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This paper provides new results on a stable discretization of commensurate fractional-order continuous-time LTI systems using the
Al-Alaoui and Tustin discretization methods. New, graphical, and analytical stability/instability conditions are given for discrete-
time systems obtained by means of the Al-Alaoui discretization scheme. On this basis, an analytically driven stability condition for
discrete-time systems using the Tustin-based approach is presented. Finally, the stability of discrete-time systems obtained by
finite-length approximation of the Al-Alaoui and Tustin operators are discussed. Simulation experiments confirm the
effectiveness of the introduced stability tests.

1. Introduction

Stable discretization of continuous-time fractional-order
systems is an important issue in various areas of science
and technology, including system science, signal process-
ing, and control theory. In this field, we have three main
discretization operators which can generate discrete-time
counterparts for continuous-time fractional-order systems,
in terms of the Euler, Tustin, and Al-Alaoui methods. There
are two main problems to be solved during the discretization
process for fractional-order systems. Firstly, the three dis-
cretization schemes lead to infinite complexity of rational,
discrete-time counterparts of fractional-order derivative.
Therefore, in practical applications various finite-length
approximations of the discretization operators have been
used, involving the most popular finite fractional difference
(FFD) approximation in the Euler approach [1, 2] and
finite-length implementations of the continuous fraction
expansion (CFE) method in the Tustin and Al-Alaoui
approaches [2–6]. Also, a number of papers have presented
some other approximation/discretization methods for the
fractional-order derivative [7–10].

Secondly, it is well known that the discretization process
affects stability conditions for the discrete-time counterparts
of continuous-time fractional-order systems [11–14]. More-
over, the stability conditions of fractional-order discrete-
time systems depend on a type of operator used in the
discretization process. This can be easily seen when we com-
pare stability results for discrete-time systems obtained for
the “forward-shifted” Euler operator [15, 16] with those for
the classical backward Euler operator [13]. The first results
in the area of stability analysis for discrete-time fractional-
order systems have been developed in [11], and they concern
sufficient conditions only. More complete results have been
obtained in a special case of discrete-time fractional-order
positive systems [17–20]. Simple, analytical, necessary, and
sufficient stability results for discrete-time systems have been
obtained for both “forward-shifted” and backward Euler
operators [13, 15, 16]. Specific, numerical stability results
for discrete-time fractional-order systems based on the Euler
expansion have been presented in [21–23]. On the other
hand, it is well known that finite-length implementations of
the Euler and Tustin operators affect the stability conditions
for the underlying discrete-time systems [2, 11, 13, 15].
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In this paper, we introduce simple, either analytically
driven or purely analytical stability tests for discrete-time
systems obtained by the use of the Al-Alaoui operator.
These results are then used to propose a stability test for
systems based on the discretized Tustin operator, which can
be considered as a special case of the Al-Alaoui approach.
Also, practically oriented results for discretization using a
finite-length implementation of the Tustin approach of
[2] are extended to finite-length approximation using the
Al-Alaoui method [24].

This paper is organized as follows. Having introduced in
Section 1 the stability problem for discretized commensurate
fractional-order continuous-time systems, the system repre-
sentations based on the Euler, Tustin, and Al-Alaoui discre-
tizers are given in Section 2. Section 3 presents new stability
results involving both graphical and analytical criteria, which
are the main results of the paper. Moreover, Section 3 adopts
the analytical stability criterion for the Al-Alaoui operator
to the Tustin-based one. Discussion on the stability of dis-
cretization based on finite-length approximations of the
Al-Alaoui operator is presented in Section 4. Simulation
examples of Section 5 confirm the effectiveness of the pro-
posed stability results. Section 5 summarizes the achieve-
ments of the paper.

2. Preliminaries

Consider a linear continuous-time state space system of com-
mensurate fractional order α ∈ 0, 2 described by

0D
αx t = Af x t + Bu t , x0 = x 0 ,

y t = Cx t ,
1

where 0D
α denotes a fractional-order derivative of order α;

x t ∈ℝn, u t ∈ℝnu , y t ∈ℝny are the state, control, and
output vectors, respectively; and Af ∈ℝn×n, B ∈ℝn×nu , and
C ∈ℝny×n are the system matrices, with nu and ny being the
number of inputs and outputs, respectively. Here, the
fractional-order derivative will be described by three various
representations, involving the Caputo, Riemann-Liouville, or
Grünwald-Letnikov definitions. But regardless of the spe-
cific definition of the fractional-order derivative, assuming
the zero initial conditions in (1), that is 0D

kx 0 = 0, for
any k ∈ℝ, the Laplace transform of system (1) is as follows:

sαX s = Af X s + BU s ,

Y s = CX s
2

In the specific SISO case, when nu = ny = 1, the system
of (2) can be described by the transfer function

