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This article is devoted to both theoretical and numerical studies of nonlinear fractional Fredholm integrodifferential equations. In
this paper, we implement the reproducing kernel method (RKM) to approximate the solution of nonlinear fractional Fredholm
integrodifferential equations. Numerical results demonstrate the accuracy of the present algorithm. In addition, we prove
the existence of the solution of the nonlinear fractional Fredholm integrodifferential equation. Uniformly convergence of the
approximate solution produced by the RKM to the exact solution is proven.

1. Introduction

Fractional Fredholm integrodifferential equations have vari-
ous applications in sciences and engineering. Most of these
problems cannot be solved analytically, and hence finding
accurate numerical solution for these problems will be very
useful.Wazwaz [1, 2] studied the Fredholm integral equations
of the form

𝑓 (𝑥) = 𝑟 (𝑥) + 𝜆∫𝑏
𝑎
𝐻(𝑥, 𝑡) 𝑓 (𝑡) 𝑑𝑡, (1)

where 𝑎 and 𝑏 are constants, 𝜆 is a parameter, 𝑟(𝑥) is the data
function, 𝐻(𝑥, 𝑡) is the kernel of the integral equation, and𝑓(𝑥) is the unknown function that will determined. In this
paper, we study the generalization of the above problem of
the form

𝐷𝛼𝑓 (𝑥) = 𝑟 (𝑥) + 𝜆∫𝑏
𝑎
𝐻(𝑥, 𝑡) 𝑓𝑚 (𝑡) 𝑑𝑡, 0 < 𝛼 ≤ 1 (2)

subject to

𝑓 (𝑎) = 𝑎0. (3)

Note that 𝐷𝛼 in (2) is in the Caputo derivative. Equation (2)
is called the nonlinear fractional Fredholm integrodifferential
equations of the second kind characterized by the occurrence
of the unknown function 𝑢(𝑥) inside and outside the integral
sign. To homogenize the initial condition, we assume 𝑞(𝑥) =𝑓(𝑥) − 𝑎0.Then,

𝐷𝛼𝑞 (𝑥) = 𝑟 (𝑥) + 𝜆∫𝑏
𝑎
𝐻(𝑥, 𝑡) (𝑞 (𝑡) + 𝑎0)𝑚 𝑑𝑡,

0 < 𝛼 ≤ 1
(4)

subject to

𝑞 (𝑎) = 0. (5)

In the following definition and theorem, we write the defini-
tion of Caputo derivative as well as the power rule which we
are used in this paper. For more details on the geometric and
physical interpretation for Caputo fractional derivatives, see
[3].
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Definition 1. For 𝑚 to be the smallest integer that exceeds 𝛼,
the Caputo fractional derivatives of order 𝛼 > 0 is defined as

𝐷𝛼𝑞 (𝑥)

= {{{{{{{

1Γ (𝑚 − 𝛼) ∫
𝑥

0
(𝑥 − 𝜏)𝑚−𝛼−1 𝑑𝑚𝑞 (𝜏)𝑑𝜏𝑚 𝑑𝜏, 𝑚 − 1 < 𝛼 < 𝑚,

𝑑𝑚𝑞 (𝑥)𝑑𝑥𝑚 , 𝑚 integer.
(6)

Theorem 2. �e Caputo fractional derivative of the power
function satisfies

𝐷𝛼𝑡𝑠
= {{{

Γ (𝑠 + 1)Γ (𝑠 − 𝛼 + 1) 𝑡𝑝−𝑠, 𝑛 − 1 < 𝑠 < 𝑛, 𝑠 > 𝑛 − 1,
0, 𝑠 < 𝛼.

(7)

The reproducing kernel Hilbert space method is a useful
numerical technique to solve nonlinear problems [4–6]. The
reproducing kernel is given by this definition.

