
Research Article
Rigorous Solution of Slopes’ Stability considering
Hydrostatic Pressure

Chengchao Li , Pengming Jiang, and Aizhao Zhou

Department of Civil and Architecture Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China

Correspondence should be addressed to Chengchao Li; justlcc2015@163.com

Received 10 December 2017; Revised 23 April 2018; Accepted 8 May 2018; Published 12 June 2018

Academic Editor: Rafał Burdzik

Copyright © 2018 Chengchao Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

According to characteristics of soils in failure, a sliding mechanism of slopes in limit state is divided into five parts, for building a
slip line field satisfying all possible boundary conditions. An algorithm is built to obtain the rigorous solution approaching upper
and lower bound values simultaneously, which satisfies the static boundary and the kinematical boundary based on the slip line
field, while stress discontinuity line and velocity discontinuity line are key points. This algorithm is copared with the Spencer
method to prove its feasibility with a special example. The variation of rigorous solution, including an ultimate load and a
sliding belt the rigid body sliding along rather than a single slip surface for friction-type soils, is achieved considering
hydrostatic pressure with soil parameters changing.

1. Introduction

The stability of slopes has been regarded as a classic and dif-
ficult problem for engineers because of less boundary con-
straints, compared with the earth pressure of retaining wall
and the bearing capacity of foundation. Over the past few
years, many investigators have evaluated slope stability,
thereby developing many methods for meeting engineering
requirements, such as the limit equilibrium method (LEM)
[1, 2], the finite element method (FEM) [3, 4], and the limit
analysis method (LAM) [5–7]. The LEM captures the static
equilibrium of rigid blocks on a particular slip surface, while
not considering the plastic deformation of soils. The equilib-
rium equation accounts for the whole slice but not guaran-
tees each point in soils. The strength reduction method
(SRM) [8–10] is the main finite element slope stability
method currently employed, by which stress field and dis-
placement of soils in slopes can be calculated with an
elastic-plastic constitutive model to get the safety factor.
Although the displacement mutation, the numerical calcula-
tion of nonconvergence, and other criteria can determine the

slope instability, the slope displacement calculated by the
SRM is not the actual displacement of soils and the safety fac-
tor required is an approximation. For the slope stability, it is
sometimes not necessary to get the variation of stress field
and strain field, only to get the ultimate load. Based on the
extremum principal [11], the lower bound (LB) [12, 13] solu-
tion can be got by static analysis for limit equilibrium prob-
lems and the upper bound (UB) [14–17] solution can be
got by dynamic analysis. If the lower bound solution satisfies
all the kinematic conditions or the upper bound solution sat-
isfies all the static conditions, the solution will be the rigorous
one. Compared with obtaining the safety factor, the solution
calculated by the upper and lower bound theorems is closer
to the real condition because the ultimate load approaches
the upper bound solution and the lower bound solution at
the same time, satisfying all possible boundary conditions.

When a slope is on the verge of collapse, for c − φ type, a
sliding belt is emerged within the slope due to the friction
between soils. And the sliding belt is not a single slip surface,
but a thin shear zone. This paper builds the slip line field sat-
isfying the static boundary condition and the velocity
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boundary condition according to the characteristics of the
stress discontinuity line and the velocity discontinuity line
and compiles an algorithm to gain the distribution of the slid-
ing belt and the ultimate capacity of the slope considering the
hydrostatic pressure. It also indicates the variation of the ulti-
mate bearing capacity and the sliding belt with different
parameters. The application of this algorithm is proved by
comparing with the Spencer’s method.