G sα =
B sα

A sα
=
bm sα m + bm−1 sα m−1 +⋯ + b0
an sα n + an−1 sα n−1 +⋯ + a0

=
bm sα − γf1 sα − γf2 … sα − γfm

an sα − λf
1 sα − λf

2 … sα − λf
n

,
3

where A sα and B sα are the coprime polynomials in the

variable sα and λf
j , j = 1,… , n, and γfj , j = 1,… ,m, are

the poles and zeros of G sα , called f -poles and f -zeros,

respectively (compare [16]). Note that the f -poles λf
j , j = 1,

… , n, are the eigenvalues of the state matrix Af .
In the discretization process, we seek for a discrete-time

equivalent of the fractional-order system (2), in form of the
Z-transform

w z X z = Af X z + BU z ,

Y z = CX z ,
4

where w z will be used as a discrete-time model of sα. Alter-
natively, for the SISO case, we can obtain a discrete-time
fractional-order transfer function in form of

G w z =
B w z
A w z

=
bm w z m + bm−1 w z m−1 +⋯ + b0
an w z n + an−1 w z n−1 +⋯ + a0

=
bm w z − γf1 w z − γf2 … w z − γfm

an w z − λf
1 w z − λf

2 … w z − λf
n

,

5

with λf
j , j = 1,… , n, and γfj , j = 1,… ,m, being the f -poles

and f -zeros, respectively, of the system defined in (3). Three
main discretizers are used here as discretization functions
w z , namely, the Euler, Tustin, and Al-Alaoui operators.
The Euler operator is used in two versions, that is, the back-
ward Euler operator

sα ≈wEu1 z =
1
hα

1 − z−1
α, 6

or the “forward-shifted” Euler one

sα ≈wEu2 z =
1
hα

z 1 − z−1
α, 7

with h being the sampling period. The Tustin operator has
the form

sα ≈wTus z =
2
h
1 − z−1

1 + z−1

α

8

The Al-Alaoui operator [25, 26] is obtained through an
assumption that the integration rule is realized as a weighted
sum of the Tustin and backward Euler rules. This leads to the
Al-Alaoui operator [25, 26]

sα ≈w z =
1 + a
h

1 − z−1

1 + az−1

α

, 9

where a ∈ 0, 1 is the weighting coefficient.
It has been presented in several papers that selection

of the discretization operator in the discretization process
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affects the stability conditions for discrete-time systems
[11, 13, 16]. For instance, the two Euler methods repre-
sented by (6) and (7) lead to quite different stability results
for the discrete-time systems. A detailed stability analysis
for discrete-time systems obtained by the use of the two Euler
operators has been presented in [13, 15, 16].

In this paper, a new stability analysis for systems obtained
by the discretization process using the Al-Alaoui operator
will be presented.

3. Main Results

Firstly, we introduce a graphical stability approach, based on
the Al-Alaoui operator.

Theorem 1. The discrete-time fractional-order system (4)
or (5), with w z as in (9), is asymptotically stable if and only

if all f -poles λf
j of the system, j = 1,… , n, are outside the

instability area

S = r
1 + a
1 − a h

1 − e−iφ
α

, r ∈ 0, 1 , φ ∈ 0, 2π ,

10

where α ∈ 0, 2 is the fractional-order of system (4) or (5),
a ∈ 0, 1 is the weighting coefficient, and φ is the argument
of the function w eiφ =w z ∣z=eiφ .

Proof. Consider the discrete-time fractional-order system
(4) or (5) with w z as in (9). Taking into account that the
Al-Alaoui operator of (9) is meromorphic, the stability area
with respect to f -poles depends on the contour of function
w z ∣z=eiψ , ψ = 0, 2π [13, 15]. Therefore, the bound contour
of the stability/instability regions is as follows:

w eiψ =
1 + a
h

1 − e−iψ

1 + ae−iψ

α

11

=
1 + a
h

ρ ψ + iζ ψ
α

, 12

where ρ ψ = 1 − a 1 − cos ψ / 1 + a2 + 2a cos ψ , ζ ψ =
1 + a sin ψ / 1 + a2 + 2a cos ψ , and ψ ∈ 0, 2π . Now,

substituting ρ ψ and ζ ψ of (12) into the circle equation
with the center in the point 1/ 1 − a , 0 , we obtain