Definition 3. Let𝑀 ̸= 𝜙. A function 𝐾 : 𝐴 × 𝐴 󳨀→ 𝐶 is a
kernel of 𝑍 i if

(i) 𝐻(., 𝑥) ∈ 𝑍 for all 𝑥 ∈ 𝐴,
(ii) (𝜙(.),𝐻(., 𝑥)) = 𝜙(𝑥) for all 𝑥 ∈ 𝐴 and 𝜙 ∈ 𝑍.
The second condition is called the reproducing property

and a Hilbert space which possesses a reproducing kernel
is called a reproducing kernel Hilbert space (RKHS). More
details can be in [7–14]. A description of the RKM for
discretization of the linear fractional Fredholm integrodif-
ferential equations problem (4)-(5) is presented in Section 2.
In Section 3, we study the nonlinear fractional Fredholm
integrodifferential equations. Several numerical examples
and conclusions are discussed in Section 4. Conclusions and
closing remarks are given in Section 5.

2. Analysis of RKHSM for Linear Fractional
Fredholm Integrodifferential Equations

In this section, we discuss how to solve the following
linear fractional Fredholm integrodifferential equation using
RKHSM:

𝐷𝜁𝑞 (𝑥) = 𝑟 (𝑥) + 𝜆∫𝑏
𝑎
𝐻(𝑥, 𝑡) (𝑞 (𝑡) + 𝑎0) 𝑑𝑡,

0 < 𝜁 ≤ 1
(8)

subject to

𝑞 (𝑎) = 0. (9)

In order to solve problem (8)-(9), we construct the kernel
Hilbert spaces𝑊12 [𝑎, 𝑏] and𝑊22 [𝑎, 𝑏] in which every function
satisfy the boundary conditions (9). Let

𝑊22 [𝑎, 𝑏] = {𝑓 (𝑠) : 𝑓,
𝑓󸀠 are absolutely continuous real value functions,
𝑓󸀠󸀠 ∈ 𝐿2 [𝑎, 𝑏] , 𝑓 (𝑎) = 0} .

(10)

The inner product in𝑊22 [𝑎, 𝑏] is defined as

(𝑢 (𝑦) , V (𝑦))𝑊2

2
[𝑎,𝑏] = 𝑢 (𝑎) V (𝑎) + ∫𝑏

𝑎
𝑢󸀠 (𝑦) V󸀠 (𝑦) 𝑑𝑦 (11)

and the norm ‖𝑢‖𝑊2

2
[𝑎,𝑏] is given by

‖𝑢‖𝑊2

2
[𝑎,𝑏] = √(𝑢 (𝑦) , 𝑢 (𝑦))𝑊2

2
[𝑎,𝑏] (12)

where 𝑢, V ∈ 𝑊22 [𝑎, 𝑏].
Theorem 4. �ere exists 𝑄(𝑠, 𝑦) ∈ 𝑊32 [0, 1] such that, for any𝑢 ∈ 𝑊22 [0, 1] and each fixed 𝑦, 𝑥 ∈ [𝑎, 𝑏], we have

(𝑢 (𝑦) , 𝑄 (𝑥, 𝑦))𝑊2

2
[𝑎,𝑏] = 𝑢 (𝑥) . (13)

In this case, 𝑄(𝑥, 𝑦) is given by

𝑄 (𝑥, 𝑦) = {𝛼0 (𝑥) + 𝛼1 (𝑥) 𝑦, 𝑦 ≤ 𝑥𝛽0 (𝑥) + 𝛽1 (𝑥) 𝑦, 𝑦 > 𝑥} (14)

where

𝛼0 (𝑥) = 𝑎 (𝑏 − 𝑥)𝑎 − 𝑏 ,
𝛼1 (𝑥) = −𝑏 − 𝑥𝑎 − 𝑏 ,
𝛽0 (𝑥) = 𝑏 (𝑎 − 𝑥)𝑎 − 𝑏 ,
𝛽1 (𝑥) = −𝑎 − 𝑥𝑎 − 𝑏 .

(15)

Proof. Using the integration by parts, one can get

(𝑢 (𝑦) , 𝑄 (𝑥, 𝑦))𝑊2

2
[𝑎,𝑏]

= 𝑢 (𝑎) 𝑄 (𝑥, 𝑎) + 𝑢 (𝑏) 𝑄𝑦 (𝑥, 𝑏) − 𝑢 (𝑎) 𝑄𝑦 (𝑥, 𝑎)
− ∫𝑏
𝑎
𝑢 (𝑦) 𝜕2𝑄𝜕𝑦2 (𝑥, 𝑦) 𝑑𝑦.

