approach (FL):
features are taken from the penultimate layer of the
GRU neural network trained to classify or predict,
then an SVM is trained on them.

(iii) SVM with NN learning RBF similarity (RBF-SL):
feature extracting GRU neural network is learned
with similarity-based loss using RBF kernel (y =0.5)
for similarity, then SVM is trained on output features
of the network.

(iv) SVM with NN learning cosine similarity (Cos-SL):
feature extracting GRU neural network is learned with
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Pearson’s R

0 50 100 150 200 250 300 350

Training epoch

— NN —— Cos-SL
—— FL —— Poly-SL
—— RBF-SL

FiGure 1: Emotify dataset, average prediction quality over all 9
GEMS emotions.

similarity-based loss using cosine similarity, then
SVM is trained on output features of the network.

(v) SVM with NN learning polynomial similarity (Poly-
SL): feature extracting GRU neural network is
learned with similarity-based loss using polynomial
kernel (p=2, b=0) for similarity, then SVM is
trained on output features of the network.

To demonstrate how the performance changes over the
training process, we save the output of a feature extracting
NN at every tenth epoch of its training. SVM is fully trained
from zero at every one of these points to obtain a task-
dependent measure of performance (accuracy for classifica-
tion, Pearson’s R for regression). We chose this way of pre-
senting the results since, for the given dataset size, the time
it takes to train SVM on learned features is a fraction of the
time required to fully train a recurrent NN.

All presented results were obtained in 10-fold cross-
validation experiments, in which the training-test split was
applied to the learning of both the feature extracting NN
and the SVM deployed on learned features afterwards.

3.1. Results on Emotion Regression Data. Results on emotion
regression datasets are shown in Figures 1-3. On the plots of
performance over the duration of training, we can see that
the proposed approach with RBF kernel as a similarity mea-
sure achieves the best results and fastest convergence. This is
consistent with our expectations, as RBF kernel was also used
in the SVM model of regression. Compared to an SVM
deployed on bottleneck features from a standard neural net-
work, the loss function adjusted to learning similarity leads to
improvements on all datasets. Compared to a purely NN
approach, we can see either improvement or comparable per-
formance. While cosine similarity measure consistently
appears to perform the worst on the regression problems, it
is hard to draw a comparison between polynomial kernel
for similarity and SVM deployed on bottleneck features from
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Pearson’s R

0 50 100 150 200 250 300 350
Training epoch

— NN —— Cos-SL
— FL —— Poly-SL
—— RBF-SL

FiGURE 2: Performance on MediaEval2013 dataset, arousal
prediction.
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Ficure 3: Performance on MediaEval2013 dataset, valence
prediction.

regular NN. We can note that on the Emotify dataset, where
using polynomial similarity yields improvement, the learning
process is much slower than in other cases. Cosine similarity
performs very badly on the MediaEval 2013 data, which can
be explained by ignoring the norm of compared vectors. In
V-A space, an emotional content labeled as 0.5 valence and
0.5 arousal will be vastly different than one labeled as 1
valence and 1 arousal.

In Table 2, we present the detailed results for recognition
of specific emotions on the Emotify game dataset. The
approach of learning RBF similarity within the feature
extracting networks performs best for 7 out of 9 emotions.
While results indicate a low quality of predictions, it can be
noted that the proposed approach improves the worst results.

TaBLE 2: Pearson’s R on the Emotify dataset. Asterisk denotes
SVM use.

Emotion NN  FL* RBF-SL*  Cos-SL*  Poly-SL*
Amazement 0.38 0.25 0.40 0.28 0.25
Solemnity 0.56 0.48 0.51 0.47 0.46
Tenderness 0.59 0.58 0.62 0.59 0.59
Nostalgia 0.58 0.56 0.61 0.53 0.56
Calmness 0.59  0.56 0.60 0.53 0.58
Power 054 049 0.56 0.52 0.52
Joyful act 0.69 0.67 0.72 0.65 0.68
Tension 0.58 0.56 0.57 0.51 0.56
Sadness 043  0.29 0.48 0.37 0.36

Accuracy

0 50 100 150 200 250 300 350
Training epoch

— NN —— Cos-SL
— FL —— Poly-SL
— RBF-SL

FI1GURE 4: Classification performance on GTZAN dataset.

Notably, prediction of amazement reaches R=0.4. This
equates to the coefficient of determination R? = 0.16, that is,
16% of the variance in ground truth variable explained by
the model. As previous results on the dataset indicated
near-complete unpredictability of amazement category [11],
the fact this one is above what is typically considered correla-
tion by chance can be seen as relevant. For less subjective
emotions, where making a prediction is more feasible,
improvements can also be seen. In particular, the proposed
approach is the only one where the model explains more than
50% of the variance for joyful activation (R = 0.72, R? = 0.51),
but only if the similarity notion is chosen properly.