2. Slip Line Field

To analyze the slope stability based on the LAM, the slip line
field is constructed according to the stress boundary condi-
tions; one of which is a noncharacteristic line stress boundary
with normal stress and shear normal stress, and the other one
is the interface of a rigid region and a plastic region or a stress
discontinuity surface [18]. Under the limit state, only the
noncharacteristic line boundary can be used to construct
the slip line field, while the other is unknown. Basic coordi-
nate and noncharacteristic line stress boundary is shown in
Figure 1. θ is the angle between the direction of the maximum
principal stress σ1, and the y-axis and Γ is the noncharacter-
istic line stress boundary. φ1 −π < φ1 ≤ π is the angle
between the tangential direction t of the boundary Γ and
the y-axis, so the angle between t and σ1 is θ − φ1. According
to σn and τn, two Mohr’s circles tangent to the Coulomb fail-
ure line can be drawn (Figure 2). When soils are in the
extreme state, σt , σn, and τn on the boundary Γ are expressed,
respectively, as follows:

σt = p ± R cos 2 θ − φ1 , 1 1

σn = p ∓ R cos 2 θ − φ1 , 1 2

τn = R sin 2 θ − φ1 , 1 3

R = p + σc sin φ, 1 4

where σn, τn, and σt are normal stress, shear stress, and tan-
gent normal stress on the boundary Γ, respectively. p is aver-
age stress; R is radius of Mohr’s circle; c is soil cohesion; and φ
is internal friction angle. σc is cohesive internal stress, which
is given by: σc = c cot φ.

Because M is a point on the Mohr’s circle, R can be
rewritten as follows:

R = σn − p 2 + τ2n 2

According to (1.4) and (2):

p2 cos2φ − 2 σn + c sin φ cos φ p + σ2n + τ2n − c2 cos2φ = 0
3 1

Solving the unary quadratic equation of p:

p1,2 = sec2φ σn + c sin φ cos φ

± σn sin φ − c cos φ 2 − τ2n cos2φ
3 2

When σt > σn, according to (1.3):

θ+ = φ1 +
1
2 arcsin τn

R
= φ1 +

1
2 arcsin τn

p1 + σc sin φ
4

When σt < σn, (1.3) should be rewritten as follows:

τn = R sin π − 2 θ − φ1 = R sin 2 π

2 − θ − φ1 ,

θ− = φ1 −
1
2 arcsin τn

R
+ π

2
= φ1 −

1
2 arcsin τn

p2 + σc sin φ
+ π

2 ,

5

where θ+ and θ− are the maximum principal direction angles.
According to the above analysis, the analytic expressions

of noncharacteristic line stress boundary conditions can be
uniformly written as follows:
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Figure 1: Basic coordinate system and noncharacteristic line stress
boundary.

c
o

�휑

�휎n
o2 o1

p2

p1

R1

R2
�휏xy

M(�휎n,�휏n)

M′

2(�휃− − �휑1) 2(�휃+ − �휑1)
�휎y

�휎 tan �휑 − �휏 + c = 0

�휏n

Figure 2: Mohr’s circles on noncharacteristic line stress boundary.
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p1,2 = sec2φ σn + c sin φ cos φ

± σn sin φ + c cos φ 2 − τ2n cos2φ ,

θ+,− = φ1 ±
1
2 arcsin τn

p1,2 + σc sin φ
∓
π

4 + π

4 ,

σt1,2 = σn ± 2 p1,2 + σc
2 sin2φ − τ2n

6
With θ on the noncharacteristic line stress boundary, (6)

can be used to draw the stress line field near the stress
boundary:

α = θ − μ along line α ,
β = θ + μ along line β ,

7

where α and β are the angles between stress characteristic
lines through the point M and the y-axis; μ is the angle
between the stress characteristic line and the direction of
major principal stress and given as follows:

μ = π

4 −
φ

2 8

In this case, stress boundary conditions are achieved. In
order to facilitate the following calculations, new variables
σe and θ are used instead of σx, σy, and τxy (Figure 3). σe is
the effective stress, and θ is the direction angle of the maxi-
mum principal stress, written as the (9). In addition, σe and
θ of each point in slip line field can be calculated by solving
the basic boundary value problems. In the theory of hyper-
bolic partial differential equations, there are three basic
boundary value problems [19, 20], of which Cauchy problem
is the key issue the others can be solved by. Here, only the
Cauchy problem is introduced and the rest of the problems
(Riemann problem and mixed boundary value problem)
can be referred to the literature [19]. Taking into account of
the hydrostatic pressure, the soils above the ground water
take unit natural weight γ and the soils below ground water
take unit floating weight γ′.