(16)

Since 𝑢(𝑦) and 𝑄(𝑥, 𝑦) ∈ 𝑊22 [𝑎, 𝑏],
𝑢 (𝑎) = 0 (17)

and

𝑄 (𝑥, 𝑎) = 0. (18)
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Thus,

(𝑢 (𝑦) ,𝑄 (𝑥, 𝑦))𝑊2

2
[𝑎,𝑏]

= 𝑢 (𝑏)𝑄𝑦 (𝑥, 𝑏) − ∫𝑏
𝑎
𝑢 (𝑦) 𝜕2𝑄𝜕𝑦2 (𝑥, 𝑦) 𝑑𝑦.

(19)

Since 𝑄(𝑥, 𝑦) is a reproducing kernel of𝑊22 [𝑎, 𝑏],
(𝑢 (𝑦) ,𝑄 (𝑥, 𝑦))𝑊2

2
[𝑎,𝑏] = 𝑢 (𝑥) . (20)

Thus,

𝜕2𝑄𝜕𝑦2 (𝑥, 𝑦) = 𝛿 (𝑦 − 𝑥) (21)

where 𝛿 is the Dirac-delta function and

𝑄𝑦 (𝑥, 𝑏) = 0. (22)

Since the characteristic equation of (𝜕2𝑄/𝜕𝑦2)(𝑥, 𝑦) = 𝛿(𝑦 −𝑥) is 𝜆2 = 0 and its characteristic value is 𝜆 = 0 with 2
multiplicity roots, we write 𝑄(𝑥, 𝑦) as

𝑄(𝑥, 𝑦) = {𝛼0 (𝑥) + 𝛼1 (𝑥) 𝑦, 𝑦 ≤ 𝑥𝛽0 (𝑥) + 𝛽1 (𝑥) 𝑦, 𝑦 > 𝑥} . (23)

Since (𝜕2𝑄/𝜕𝑦2)(𝑥, 𝑦) = 𝛿(𝑦 − 𝑥), we have
𝑄(𝑥, 𝑥 + 0) = 𝑄 (𝑥, 𝑥 − 0) . (24)

On the other hand, integrate (𝜕2𝑄/𝜕𝑦2)(𝑥, 𝑦) = 𝛿(𝑦−𝑥) from𝑥 − 𝜖 to 𝑥 + 𝜖 with respect to 𝑦 and let 𝜖 󳨀→ 0 to get
𝜕𝑄𝜕𝑦 (𝑥, 𝑥 + 0) − 𝜕𝑄𝜕𝑦 (𝑥, 𝑥 − 0) = −1. (25)

Using conditions (18) and (22)-(25), we get the following
system of equations:

𝛼0 (𝑥) + 𝛼1 (𝑥) 𝑎 = 0,
𝛽0 (𝑥) + 𝛽1 (𝑥) 𝑏 = 0,
𝛼0 (𝑥) + 𝛼1 (𝑥) 𝑥 = 𝛽0 (𝑥) + 𝛽1 (𝑥) 𝑥

𝛽1 − 𝑐1 = −1,
(26)

We solved the last system using Mathematica to get

𝛼0 (𝑥) = 𝑎 (𝑏 − 𝑥)𝑎 − 𝑏 ,
𝛼1 (𝑥) = −𝑏 − 𝑥𝑎 − 𝑏 ,
𝛽0 (𝑥) = 𝑏 (𝑎 − 𝑥)𝑎 − 𝑏 ,
𝛽1 (𝑥) = −𝑎 − 𝑥𝑎 − 𝑏 .

(27)

Next, we study the space𝑊12 [𝑎, 𝑏]. Let
𝑊12 [𝑎, 𝑏] = {𝑢 (𝑥) :
𝑢 are absolutely continuous real value functions,
𝑢󸀠 ∈ 𝐿2 [𝑎, 𝑏]} .