3.2. Results on Classification Tasks. Results on classification
datasets GTZAN, ballroom, and Lastfm are shown in
Figures 4-6. On the first two, we can see the proposed
approach achieves the best performance with RBF kernel as
a similarity measure.

In the proposed approach and SVM deployed on bottle-
neck features, the final result on the LastFM dataset is similar.
However, the detailed look at the training process shows this
is a result of overfitting on the part of the feature extracting
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FiGure 6: Classification performance on LastFM dataset.

NN, as in epochs 50-350 it achieves superior performance
and only later drops to lower levels. It should be noted that
LastFM data has the poorest quality of annotations among
the examined datasets, which causes all of the tested
approaches to be harder to evaluate.

Interestingly, polynomial kernel as a similarity measure
appears to work significantly better on two of the tested clas-
sification datasets, and although it converges slowly, eventu-
ally it achieves the same results as RBF kernel on both
GTZAN and ballroom data.

3.3. Statistical Significance of the Results. In cross-validation
experiments, we observed that the proposed approach with
appropriately selected similarity function either improves
the baseline results or performs as well as the baselines on
four of the examined datasets, while the results on LastFM

Complexity

data are inconclusive. To further confirm our conclusions
rergarding the four datasets, we performed additional tests
of best performing similarity function (RBF-SL) in compari-
son with regular NN and FL baseline approaches. These were
repeated experiments on purely random 9:1 training-test
split, without cross-validation, intended to gather a bigger
sample size for testing the statistical significance of results.
We repeated the random split experiment 100 times and
tested the obtained results for statistical significance using
Welch’s t-test for unpaired samples with unequal variance.
At the standard threshold (p < 0.05), we confirmed improve-
ments after 400 epochs of training in comparison with NN
baseline on datasets GTZAN and ballroom. In comparison
with FL baseline, the improvements were confirmed on Emo-
tify, as well as MediaEval2013. The RBF-SL approach did not
perform worse than either of the two baselines in a statisti-
cally significant way on any of the datasets.

3.4. Conclusions and Future Work. From the presented
results, we can conclude that the proposed approach of
adjusting a loss function within the feature learning neural
network to a similarity-based one can indeed improve the
performance of an SVM later deployed on learned features.
On all datasets, the proposed adjustment either outperforms
purely NN-based approach or performs at least as well, when
the learned notion of similarity is RBF kernel. This corre-
sponds to the kernel used in the classifying SVM. When the
learned notion of similarity is different, the performance
can be vastly worse (cosine similarity), or comparable on
some datasets, but worse on others (polynomial kernel).
The modified loss function also shortens the learning of neu-
ral network feature extractor which, due to the complex
nature of recurrent networks, is the most performance-
demanding part of the learning process.

Our results are promising for the perspectives of future
use for traditional machine learning approaches on musical
data. While recent trends in machine learning focus on
replacing older techniques with deep learning, in our experi-
ments, best results are obtained when combining deep net-
works with a standard SVM approach. However, to achieve
these results, the network has to be trained in a way that is
adjusted to the specific classifier. A perspective for future
research opens for creating similar adjustments targeting
other standard machine learning approaches. One could also
extend the possible future research to other types of data,
where using deep learning on low-level representations is
preferable to the extraction of features, for example, images
and videos.

Data Availability

This study is based on previously reported data [27-30, 32]. As
of writing the article (April 2018), music files and annotations
for all of the examined datasets are available online at the
following URLs: (i) Lastfm https://code.soundsoftware.ac.uk/
projects/emotion-recognition, (ii) Emotify  http://www
.projects.science.uu.nl/memotion/emotifydata, (iii) MediaE-
val2013 http://cvml.unige.ch/databases/emoMusic, (iv) Ball-
room  http://mtg.upf.edu/ismir2004/contest/tempoContest/
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https://code.soundsoftware.ac.uk/projects/emotion-recognition
http://www.projects.science.uu.nl/memotion/emotifydata
http://www.projects.science.uu.nl/memotion/emotifydata
http://cvml.unige.ch/databases/emoMusic
http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html
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node5.html, and (v) GTZAN http://marsyasweb.appspot.com/
download/data_sets.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the statutory funds of the
Department of Computational Intelligence, Faculty of Com-
puter Science and Management, Wroctaw University of Sci-
ence and Technology.