ρ ϕ −
1

1 − a

2
+ ζ2 ϕ =

1 − a 1 − cos ϕ
1 + a2 + 2a cos ϕ

−
1

1 − a

2

+ 1 + a sin ϕ

1 + a2 + 2a cos ϕ

2

=
1

1 − a 2

13

So, for a ∈ 0, 1 , the inner contour ρ ϕ + iζ ϕ fulfills
the circle equation with the center in 1/ 1 − a , 0 and radius

r = 1/ 1 − a . Therefore, we can write the same inner contour
as a function of another parameter φ, that is,

ρ φ + iζ φ =
1

1 − a
1 − eiφ , φ ∈ 0, 2π , 14

and finally we can describe the stability/instability contour
for the Al-Alaoui operator of (12) as a function of φ as

w eiφ =
1 + a
1 − a h

1 − e−iφ
α

, φ ∈ 0, 2π 15

The next steps of the proof follow the lines of Theorem 1
of [13]. Note that the characteristic equation of system (4)
or (5)

w z − λf
1 w z − λf

2 … w z − λf
n = 0 16

is asymptotically stable if and only if all elements w z −
λf
j , j = 1,… , n, do not generate unstable poles in the z-

domain. Accounting that w z is a meromorphic function
(w z is homomorphic in C \ 0 ) and the contour w eiφ

presented in (16) is a simply closed contour in the com-
plex plane, we can prove the stability of the elements

w z − λf
j , j = 1,… , n, on the basis on Cauchy’s argument

principle and Rouché’s theorem [27].
Now, consider the simple closed contour D as in Figure 1

whose interior domain is C =C \ reiφ, 0 ≤ r < 1, 0 ≤ φ ≤ 2π
such that w D ≠ 0 and w D <∞. Then, the winding num-

ber W w D , λf
j of w D about λf

j , j = 1,… , n, that counts
the number of times the curve w D winds around the point

λf
j is

W w D , λf
j = 1

2πi D

w′ z
w z − λf

j

dz = nz − np, 17

D

ei𝜑

rei𝜑

t → ∞

Re

Im 0
𝛿 → 0

Figure 1: Simple closed positively oriented contour D.
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wherew′ z = dw z /dz and nz and np denote the numbers

of zeros and poles of w z − λf
j inside the contour D, respec-

tively. Since the transformation w z has a single pole in 0
(see (9)), the coefficient np is 0. Therefore, the winding num-

berW w D , λf
j will describe a number of unstable elements

nz of w z − λf
j . The contour w D is based on (16) and is

presented in Figure 2. Now:
(⇒) Assume that the system is asymptotically stable.

Then, all poles for all elements w z − λf
j , j = 1, , n, are

outside the interior domain C of the contour D. Therefore,

W w D , λf
j = 0 ∀ j = 1,… , n and all λf

j , j = 1,… , n, are
outside the area w D bounded by 1 + a / 1 − a h
1 − e−iφ α , which can be described by (10).

(⇐) Assume that all eigenvalues λf
j , j = 1,… , n, are out-

side the instability area (10). Then, all eigenvalues are outside

the contour w D and the winding number W w D , λf
j =

0 ∀ j = 1,… , n. Therefore, the elements w z − λf
j , j = 1, , n,

do not generate poles in interior domain C of the contour
D. So the system is asymptotically stable. This completes
the proof.

A graphical presentation of the stability/instability areas
is shown in Figure 3.

It can be seen from Figure 3 that the stability area
depends on the weighting parameter a of the Al-Alaoui
equation. For a = 0, we obtain the instability area as for the
backward Euler operator (compare [13]) and increasing a
leads to enlargement of the instability area.

On the basis of Theorem 1, we can present a new analyt-
ical result as follows.

Theorem 2. The discrete-time fractional-order system (4) or
(5) with w z described by the Al-Alaoui operator (9), with
α ∈ 0, 2 , is not asymptotically stable if and only if there
exists any

φf
j ∈ −α

π

2
, α

π

2
∧ λf

j

≤
2 1 + a
1 − a h

cos
φf
j

α

α

, j = 1,… , n,
18

where λf
j and φf

j are the modulus and argument, respec-
tively, of the j − th f -pole of the system and a ∈ 0, 1 being
the Al-Alaoui weighting coefficient.