σe =
1
2 σx + σy + σc,

σx

σy
= σe 1 ± sin φ cos 2θ − σc,

τxy = σe sin φ sin 2θ

9

As shown in Figure 4(a), OA is a smooth and continuous
stress boundary line, a nonslip line, in which the coordinates
x, y of each point, effective stress σe, and the direction angle
θ are known. By solving the Cauchy problem, the distribution
of slip line field in the triangularOAB surrounded by the lines
α and β through the points of O and A, respectively, could
be obtained.

Such as x, y, σe, and θ on the point 22 can be obtained by
the points of 21 and 32, along line α:

σe22 − σe21 − σe22 + σe21 + 2σc tan φ θ22 − θ21

= −γ∗ sin θ22 + θ21 /2 + μ y22 − y21
cos φ cos θ22 + θ21 /2 − μ y22 − y21

= x22 − x21 cot θ22 + θ21
2 − μ

,

10 1

along line β:

σe22 − σe32 − σe22 + σe32 + 2σc tan φ θ22 − θ32

= −γ∗ sin θ22 + θ32 /2 + μ y22 − y32
cos φ cos θ22 + θ32 /2 + μ y22 − y32

= x22 − x32 cot θ22 + θ32
2 + μ

,

10 2

when soils are above ground water, γ∗ = γ. When soils are
below ground water, γ∗ = γ′.

If the ground water table is between two points, it should
be simplified to calculate (Figure 4(b)). Setting an allowable
value Δh, if Δh1 ≤ Δh, the γ∗ of the points 21 and 22 all take
γ′. If Δh2 ≤ Δh, the γ∗ of the points 21 and 22 all take γ. If the
Δh1 > Δh and Δh2 > Δh, γ∗ of the points 21 and 22 take γ and
γ′, respectively. In fact, the ground water table is not a
straight line. The smaller the grid in the slip line field is, the
more similar to a straight line the water line is.

The above two sets of nonlinear equations ((10.1) and
(10.2)) need to be solved by an iterative method. It can be
assumed that the initial values of point 22 is
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Figure 3: Effective stress of Mohr’s circle.
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2 ,
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2 ,
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σe22 =
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Substituting x22 and y22 in (11) into (10.2), the approxi-
mations of θ22 and σe22 can be obtained. Similarly, substitut-
ing θ22 and σe22 in (11) into (10.1), the approximations of x22
and y22 can be obtained. Then, substituting the first approx-
imations of θ22 and σe22 into (10.1), the second approxima-
tions of x22 and y22 can be gained, so repeatedly until the
accuracy of the calculation to meet the precision. And x, y,
σe, and θ of each point can be achieved in the entire OAB.
Finally, according to the (9), σx, σy, and τxy in the slip line
field could be gained.

3. Stress Discontinuity Line and Velocity
Discontinuity Line

When soils reach the limit state, the stress discontinuity field
and the velocity discontinuity field will be generated under
complex boundaries [21]. With different boundary condi-
tions, the stress discontinuity line and the velocity disconti-
nuity line will also change. Therefore, the distribution and
the characteristic of the two discontinuity lines are significant
for the slope stability.

3.1. Characteristics of Stress Discontinuity Line

3.1.1. Stress Equation. The stress discontinuity line is actually
a thin transition zone, where the stress changes rapidly. It
divides the element of the discontinuity line crossing through
two plastic regions① and②, while only the tangential stress
can be interrupted and the normal stress and the shear stress
stay the same on both sides (Figure 4). In the plastic regions
① and ②, stresses on the discontinuity line should obey the
Mohr-Coulomb yield criterion.