(28)

The inner product in𝑊12 [𝑎, 𝑏] is defined as

(𝑢 (𝑦) , V (𝑦))𝑊1

2
[𝑎,𝑏] = 𝑢 (𝑎) V (𝑎)

+ ∫𝑏
𝑎
𝑢󸀠 (𝑦) V󸀠 (𝑦) 𝑑𝑦, (29)

and the norm ‖𝑢‖𝑊1

2
[𝑎,𝑏] is given by

‖𝑢‖𝑊1

2
[𝑎,𝑏] = √(𝑢 (𝑦) , 𝑢 (𝑦))𝑊1

2
[𝑎,𝑏] (30)

where 𝑢, V ∈ 𝑊12 [𝑎, 𝑏].
Theorem 5. �ere exists 𝑅(𝑠, 𝑦) ∈ 𝑊12 [𝑎, 𝑏] such that, for any𝑢 ∈ 𝑊12 [𝑎, 𝑏] and each fixed 𝑦, 𝑥 ∈ 𝑊12 [𝑎, 𝑏], we have

(𝑢 (𝑦) , 𝑅 (𝑥, 𝑦))𝑊1

2
[𝑎,𝑏] = 𝑢 (𝑥) . (31)

In this case, 𝑅(𝑥, 𝑦) is given by

𝑅 (𝑥, 𝑦) = {𝛼0 (𝑥) + 𝛼1 (𝑥) 𝑦, 𝑦 ≤ 𝑥𝛽0 (𝑥) + 𝛽1 (𝑥) 𝑦, 𝑦 > 𝑥} (32)

where

𝛼0 (𝑥) = 1 − 𝑎,
𝛼1 (𝑥) = 1,
𝛽0 (𝑥) = 1 − 𝑎 + 𝑥,
𝛽1 (𝑥) = 0.

(33)

Proof. Using the integration by parts, one can get

(𝑢 (𝑦) , 𝑅 (𝑠, 𝑦))𝑊1

2
[𝑎,𝑏]

= 𝑢 (𝑎) 𝑅 (𝑠, 𝑎) + ∫𝑏
𝑎
𝑢󸀠 (𝑦) 𝜕𝑅𝜕𝑦 (𝑠, 𝑦) 𝑑𝑦

= 𝑢 (𝑎) 𝑅 (𝑠, 𝑎) + 𝑢 (𝑏) 𝜕𝑅𝜕𝑦 (𝑠, 𝑏) − 𝑢 (𝑎) 𝜕𝑅𝜕𝑦 (𝑠, 𝑎)
− ∫𝑏
𝑎
𝑢 (𝑦) 𝜕2𝑅𝜕𝑦2 (𝑠, 𝑦) 𝑑𝑦.

(34)

Since 𝑅(𝑥, 𝑦) is a reproducing kernel of𝑊12 [𝑎, 𝑏],
(𝑢 (𝑦) , 𝑅 (𝑥, 𝑦))𝑊1

2
[𝑎,𝑏] = 𝑢 (𝑥) . (35)

Then,

−𝜕2𝑅𝜕𝑦2 (𝑥, 𝑦) = 𝛿 (𝑦 − 𝑥) (36)



4 Complexity

and

𝑅 (𝑥, 𝑎) − 𝜕𝑅𝜕𝑦 (𝑥, 𝑎) = 0, (37)

𝜕𝑅𝜕𝑦 (𝑥, 𝑏) = 0. (38)

Since the characteristic equation of −(𝜕2𝑅/𝜕𝑦2)(𝑥, 𝑦) = 𝛿(𝑦−𝑥) is 𝜆2 = 0 and its characteristic value is 𝜆 = 0 with 2
multiplicity roots, we write 𝑅(𝑥, 𝑦) as

𝑅 (𝑥, 𝑦) = {𝛼0 (𝑥) + 𝛼1 (𝑥) 𝑦, 𝑦 ≤ 𝑥𝛽0 (𝑥) + 𝛽1 (𝑥) 𝑦, 𝑦 > 𝑥} . (39)