Proof. Taking into account that the stability/instability
bounding contour is given by (15), which can be presented
in form of

w eiφ =
1 + a
1 − a h

1 − cos φ 2 + sin2φ
α

eiα arctan sin φ/1−cos φ

=
1 + a
1 − a h

2 1 − cos φ
α

eiα arctan tan π−φ/2

=
2 1 + a
1 − a h

sin
φ

2

α

eiαπ−φ/2,

19

and introducing the resultant argument of w eiφ , that is,
φf = α π − φ /2, we obtain

w eiφ
f =

2 1 + a
1 − a h

sin
π

2
−
φf

α

α

eiφ
f 20

=
2 1 + a
1 − a h

cos
φf

α

α

eiφ
f 21

Note that (21) presents the modulus of w eiφ
f

as a
function of its argument φf . Also note that for φ ∈ −π, π ,
the function w eiφ is redefined in φf ∈ −απ/2, απ/2 . For

the f -poles of the system with arg λf
j ∉ −απ/2, απ/2 , j =

1,… , n, the f -poles are outside the instability area (see the
stability/instability areas in Theorem 1) and the system is
asymptotically stable.

(⇒) Assume that the system is not asymptotically stable.

Then, at least one λf
j , j = 1,… , n, lies inside or in the bound

0 0.5 1 1.5 2 2.5 3 3.5

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

Re w

Im
 w

a = 0 a = 0.3
a = 0.5

a = 0.7

a = 0.9

Stable

Unstable

Figure 3: Stability/instability areas for h = 1 and various a.

𝛿 → 0

Re

Im 0 1

w(D)

1 + a
(1 − a)h

(1 − e−i𝜑)
𝛼

Figure 2: Contour of w D .
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of the instability area described in Theorem 1. Since the
bound function w eiφ is redefined in φf ∈ −απ/2, απ/2 ,
the argument of unstable eigenvalue λf

j has to be φf
j ∈ −απ/

2, απ/2 . For arg λf
j ∈ −απ/2, απ/2 , j = 1,… , n, the f

-poles are inside the instability area when the modulus of
the jth f -pole is lower (or equal) than the modulus of the
stability/instability bounding contour w eiφ

f
presented in

(21) for the same angle φf = arg λf
j . Therefore, there is at

least one f -pole passing condition (18).

(⇐) Assume that an f -pole λf
j , j = 1,… , n, of the sys-

tem passes condition (18). Then, taking into account the
stability/instability bound equation (21), the f -pole is inside
(or in the bound) of the instability area. Taking into account
Theorem 1, the system is not asymptotically stable. This
completes the proof.

On the basis of Theorem 2, we can immediately present
the following.

Theorem 3. The discrete-time fractional-order system (4) or
(5) with w z described by the Al-Alaoui operator (9), with
α ∈ 0, 2 , is asymptotically stable if and only if

φf
j ∈ α

π

2
, −α

π

2
∨ λf

j

>
2 1 + a
1 − a h

cos
φf
j

α

α

, j = 1,… , n,
22

where λf
j and φf

j are the modulus and argument, respec-
tively, of the j − th f -pole of the system and a ∈ 0, 1 being
the Al-Alaoui weighting coefficient.

Proof. Immediate from Theorem 2.

The results of Theorems 2 and 3 for the zero weight-
ing coefficient of the Al-Alaoui operator (a = 0) specialize
to those for the backward Euler-based discretization scheme
presented in [13]. Also, on the basis of the results, we can
easily present the stability criterion for the Tustin-based
discretization scheme.

Theorem 4. The discrete-time fractional-order system (4) or
(5) with w z described by the Tustin operator (8), with α ∈
0, 2 , is asymptotically stable if and only if

φf
j ∈ α

π

2
, −α

π

2
, j = 1,… , n, 23

where φf
j is the argument of the j − th f -pole of the system.

Proof. Consider the stability Theorem 3. Accounting that
the Tustin-based approach is a special case of the Al-
Alaoui approach with a→ 1−, we arrive at the following
modulus condition:

λf
j > lim

a→1−

2 1 + a
1 − a h

cos
φf
j

α

α

, j = 1,… , n, 24

Taking into account that

lim
a→1−

2 1 + a
1 − a h

cos
φf
j

α

α

= +∞, 25

then we have λf
j < +∞, j = 1,… , n, and we arrive at con-

dition (23).