References

[1] M. Defferrard, S. P. Mohanty, S. F. Carroll, and M. Salathe,
“Learning to recognize musical genre from audio,” 2018,
https://arxiv.org/abs/1803.05337v1.

[2] C.C. Pratt, “Music as the language of emotion,” Bulletin of the
American Musicological Society, vol. 11, pp. 67-68, 1948.

[3] K. R. Scherer and M. Zentner, “Emotional effects of music:
production rules,” in Music and Emotion: Theory and
Research, pp. 361-392, Oxford University Press, 2001.

[4] P. Ekman, “An argument for basic emotions,” Cognition and
Emotion, vol. 6, no. 3-4, pp. 169-200, 1992.

[5] Y. E. Kim, E. M. Schmidt, R. Migneco et al., “Music emotion
recognition: a state of the art review,” in Proceedings of the
11th International Society for Music Information Retrieval
Conference (ISMIR 2010), pp. 255-266, Utrecht, Netherlands,
2010.

[6] J.Skowronek, M. McKinney, and S. van de Par, “A demonstra-
tor for automatic music mood estimation,” in Proceedings of
the 8th International Conference on Music Information
Retrieval (ISMIR 2007), pp. 345-346, Vienna, Austria, 2007.

[7] C. Laurier, O. Lartillot, T. Eerola, and P. Toiviainen, “Explor-
ing relationships between audio features and emotion in
music,” in Proceedings of the 7th Triennial Conference of Euro-
pean Society for the Cognitive Sciences of Music (ESCOM 2009),
pp. 260-264, Jyvaskyld, Finland, 2009.

[8] Y. H. Yang, Y. C. Lin, Y. F. Su, and H. H. Chen, “A regression
approach to music emotion recognition,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 16, no. 2,
pp. 448-457, 2008.

[9] M. Zentner, D. Grandjean, and K. R. Scherer, “Emotions
evoked by the sound of music: characterization, classification,
and measurement,” Emotion, vol. 8, no. 4, pp. 494-521, 2008.

[10] A.Nasridinov and Y. H. Park, “A study on music genre recog-
nition and classification techniques,” International Journal of
Multimedia and Ubiquitous Engineering, vol. 9, no. 4,
pp. 31-42, 2014.

[11] A. Aljanaki, F. Wiering, and R. Veltkamp, “Computational
modeling of induced emotion using gems,” in Proceedings of
the 15th International Society for Music Information Retrieval
Conference (ISMIR 2014), pp. 373-378, Taipei, Taiwan, 2014.

[12] E.J. Humphrey, J. P. Bello, and Y. LeCun, “Feature learning
and deep architectures: new directions for music informatics,”
Journal of Intelligent Information Systems, vol. 41, no. 3,
pp. 461-481, 2013.

[13] U. Schimmack and R. Rainer, “Experiencing activation: ener-
getic arousal and tense arousal are not mixtures of valence
and activation,” Emotion, vol. 2, no. 4, pp. 412-417, 2002.

[14] M. Henaff, K. Jarrett, K. Kavukcuoglu, and Y. LeCun, “Unsu-
pervised learning of sparse features for scalable audio classifi-
cation,” in Proceedings of the 12th International Society for
Music Information Retrieval Conference (ISMIR 2011),
pp. 681-686, Miami, FL, USA, 2011.

[15] Y. Vaizman, B. McFee, and G. Lanckriet, “Codebook-based
audio feature representation for music information retrieval,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 22, no. 10, pp. 1483-1493, 2014.

[16] J. Jakubik and H. Kwas$nicka, “Sparse coding methods for
music induced emotion recognition,” in Proceedings of the
2016 Federated Conference on Computer Science and Informa-
tion Systems, pp. 53-60, Gdansk, Poland, 2016.

[17] Y. Choi, G. Fazekas, M. Sandler, and K. Cho, “Convolutional
recurrent neural networks for music classification,” in 2017
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 2392-2396, New Orleans, LA, USA,
2017.

[18] J.Leeand]. Nam, “Multi-level and multi-scale feature aggrega-
tion using pretrained convolutional neural networks for music
auto-tagging,” IEEE Signal Processing Letters, vol. 24, no. 8,
pp. 1208-1212, 2017.

[19] J. Jakubik and H. Kwasénicka, “Music emotion analysis using
semantic embedding recurrent neural networks,” in 2017 IEEE
International Conference on INnovations in Intelligent Sys-
Tems and Applications (INISTA), pp. 271-276, Gdynia,
Poland, 2017, IEEE.

[20] Y. Tang, “Deep learning using linear support vector
machines,” in International Conference on Machine Learning
2013: Challenges in Representation Learning Workshop,
Atlanta, GA, USA, 2013.