Since (𝜕2𝑅/𝜕𝑦2)(𝑥, 𝑦) = −𝛿(𝑦 − 𝑥), we have
𝑅 (𝑥, 𝑥 + 0) − 𝑅 (𝑥, 𝑥 − 0) = 0 (40)

𝜕𝑅𝜕𝑦 (𝑥, 𝑥 + 0) − 𝜕𝑅𝜕𝑦 (𝑥, 𝑥 − 0) = −1 (41)

Hence,

𝛼0 (𝑥) + 𝛼1 (𝑥) 𝑎 − 𝛼1 (𝑥) = 0,
𝛽1 (𝑥) = 0,

𝛼0 (𝑥) + 𝛼1 (𝑥) 𝑥 = 𝛽0 (𝑥) + 𝛽1 (𝑥) 𝑥,
𝑑1 (𝑥) − 𝛼1 (𝑥) = −1.

(42)

Then,

𝛼0 (𝑥) = 1 − 𝑎,
𝛼1 (𝑥) = 1,
𝛽0 (𝑥) = 1 − 𝑎 + 𝑥,
𝛽1 (𝑥) = 0.

(43)

Now, we present how to solve problem (8)-(9) using the
reproducing kernel method. Let

𝜎𝑖 (𝑥) = 𝑅 (𝑥𝑖, .) (44)

for 𝑖 ∈ 𝑁. It is clear that𝐿 : 𝑊22 [𝑎, 𝑏] 󳨀→ 𝑊12 [𝑎, 𝑏] is bounded.
Let

𝜓𝑖 (𝑥) = 𝐿∗𝜎𝑖 (𝑥) (45)

where 𝐿(𝜎𝑖(𝑥)) = 𝐷𝛼𝑓(𝑥) − 𝜆 ∫𝑏
0
𝐾(𝑥, 𝑡)(𝑓(𝑡) − 𝑎0)𝑑𝑡

and 𝐿∗is the adjoint operator of 𝐿. Using Gram-Schmidt
orthonormalization to generate orthonormal set of functions{𝜓𝑖(𝑥)}∞𝑖=1 where

𝜓𝑖 (𝑥) = 𝑖∑
𝑗=1

𝛼𝑖𝑗𝜓𝑗 (𝑥) (46)

and𝛼𝑖𝑗 are coefficients ofGram-Schmidt orthonormalization.
In the next theorem, we show the existence of the solution of
Problem (8)-(9).

Theorem 6. If {𝑥𝑖}∞𝑖=1 is dense on [𝑎, 𝑏], then
𝑓 (𝑥) = ∞∑

𝑖=1

𝑖∑
𝑗=1

𝛼𝑖𝑗𝑔 (𝑥𝑗) 𝜓𝑖 (𝑥) . (47)

Proof. First, we want to prove that {𝜓𝑖(𝑥)}∞𝑖=1 is the complete
system of 𝑊22 [𝑎, 𝑏] and 𝜓𝑖(𝑥) = 𝐿(𝑄(𝑥, 𝑥𝑖)). It is clear that𝜓𝑖(𝑥) ∈ 𝑊22 [𝑎, 𝑏] for 𝑖 ∈ 𝑁. Simple calculations implies that

𝜓𝑖 (𝑥) = 𝐿∗𝜎𝑖 (𝑥) = (𝐿∗𝜎𝑖 (𝑥) , 𝑄 (𝑥, 𝑦))𝑊3

2
[0,1]

= (𝜎𝑖 (𝑥) , 𝐿 (𝑄 (𝑥, 𝑦)))𝑊2

2
[𝑎,𝑏] = 𝐿 (𝑄 (𝑥, 𝑥𝑖)) . (48)

For each fixed 𝑓(𝑥) ∈ 𝑊22 [𝑎, 𝑏], let
(𝑓 (𝑥) , 𝜓𝑖 (𝑥))𝑊2

2
[𝑎,𝑏] = 0, 𝑖 ∈ 𝑁. (49)

Then,

(𝑓 (𝑥) , 𝜓𝑖 (𝑥))𝑊2

2
[𝑎,𝑏] = (𝑓 (𝑥) , 𝐿∗𝜎𝑖 (𝑥))𝑊2

2
[𝑎,𝑏]