Remark 1. Note that the results of Theorem 4 are the same as
those for continuous-time systems [28, 29]. Thus, using
the Tustin-based discretization scheme does not affect the
stability conditions for discrete-time systems. However, the
Tustin-based discretization is inferior with respect to approx-
imation accuracy [10].

Remark 2. The results of Theorems 2 and 3 show that dis-
cretization of a stable continuous-time system using the
Al-Alaoui-based approach guarantees the asymptotic sta-
bility of a discrete-time system. Moreover, for the unstable
continuous-time system, we can select such a sampling
period h and weighting coefficient a that lead to a stable
discrete-time system.

4. Finite-Length Implementation of
Discretization Operators

It is important that the “ideal” Al-Alaoui and Tustin opera-
tors are not applicable in practice due to infinite-length
implementation of the discretization equations. Therefore,
in practical applications, we approximate the two above
operators by use of rational finite-length discrete-time trans-
fer functions. Usually, the approximations are obtained
through the continuous fraction expansion (CFE) method,
but in the Tustin-approach, the Muir recursion can also be
applied [10]. Regardless of the approximation method, the

M = 3

Real

Im
ag

in
ar

y

Unstable

Stable

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−0.6
−0.4
−0.2

0
0.2
0.4
0.6

M = 5
M = 9
M = 15

𝛼 = 0.5, a = 0.5848

Figure 4: Stability/instability areas for h = 1 and various M.
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rational discrete-time transfer function approximator ŵ z
to w z is obtained as follows:

ŵ z =
∑M

m=1wmz
m

∑M
m=1vmz

m
26

In this case, the contour of the approximation ŵ z in the
complex plane is (see [2, 24])

ŵ eiφ =
∑M

m=1wme
imφ

∑M
m=1vme

imφ
27

Now, if curve (27) constitutes a simple closed curve in the
complex plane, then the stability/instability areas with

respect to λf
j , j = 1,… ,M, are separated from each other by

the contour. Exemplary stability/instability areas for α = 0 5,
h = 1, a = 0 71, and various implementation lengths M are
presented in Figure 4.

5. Simulation Examples

Example 1. Consider a commensurate continuous-time
fractional-order state space system as in (1) with

Af =

9 −31 −41

1 0 0

0 1 0

,

B = 1 0 0 T ,

C = 0 0 1 ,

28

and α = 0 5. The system has three f -poles, i.e., λf
1 = −1 and

λf
2,3 = 5 ± i4. Note that since arg λf

2,3 ∉ π/4, −π/4 , the
system is unstable. The system is discretized by the use of
the Al-Alaoui approach with the sampling period h = 0 05
and four different values of the weighting coefficient a =
0 5, 0.6, 0.7, and 0.8. The stability properties of the discre-
tized system designed by use of Theorem 3 are presented in
Table 1. Moreover, Table 1 shows the stability results for
the Tustin method as a special case of the Al-Alaoui
approach with a = 1. The f -poles with the stability/instability
areas are depicted in Figure 5.

It can be seen from Table 1 that even though the
continuous-time system is unstable, the Al-Alaoui method
with the weighting coefficients a = 0 5 and a = 0 6 can lead
to the stable discrete-time system, but for the weighting
coefficients a = 0 7 and a = 0 8, the discrete-time system

Table 1: Stability properties of discretized fractional-order system; Example 1.

j φf
j = arg λf

j λf
j a

2 1 + a
1 − a h

cos
φf
j

α

α

Comment

1 π 1 0.5 —

Stable2 0.67474 6.4031 0.5 5.1324

3 −0.67474 6.4031 0.5 5.1324

1 π 1 0.6 —

Stable2 0.67474 6.4031 0.6 5.9264

3 −0.67474 6.4031 0.6 5.9264

1 π 1 0.7 —

Unstable2 0.67474 6.4031 0.7 7.0538

3 −0.67474 6.4031 0.7 7.0538

1 π 1 0.8 —

Unstable2 0.67474 6.4031 0.8 8.8896

3 −0.67474 6.4031 0.8 8.8896

1 π 1 1 —

Unstable2 0.67474 6.4031 1 ∞
3 −0.67474 6.4031 1 ∞

𝜋

𝜋

4

−4

a = 0.5
a = 0.6
a = 0.7
a = 0.8

𝜆1
f 𝜆2,3

f

Stable

Unstable

0 2 4 6 8 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

Re

Im

Figure 5: Stability/instability areas for various a; Example 1.
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still remains unstable. It is worth mentioning that the stabil-
ity/instability of the discrete-time system is related to the

unstable f -poles λf
2 and λf

3 . Since the f -pole λ
f
1 is stable, the

discrete-time counterpart will still be stable with respect to

λf
1 . The outcomes of Table 1 for the Tustin-based discreti-

zation scheme confirm the result of Theorem 4. Since the

f -poles λf
1 and λf

2 are outside the instability areas for a =
0 5 and a = 0 6 and inside the instability areas for a = 0 7
and a = 0 8, the results of Figure 5 and Theorem 1 fully con-
firm the stability results specified in Table 1.