σt1 ≠ σt2, σn1 = σn2, τn1 = τn2, 12

ω = θ+ + δ+ = θ− + δ− 13

where θ+ and θ− are the maximum principal direction angles
of the plastic regions ① and ②; w is the tangential direction
angle of the discontinuity line; and δ+ and δ− are the angles
between the maximum principal stress direction and tan-
gential direction of stress discontinuity line and are given
as follows (Figure 5):

δ+ = arctan −1 ± 1 + cos2φ
tan2 θ+ − θ−

tan θ+ − θ−

1 + sin φ
,

δ− = arctan 1 ± 1 + cos2φ
tan2 θ+ − θ−

tan θ+ − θ−

1 + sin φ

14

The relationship of equivalent stresses on both sides of
the discontinuity line is

σ+
e = ησ−

e , 15

where σ+
e and σ−

e are equivalent stresses on both sides of the
discontinuity line; η is given as follows:

η = 1 + cos2φ
tan2 θ+ − θ−

+ sin φ

2
sin2 θ+ − θ−

cos2φ 16

3.1.2. Geometric Condition. As shown in Figure 6, the angle
∠BAD of the principal stress element is 2γ. The angle
between the stress discontinuity line ls and the principal
stress plane in the zone ① is ζ, and the angle in the zone ②
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Figure 4: Cauchy boundary problem considering the impact of the
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is υ. From the geometric relationship shown in Figure 6, it
can be obtained:

2γ = ζ + υ, 17

θ+ = π

2 − ζ + ω, 18 1

θ− = υ + ω 18 2

According to the geometric relationship shown in
Figure 2, (12) can be rewritten as follows:

σe1 1 − sin φ cos 2 θ+ −w = σe2 1 − sin φ cos 2 θ− −w ,
σe1 sin 2 θ+ −w = σe2 sin 2 θ− −w

19

The relationship of θ on both sides of a stress discontinu-
ity line can be obtained eliminating σe1 and σe2 from (19).

cos 2ω − θ+ − θ− + sin φ cos θ− − θ+ = 0 20

Substituting (18.1) and (18.2) into (20):

sin ζ − υ − sin φ sin ζ + υ = 0 21

The position of the stress discontinuity line can be deter-
mined according to (15) and (21) in the slip line field.

3.1.3. Kinematic Equation. Because the stress discontinuity
line is emerged by the rigid region reducing to the limit state,
the tangential velocity on the discontinuity line remains
unchanged [21]:

dvx cos w + dvy sin w = 0, 22 1

where vx and vy are velocity components in the x and
y directions.

Assuming that vα and vβ are the velocity components in
the direction of the characteristic line, a rigid kinematic equa-
tion of the stress discontinuity line will be obtained:

vx = vα sin θ + μ − vβ sin θ − μ sec φ,

vy = −vα sin θ + μ + vβ sin θ − μ sec φ
22 2

Substituting (22.2) into (22.1):

sin θ + μ − ω dvα − sin θ − μ − ω dvβ

= −vα cos θ + μ − ω + vβ cos θ − μ − ω dθ
23

3.2. Characteristics of Velocity Discontinuity Line. Obeying
the associated flow rule, the velocity discontinuity line is a
slip line or an envelope of slip line. The boundary between
a rigid region and a plastic region is a velocity discontinuity
line. So the velocity discontinuity line is the slip line at both
ends of the stress discontinuity line, dividing the slope into
rigid zone and plastic zone. For the Mohr-Coulomb material,
the angle between the velocity direction and the slip line is
φ [22, 23].

4. Algorithm

For slope stability problems, the equilibrium equation and
the plastic flow equation should be settled simultaneously
to obtain the rigorous solution, which is difficult to achieve
in mathematics and only depends on numerical methods. If
a statically admissible stress field σ0

ij has been got, the strain
rate field ε∗ij and the kinematically admissible velocity field
vi will be obtained by the stress field based on the associated
flow rule. If the strain rate field and the velocity field are
nothing less than the kinematical field, in this case, the plastic
region corresponding to such a statically admissible stress
field and a kinematically admissible velocity field must be
the sliding belt in the extreme state and the external load
must be the ultimate bearing capacity. Based on the upper
and lower bound theorems, the numerical algorithm is estab-
lished to get the distribution of the sliding belt and the ulti-
mate bearing capacity considering the hydrostatic pressure.