= (𝐿𝑓 (𝑥) , 𝜎𝑖 (𝑥))𝑊2

2
[𝑎,𝑏]

= 𝐿𝑓 (𝑥𝑖) = 0.
(50)

Since {𝑥𝑖}∞𝑖=1 is dense on [𝑎, 𝑏], 𝐿𝑓(𝑥) = 0. Since 𝐿−1 exists,𝑓(𝑥) = 0. Thus, {𝜓𝑖(𝑥)}∞𝑖=1 is the complete system of𝑊22 [𝑎, 𝑏].
Second, we prove (47). Simple calculations imply that

𝑞 (𝑥) = ∞∑
𝑖=1

(𝑞 (𝑥) , 𝜓𝑖 (𝑥))𝑊2

2
[𝑎,𝑏] 𝜓𝑖 (𝑥)

= ∞∑
𝑖=1

𝑖∑
𝑗=1

𝛼𝑖𝑗 (𝑞 (𝑥) , 𝐿∗ (𝑄 (𝑥, 𝑥𝑗)))𝑊2

2
[𝑎,𝑏]

𝜓𝑖 (𝑥)

= ∞∑
𝑖=1

𝑖∑
𝑗=1

𝛼𝑖𝑗 (𝐿𝑞 (𝑥) , 𝑄 (𝑥, 𝑥𝑗))𝑊2

2
[𝑎,𝑏]

𝜓𝑖 (𝑥)

= ∞∑
𝑖=1

𝑖∑
𝑗=1

𝛼𝑖𝑗 (𝑟 (𝑥) , 𝑄 (𝑥, 𝑥𝑗))𝑊2

2
[𝑎,𝑏]

𝜓𝑖 (𝑥)

= ∞∑
𝑖=1

𝑖∑
𝑗=1

𝛼𝑖𝑗𝑟 (𝑥𝑗) 𝜓𝑖 (𝑥) .

(51)

Let the approximate solution of problem (8)-(9) be given
by

𝑞𝑁 (𝑠) = 𝑁∑
𝑖=1

𝑖∑
𝑗=1

𝛼𝑖𝑗𝑟 (𝑠𝑗)𝜓𝑖 (𝑠) . (52)

In the next theorem, we show the uniformly convergent of the{𝑞𝑁(𝑥)}∞𝑁=1 to 𝑞(𝑥).
Theorem 7. If 𝑞(𝑥) and 𝑞𝑁(𝑥) are given as in (47) and (52),
then {𝑞𝑁(𝑥)}∞𝑁=1 converges uniformly to 𝑞(𝑥).
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Proof. For any 𝑥 ∈ [𝑎, 𝑏],
󵄩󵄩󵄩󵄩𝑞 (𝑥) − 𝑞𝑁 (𝑥)󵄩󵄩󵄩󵄩2𝑊2

2
[𝑎,𝑏] = (𝑞 (𝑥) − 𝑞𝑁 (𝑥) , 𝑞 (𝑥)

− 𝑞𝑁 (𝑥))𝑊2

2
[𝑎,𝑏] = ∞∑

𝑖=𝑁+1

((𝑞 (𝑥) , 𝜓𝑖 (𝑥))𝑊2

2
[𝑎,𝑏]

⋅ 𝜓𝑖 (𝑥) , (𝑞 (𝑥) , 𝜓𝑖 (𝑥))𝑊2

2
[𝑎,𝑏] 𝜓𝑖 (𝑥))𝑊2

2
[𝑎,𝑏]

= ∞∑
𝑖=𝑁+1

(𝑞 (𝑥) , 𝜓𝑖 (𝑥))2𝑊2

2
[𝑎,𝑏] .

(53)

Hence,

sup
𝑥∈[𝑎,𝑏]

󵄩󵄩󵄩󵄩𝑞 (𝑥) − 𝑞𝑁 (𝑥)󵄩󵄩󵄩󵄩2𝑊2

2
[𝑎,𝑏]

= sup
𝑥∈[𝑎,𝑏]

∞∑
𝑖=𝑁+1

(𝑞 (𝑥) , 𝜓𝑖 (𝑥))2𝑊2

2
[𝑎,𝑏] .