[21] K. Choi, G. Fazekas, M. B. Sandler, and K. Cho, “Transfer
learning for music classification and regression tasks,” in Pro-
ceedings of the 18th International Society for Music Informa-
tion Retrieval Conference (ISMIR 2017), pp. 141-149,
Suzhou, China, 2017.

[22] C. Goller and A. Kuchler, “Learning task-dependent distrib-
uted representations by backpropagation through structure,”
in Proceedings of International Conference on Neural Net-
works (ICNN'96), pp. 347-352, Washington, DC, USA,
1996.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[24] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” in Interna-
tional Conference on Learning Representations (ICLR 2015),
San Diego, CA, USA, 2015.

[25] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical eval-
uation of gated recurrent neural networks on sequence model-
ing,” 2014, https://arxiv.org/abs/1412.3555.

[26] H. Wu, M. R. Min, and B. Bai, “Deep semantic embedding,” in
Proceedings of Workshop on Semantic Matching in Informa-
tion Retrieval co-located with the 37th International ACM
SIGIR Conference on Research and Development in Informa-
tion Retrieval (SMIR@SIGIR 2014), pp. 46-52, Gold Coast,
QLD, Australia, 2014.

[27] Y. Song, S. Dixon, and M. Pearce, “Evaluation of musical fea-
tures for emotion classification,” in Proceedings of the 13th


http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html
http://marsyasweb.appspot.com/download/data_sets
http://marsyasweb.appspot.com/download/data_sets
https://arxiv.org/abs/1803.05337v1
https://arxiv.org/abs/1412.3555

10

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

International Society for Music Information Retrieval Confer-
ence (ISMIR 2012), pp. 523-528, Porto, Portugal, 2012.

A. Aljanaki, F. Wiering, and R. C. Veltkamp, “Studying
emotion induced by music through a crowdsourcing game,”
Information Processing & Management, vol. 52, no. 1, pp. 115-
128, 2016.

M. Soleymani, M. N. Caro, E. M. Schmidt, C. Y. Sha, and
Y. H. Yang, “1000 songs for emotional analysis of music,”
in Proceedings of the 2nd ACM International Workshop on
Crowdsourcing for Multimedia - CrowdMM '13, Barcelona,
Spain, 2012.

G. Tzanetakis and P. Cook, “Musical genre classification of
audio signals,” IEEE Transactions on Speech and Audio Pro-
cessing, vol. 10, no. 5, pp- 293-302, 2002.

B. L. Sturm, “The GTZAN dataset: its contents, its faults, their
effects on evaluation, and its future use,” 2013, https://arxiv.
org/abs/1306.1461.

K. Seyerlehner, G. Widmer, and D. Schnitzer, “From rhythm
patterns to perceived tempo,” in Proceedings of the 8th Interna-
tional Conference on Music Information Retrieval (ISMIR
2007), pp. 519-524, Vienna, Austria, 2007.

J. Jakubik, “Evaluation of gated recurrent neural networks in
music classification tasks,” in Information Systems Architec-
ture and Technology: Proceedings of 38th International Confer-
ence on Information Systems Architecture And Technology,
ISAT 2017 of Advances in Intelligent Systems and Computing,
pp- 27-37, Szklarska Poreba, Poland, 2018.

M. D. Zeiler, “ADADELTA: an adaptive learning rate
method,” 2012, https://arxiv.org/abs/1212.5701.

Theano Development Team, “Theano: a python framework
for fast computation of mathematical expressions,” 2016,
https://arxiv.org/abs/1605.02688.

Q. Lartillot and P. Toiviainen, “A Matlab toolbox for musical
feature extraction from audio,” in International Conference
on Digital Audio Effects (DAFX 2018), pp. 237-244, Aveiro,
Portugal, 2007.

Complexity


https://arxiv.org/abs/1306.1461
https://arxiv.org/abs/1306.1461
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1605.02688

Advances in Advances in . Journal of The Scientific Journal of
Operations Research Decision Sciences  Applied Mathematics World Journal Probability and Statistics

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Journal of

Optimization

Hindawi

Submit your manuscripts at
www.hindawi.com

International Journal of
Engineering
Mathematics

International Journal of

Analysis

Journal of : Advances in ] Mathematical Problems International Journal of Discrete Dynamics in
Complex Analysis Numerical Analysis in Engineering Differential Equations Nature and Society

International Journa!

of
Stochastic Analysis Mathematics Function Spaces Applied Analysis Mathematical Physics

Journal of Journal of Abstract and ; Advances in



https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