When a slope is on the verge of collapse (shear failure),
not all the points in sliding mass reach to the yield state,
but the mixture of the plastic region and the rigid region is
emerged. As shown in Figure 7, the entire slope is divided
into five areas. The stress discontinuity line divides the slope
foot into the strong plastic region and the weak plastic region,
passive, and active, respectively. The boundary between two
regions is the velocity discontinuity line, which is the slip line
at both ends of the stress discontinuity line. So the stress dis-
continuity line and the velocity discontinuity line determine
the distribution of the plastic region and the rigid region.
The stress and deformation in each region are different as
well as kinematic features. Only to meet all the possible kine-
matically admissible conditions, the solution will be exact.

The calculation process (shown in Figure 8) is consisted
of two parts: a statically admissible field and a kinematically
admissible field. The specific calculation process is as follows.
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Figure 6: Stress elements on both sides of stress discontinuity line.
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4.1. Static Calculation

(1) The maximum principal stress on the noncharacter-
istic line stress boundary OA is 0, and its direction
angle is θ1, which is perpendicular to the slope sur-
face. From the boundaryOA, the slip line of the active
region I is calculated in a very dense grid by solving
the Cauchy problem.

(2) To get the stress discontinuity line In the active region,
the specific approach is to firstly select the point F in

the grid. The stress discontinuity line is drawn by
(15) and (21). A group of the maixmum principal
stress direction angles of the stress discontinuity line
in the active region is assumed as θ+. Then, the direc-
tion angle θ−, the tangential direction angle of the dis-
continuity line w, and the coordinate of each point in
the line AF in the passive region can be obtained by
the (13) and (15). And the slip line field of the region
II can be obtained by solving the Cauchy problem.

(3) According to the direction angle of the maximum
principal stress θ artificially assumed and the coor-
dinate of each point in the line FE, the effective
stress σe is obtained. From the lines FB and FE,
the slip line field of region III can be got by solving
the Riemann problem. On the basis of maximum
principal stress direction angle θ2 = 90°, the slip line
field of region V can be got by solving the mixed
boundary value problem.

(4) The numerical integration is carried out along the
slip lines HF and FE to get the forces in the x
and y directions and the moments of each force to
the point O. Then the vertical stress on the boundary
ED is calculated.

(5) At this point, the static calculation is over. Then,
check whether the force and the moment of the rigid
block satisfy the equilibrium condition and whether
the points within the rigid block satisfy the yield

I: active plastic regiont

Ground water table
y
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H F
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B

V DEO

II: passive plastic region
III: transition plastic region
V: top plastic region

IV: rigid region
AF: stress discontinuity line
HF: velocity discontinuity line
ABCD: velocity discontinuity line

Figure 7: Calculation model.
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condition. If not satisfied, the positon of point F is
modified to recalculate. The whole calculation pro-
cess is shown in Figure 9.

4.2. Velocity Field Analysis. According to the associated flow
rule, the dynamic analysis is carried out on the basis of the
slip line field got by the static calculation.

(1) The absolute velocity of point D on slope top is
assumed as 1m/s. The velocity component vα and
vβ in the slip line ABCD is obtained according to
the velocity characteristic equation.

vα = vx cos θ − μ + vy sin θ − μ ,
vβ = vx cos θ + μ + vy sin θ + μ

24

(2) The velocity field of region II can be obtained by solv-
ing the mixed boundary value problem for the condi-
tion that the tangential velocity on the discontinuity
line remains unchanged (23). From the slip lines BC
D and BF, the velocity field in regions III and V

and the velocity of each point in the line FE can be
got by solving the Riemann problem. Then, the veloc-
ity v−α and v−β of each point in the line AF in the pas-
sive region II is translated into the velocity v+α and v+β
in the active region I. Finally, the velocity field in the
region I and the velocity in line FH are obtained by
solving the Cauchy problem from the line AF.