(54)

From Theorem 6, one can see that∑∞𝑖=1(𝑞(𝑥), 𝜓𝑖(𝑥))𝑊2

2
[𝑎,𝑏]𝜓𝑖(𝑥) converges uniformly to 𝑞(𝑥).

Hence,

sup
𝑥∈[𝑎,𝑏]

󵄩󵄩󵄩󵄩𝑞 (𝑥) − 𝑞𝑁 (𝑥)󵄩󵄩󵄩󵄩𝑊2

2
[𝑎,𝑏] = 0 𝑎𝑠 𝑁 󳨀→ ∞ (55)

which implies that {𝑞𝑁(𝑥)}∞𝑁=1 converges uniformly to 𝑞𝑁(𝑥).

3. Analysis of RKHSM for
Nonlinear Fractional Fredholm
Integrodifferential Equations

In this section, we discuss how to solve the following the
following problem using RKHSM:

𝐷𝜁𝑞 (𝑥) = 𝑟 (𝑥) + 𝜆∫𝑏
𝑎
ℎ (𝑥, 𝑡) (𝑞 (𝑡) + 𝑎0)𝑚 𝑑𝑡,

0 < 𝜁 ≤ 1
(56)

subject to

𝑞 (𝑎) = 0. (57)

Let

𝐺 (𝑥, 𝑞) = 𝜆∫𝑏
𝑎
𝐻(𝑥, 𝑡) (𝑞 (𝑡) + 𝑎0)𝑚 𝑑𝑡. (58)

We construct a homotopy as follows:

𝐻(𝑞, 𝑝) = 𝐷𝜁𝑞 (𝑥) − 𝑟 (𝑥) − 𝑝𝐺 (𝑥, 𝑞) = 0 (59)

where 𝑝 ∈ [0, 1] is an embedding parameter. For 𝑝 = 0, we
get a linear equation

𝐷𝜁𝑓𝑞 (𝑥) − 𝑟 (𝑥) = 0 (60)

which can be solved by using RKHSM as we described in
the pervious section. If 𝜆 = 1, we turn out to be problem
(56). Following the Homotopy Perturbation method [15], we
expand the solution in terms of the Homotopy parameter 𝜆
as

𝑞 = 𝑞0 + 𝑝𝑞1 + 𝑝2𝑞2 + 𝑝3𝑞3 + ⋅ ⋅ ⋅ . (61)

Substitute (61) into (59) and equate the coefficients of the
identical powers of 𝜆 to get the following system:

𝜆0 : 𝐷𝜁𝑞0 (𝑥) = 𝑟 (𝑥) , 𝑞0 (𝑎) = 0,
𝜆1 : 𝐷𝜁𝑞1 (𝑥) = 𝐺(𝑥, ∞∑

𝑖=0

𝑝𝑖𝑞𝑖)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝=0 , 𝑞1 (𝑎) = 0,

𝜆2 : 𝐷𝜁𝑞2 (𝑥) = 𝑑𝐺 (𝑥,∑∞𝑖=0 𝑝𝑖𝑞𝑖)𝑑𝜆
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝=0 , 𝑞2 (𝑎) = 0,

𝜆3 : 𝐷𝜁𝑞3 (𝑥) = 𝑑2𝐺 (𝑥, ∑∞𝑖=0 𝑝𝑖𝑞𝑖)𝑑𝜆2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝=0 , 𝑞3 (𝑎) = 0,

...
𝜆𝑘 : 𝐷𝜁𝑞𝑘 (𝑥) = 𝑑𝑘−1𝐺(𝑥,∑∞𝑖=0 𝑝𝑖𝑞𝑖)𝑑𝜆𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝=0 ,
𝑞𝑘 (𝑎) = 0.