Example 2. Consider a commensurate continuous-time
fractional-order state space system as in (1) with α = 1 5 and

Af =
−0 78 −0 3121

1 0
,

B = 1 0 T ,

C = 0 1 ,

29

whose eigenvalues are λf
1,2 = −0 39 ± 0 4i. Note that the sys-

tem is unstable due to arg λf
1,2 ∉ 3π/4, −3π/4 . The sys-

tem is discretized by the use of the Al-Alaoui operator
with the sampling period h = 1 and two different values of
the weighting coefficient a = 0 5 and 0.8. Stability results
for the discretized system are presented in Table 2.

It can be seen from Table 2 that the discrete-time system
is stable for a = 0 5 but unstable for a = 0 8.

Example 3. Consider fractional-order continuous-time system

G s =
1

s0 9 − 1 6s0 6 − 0 4611s0 3 + 2 1389
, 30

with α = 0 3 and three f -poles, i.e., λf
1 = −1 and λf

2,3 = 1 3 ± i

0 67. Note that arg λf
1,2,3 ∈ 3π/20, −3π/20 and the system

are stable. The system is discretized with the sampling period
h = 0 05 and the approximation of the Al-Alaoui operator
as in (26), with a = 1/3 and different implementation lengths
M = 3 and 5

ŵ3 z =
2 6779z3 − 3 2135z2 + 0 57842z + 0 12711

z3 − 0 8z2 − 0 050667z + 0 04557
, 31

ŵ5 z = 2 6779z5 − 4 9987z4 + 2 4147z3 + 0 1087z2 −
0 18594z + 0 0041955/z5 − 1 4667z4 + 0 3684z3 + 0 17077z2
− 0 037698z − 0 0034597

The stability areas and f -poles of the system are pre-
sented in Figure 6.

It can be seen from Figure 6 that although the origi-
nal system is stable, the discretized one by use of finite
implementation of the Al-Alaoui operator is unstable for
M = 3 and stable for M = 5. Therefore, in contrast to the
infinite-length Al-Alaoui operator, in some specific cases,
the finite-length implementation of the Al-Alaoui discretizer
for a stable continuous time system can lead to an unstable
discrete-time system.

All the results presented in the above examples have been
confirmed by a variety of BIBO stability experiments.

Remark 3. Matlab-scripted files for the above examples are
available from the web: doi:10.5281/zenodo.1414176.

6. Conclusion

This paper has offered new, simple, graphical, and analytical
stability/instability conditions for continuous-time commen-
surate fractional-order systems discretized by the use of the
Al-Alaoui and Tustin operators. Firstly, theoretical stability
condition for the Al-Alaoui operator has been given in a
graphical way, which is then used in simple, analytical stabil-
ity tests for both Al-Alaoui and Tustin approaches. Finally,

Table 2: Stability properties of discretized fractional-order system; Example 2.

j φf
j = arg λf

j λf
j

a 2 1 + a
1 − a h

cos
φf
j

α

α

Comment

1 1.56236 0.55866 0.5 0.36025
Stable

2 −1.56236 0.55866 0.5 0.36025

1 1.56236 0.55866 0.8 1.87193
Unstable

2 −1.56236 0.55866 0.8 1.87193

Stable

Unstable

3𝜋
20

−3𝜋
20

M = 3
M = 5

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Im

Re

𝜆1
f

𝜆2
f

𝜆3
f

Figure 6: Stability/instability areas for different implementation
lengths M; Example 3.
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the stability of discrete-time systems by use of finite-length
approximations of the Al-Alaoui and Tustin discretizers has
been discussed. Simulation examples fully confirm the origi-
nal stability results obtained.

It is important that the fractional-order stability analysis
presented in the paper is based on the eigenvalues of the
state matrix, exactly as for the integer-order systems. This
method is very useful; however, in case of high dimensions
of the state matrices, calculation of eigenvalues may lead
to numerical problems.
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