(3) At this point, the velocity analysis is over. Then,
check whether the velocity in the lines HF and FE
satisfy the kinematically rigid condition of the sliding
block IV. If not satisfied, the input values of θ on the
slip line FE and the position of the point F are mod-
ified to recalculate all.

5. Example Verification

Geometric parameters and material properties are shown in
Figure 10. The Fortran 95 compiler is utilized to compute
the calculation program for the rigorous solution satisfying
the static equilibrium and the kinematical requirement.

10 m

45°

�휑 = 20°

�훾 = 20 kN/m3

h = 0.5 m

Ground water table

G
c = 15 kPa,

Figure 10: Parameters of a calculation model.
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When a slope reaches the limit state, the ultimate bearing
capacity is composed of two parts (Figure 11). While the load
on the rigid region reaches 77.54 kPa, the other on the plastic
region changes from 102.05 kPa to 112.45 kPa, considering
the hydrostatic pressure. The rigid body rotates around point
E, slipping along the sliding belt. The velocity of each point in
the velocity discontinuity line ABCD increases gradually
from top to foot (Figure 12). The angle between a velocity
discontinuity line and a slip line is φ. The position of points
E and D calculated determines the general distribution of
the sliding belt. In order to facilitate the appearance, the fig-
ures (Figures 11 and 12) show only part of the slip lines and
the actual existence is hundreds of groups.

The limit state can be seen as a status with safety factor Fs
equal to 1.0, and the external load at this time is the ultimate
bearing capacity. When considering the hydrostatic pressure,
the soils below ground water take floating weight resulting in
the slide force falling and the slide resistance remains
unchanged. From the Table 1, the ultimate load has become

lager compared with the load without considering the ground
water. As the depth increases causing the slide force to rise,
the ultimate loads in both regions decrease, of which the
one on the rigid region is influenced greater than the other
by the ground water. While changing the depth, the distribu-
tion of sliding belt hardly alters. As the water level rises, the
width of the sliding belt increases just a little.

From Table 2, when weight of soils increases gradually,
the ultimate load on the rigid region decreases corresponding
to the other on plastic region increasing. The distribution of
sliding belt undergoes great changes due to the reducing
width of ED. For γ = 0 kN/m3, the rigid region in the slope
disappears under the limit state and the whole slip field
becomes plastic. Changes of cohesive only bring about the
increase of ultimate loads on both regions, and the sliding
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Figure 12: Velocity field of the slope under the limit state.

Table 1: Variation of the ultimate loads and the distribution of the
sliding belt with the depth h.

Ground water
depth h (m)

Ultimate load (kPa)
OE (m) ED (m)Rigid

region
Plastic region
(average)

0 77.80 107.69 2.32 0.87

0.5 77.54 107.25 2.32 0.87

1.0 76.69 106.74 2.31 0.87

1.5 73.34 105.39 2.31 0.86

2.0 70.78 104.38 2.30 0.86

2.5 64.09 101.67 2.29 0.86

3.0 59.83 99.93 2.28 0.85

4.0 43.89 93.51 2.27 0.85

No ground water 33.85 86.98 2.25 0.85

Table 2: Variation of the ultimate loads and the distribution of the
sliding belt with different soil parameters.

c (kPa), φ (°), γ
(kN/m3), h (m)

Ultimate load (kPa)
OE (m) ED (m)