(62)

From (61), it is easy to see that the solution to problem
(56)-(57) is given by

𝑞 (𝑥) = ∞∑
𝑘=0

𝑞𝑘 (𝑥) = ∞∑
𝑘=0

(∞∑
𝑖=1

𝑖∑
𝑗=1

𝛼𝑖𝑗𝑟𝑘 (𝑥𝑗)𝜓𝑖 (𝑥)) . (63)

We approximate the solution of problem (56)-(57) by

𝑓𝑁,𝑀 (𝑥) = 𝑚∑
𝑘=0

( 𝑛∑
𝑖=1

𝑖∑
𝑗=1

𝛼𝑖𝑗𝑔𝑘 (𝑠𝑗) 𝜓𝑖 (𝑥)) . (64)

4. Numerical Results

In this section, we present three numerical examples to show
the efficiency of the proposed method.

Example 1. Consider the following fractional Fredholm inte-
grodifferential equation:

𝐷1/2𝑢 (𝑥) = 𝑔 (𝑥) + 𝜆∫1
0
𝑥𝑡𝑢 (𝑡) 𝑑𝑡 (65)

subject to

𝑢 (0) = 0 (66)

where 𝑔(𝑥) = (32/3√𝜋)𝑥3/2 + (16/√𝜋)𝑥5/2 −2𝜆𝑥.Using𝑁 =10, the approximate solution is

𝑢10 (𝑥) = 4𝑥2 + 5𝑥3. (67)

Thus, 𝑢10(𝑥) is the exact solution.
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Figure 1: The exact and approximate solution for𝑁 = 15.
Table 1: The error for Example 1.

𝑛 𝑒1510 2.8 ∗ 10−1013 4.1 ∗ 10−1216 3.9 ∗ 10−1319 1.1 ∗ 10−14

Example 2. Consider the following fractional Fredholm inte-
grodifferential equation:

𝐷1/4𝑢 (𝑥) = 𝑔 (𝑥) + 2∫1
0
𝑒𝑥−𝑡𝑢2 (𝑡) 𝑑𝑡 (68)

subject to

𝑢 (0) = 1 (69)

where 𝑔(𝑥) = 𝑥1/4𝐸1,7/2(𝑥) − 2(𝑒 − 1)𝑒𝑥 and 𝐸𝑎,𝑏(𝑥) is the
two-parameter of Mittag-Leffler function. The exact solution
is 𝑢(𝑥) = 𝑒𝑥. Using𝑁 = 15, the approximate solution is given
in Figure 1. The error

𝑒𝑛 = max {󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢𝑛 (𝑥)󵄨󵄨󵄨󵄨 : 𝑥 = 0, 0.1, 0.2, . . . , 1} (70)

is given in Table 1.

Example 3. Consider the following fractional Fredholm inte-
grodifferential equation:

𝐷3/4𝑢 (𝑥) = 𝑔 (𝑥) + ∫1
0
𝑒𝑥𝑡𝑢4 (𝑡) 𝑑𝑡 (71)

subject to

𝑢 (0) = 2 (72)

where 𝑔(𝑥) = (24/Γ(17/4))𝑥13/4 − (10307/630)𝑒𝑥 and Γ is the
gamma function. The exact solution is 𝑢(𝑥) = 𝑒𝑥. Using 𝑁 =12, the approximate solution is

𝑢12 (𝑥) = 𝑥4 + 2. (73)

Hence, 𝑢12(𝑥) is the exact solution.

5. Conclusions and Closing Remarks

In this paper, we investigate the nonlinear fractional Fred-
holm integrodifferential equations where 0 < 𝛼 ≤ 1. We
implement the reproducing kernel method to approximate
the solution of the proposed problem. Numerical results
demonstrate the accuracy of the present algorithm. In addi-
tion, we prove the existence of the solution of the nonlinear
fractional Fredholm integrodifferential equation. Uniformly
convergence of the approximate solution produced by the
RKM to the exact solution is proven. We noted the following:

(i) The proposed method is very accurate. We get the
exact solution in Examples 1 and 3.

(ii) Form Table 1, we note that the error is very small in
Example 2.

(iii) Figure 1 shows that the approximate solution and the
exact solution are identical.

(iv) The proposed method can be generalized for more
models in Physics and Engineering.
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