Rigid region Plastic region

c = 15
φ = 20
h = 0 5

γ = 10 83.23 84.86 2.25 1.14

γ = 15 79.99 93.97 2.29 0.99

γ = 20 77.54 107.25 2.32 0.87

γ = 25 71.91 125.62 2.34 0.77

γ = 20
φ = 20
h = 0 5

c = 10 53.52 78.61 2.33 0.85

c = 15 77.54 107.25 2.32 0.87

c = 20 110.57 191.98 2.31 0.89

c = 25 198.88 331.25 2.30 0.92

γ = 20
c = 15
h = 0 5

φ = 15 54.22 75.89 2.39 0.79

φ = 20 77.54 107.25 2.32 0.87

φ = 25 108.52 198.55 2.28 1.03

φ = 30 163.35 387.97 2.26 1.12
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belt has a little change. Internal friction angle has a great
impact on the load on the plastic region and the sliding belt.
With friction angle rising, the load on plastic region increases
sharply and the width of sling belt fills out gradually. When
the angle φ reduces to 0 resulting the plastic region disap-
peared, the sliding belt transforms into a signal slip surface
and the bearing capacity of a slope depends on the cohesive.
At this time, the ultimate load calculated by the algorithm is
considered as the external load on the slope top and this sta-
tus can be calcualted by the Spencer method to get the slip
surface and the safety factor. As shown in Figure 13, the crit-
ical slip surface obtained by this paper’s method is basically
consistent with the Spencer method. The safety factor Fs cal-
culated by the Spencer method is 0.99, when the ultimate
load is 65.53 kPa. Generally speaking, the comparison proves
the feasibility of the algorithm proposed by this paper.

With the hydrostatic pressure, the difference between the
two loads on both regions becomes smaller compared with
the state of no ground water. The vairable amplitude of the
ultimate loads and the sliding belt with the different parame-
ters is also diminished.

6. Discussion

During the process of searching the rigorous solution of
slopes stability, it is necessary to find a slip line field sat-
isfying all possible static and kinematic conditions.
Although the calculation is so difficult that the iterative
computation takes thousands of times, the author used the
Fortran 95 compiler to compile the calculation program,
which only takes less than one minute to obtain the rigorous
solution and greatly simplified the calculation. Since the grid
does not meet the requirements of infinite subdivision, it is
not each point on the boundary but the intersection of the
grid and the boundary that satisfies the stress boundary con-
dition and the velocity boundary condition.

With the calculation model, the program is compiled
based on the algorithm developed to obtain the ultimate
bearing capacity and the distribution of the sliding belt. The
influence of the ground water table on the ultimate bearing
capacity and the sliding belt of a slope is discussed by an
example. The results show that the ultimate load increases
considering the hydrostatic pressure, while decreasing with
the descending water level. However, the sliding belt remains
constant. The soil weight and the internal friction angle have
a tremendous impact on the belt, especially for the later. The
ultimate load is influenced by the three parameters, of which
the friction angle mainly controlled the load on the plastic
region. When the internal friction angle reduces to zero, the
sliding belt will translate into a traditional slip surface. Con-
sidering the ultimate load in this status as the external load
on the slope top, the critical slip surface obtained by the
Spencer method is basically consistent with the one got by
this paper and the safety factor obtained by the Spencer
method is 0.99 very close to 1.0. So the feasibility of this algo-
rithm is verified by the specific example. Due to the hydro-
static pressure, the difference of loads on the two regions
and the variation of sliding belt become smaller compared
with not considering the ground water.

On the basis of this study, the next research focus is to
add the seepage field into the slip field, which are not
completely coincide. The authors hope that others can be
motivated to consider adding the penetration force into the
equilibrium equation of slip line to gain the numerical solu-
tion and the influence of seepage on the sliding belt and the
ultimate load.

7. Conclusion

Based on the upper and lower bound theorems, the rigor-
ous solution satisfying all static boundaries and kinematic
boundaries is obtained, which approaches lower and upper
bound solutions at the same time and is considered as the
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actual solution. An algorithm for calculating the ultimate
bearing capacity and the distribution of sliding belt has been
developed, and the computer program has been accom-
plished. The application of this algorithm is verified by a
specific example (Figure 13).

Considering the hydrostatic pressure, the variation of the
ultimate load and the sliding belt under different parameters
has been gained. The ultimate load decreases with the rising
water level and become the minimum with no ground water.
The sliding belt is controlled by the internal friction angle
and the soil weight, while cohesive has a obvious impact on
the ultimate loads. The difference of ultimate loads on the
two regions and the variation of sliding belt become smaller
because of the soils taking the floating weight.
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