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The concept of Pythagorean fuzzy sets (PFSs) was initially developed by Yager in 2013, which provides a novel way to model
uncertainty and vaguenesswith high precision and accuracy compared to intuitionistic fuzzy sets (IFSs).The concept was concretely
designed to represent uncertainty and vagueness in mathematical way and to furnish a formalized tool for tackling imprecision to
real problems. In the present paper, we have used both probabilistic and nonprobabilistic types to calculate fuzzy entropy of PFSs.
Firstly, a probabilistic-type entropy measure for PFSs is proposed and then axiomatic definitions and properties are established.
Secondly, we utilize a nonprobabilistic-typewith distances to construct new entropymeasures for PFSs.Then amin–max operation
to calculate entropy measures for PFSs is suggested. Some examples are also used to demonstrate suitability and reliability of the
proposedmethods, especially for choosing the best one/ones in structured linguistic variables. Furthermore, a newmethod based on
the chosen entropies is presented for Pythagorean fuzzy multicriterion decision making to compute criteria weights with ranking
of alternatives. A comparison analysis with the most recent and relevant Pythagorean fuzzy entropy is conducted to reveal the
advantages of our developed methods. Finally, this method is applied for ranking China-Pakistan Economic Corridor (CPEC)
projects. These examples with applications demonstrate practical effectiveness of the proposed entropy measures.

1. Introduction

The concept of fuzzy sets was first proposed by Zadeh [1] in
1965.With a widely spread use in various fields, fuzzy sets not
only provide broad opportunity to measure uncertainties in
more powerful and logical way, but also give us a meaningful
way to represent vague concepts in natural language. It is
known that most systems based on ‘crisp set theory’ or ‘two-
valued logics’ are somehow difficult for handling imprecise
and vague information. In this sense, fuzzy sets can be used
to provide better solutions for more real world problems.
Moreover, to treat more imprecise and vague information
in daily life, various extensions of fuzzy sets are suggested
by researchers, such as interval-valued fuzzy set [2], type-2
fuzzy sets [3], fuzzy multiset [4], intuitionistic fuzzy sets [5],
hesitant fuzzy sets [6, 7], and Pythagorean fuzzy sets [8, 9].

Since fuzzy sets were based on membership values or
degrees between 0 and 1, in real life setting it may not

be always true that nonmembership degree is equal to (1-
membership). Therefore, to get more purposeful reliability
and applicability, Atanassov [5] generalized the concept of
‘fuzzy set theory’ and proposed Intuitionistic fuzzy sets (IFSs)
which include bothmembership degree and nonmembership
degree and degree of nondeterminacy or uncertainty where
degree of uncertainty = (1- (degree of membership + non-
membership degree)). In IFSs, the pair ofmembership grades
is denoted by (𝜇, ]) satisfying the condition of 𝜇 + ] ≤ 1.
Recently, Yager and Abbasov [8] and Yager [9] extended the
condition 𝜇+ ] ≤ 1 to 𝜇2 + ]2 ≤ 1 and then introduced a class
of Pythagorean fuzzy sets (PFSs) whose membership values
are ordered pairs (𝜇, ]) that fulfills the required condition
of 𝜇2 + ]2 ≤ 1 with different aggregation operations and
applications in multicriterion decision making. According
to Yager and Abbasov [8] and Yager [9], the space of all
intuitionistic membership values (IMVs) is also Pythagorean
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membership values (PMVs), but PMVs are not necessary to
be IMVs. For instance, for the situation when the numbers𝜇 = √3/2 and ] = 1/2, we can use PFSs, but IFSs cannot be
used since 𝜇 + ] > 1, but 𝜇2 + ]2 ≤ 1. PFSs are wider than
IFSs so that they can tackle more daily life problems under
imprecision and uncertainty cases.

More researchers are actively engaged in the devel-
opment of PFSs properties. For example, Yager [10] gave
Pythagorean membership grades in multicriterion decision
making. Extensions of technique for order preference by
similarity to an ideal solution (TOPSIS) to multiple criteria
decision making with Pythagorean and hesitant fuzzy sets
were proposed by Zhang and Xu [11]. Zhang [12] considered a
novel approach based on similarity measure for Pythagorean
fuzzy multicriteria group decision making. Pythagorean
fuzzy TODIM approach to multicriterion decision making
was given by Ren et al. [13]. Pythagorean fuzzy Choquet
integral based MABAC method for multiple attribute group
decisionmakingwas developed by Peng andYang [14]. Zhang
[15] gave a hierarchical QUALIFLEX approach. Peng et al.
[16] investigated Pythagorean fuzzy information measures.
Zhang et al. [17] proposed generalized Pythagorean fuzzy
Bonferroni mean aggregation operators. Liang and Xu [18]
extended TOPSIS to hesitant Pythagorean fuzzy sets. Pérez-
Domı́nguez et al. [19] gave MOORA under Pythagorean
fuzzy sets. Recently, Pythagorean fuzzy LINMAP method
based on the entropy for railway project investment deci-
sion making was proposed by Xue et al. [20]. Zhang and
Meng [21] proposed an approach to interval-valued hesitant
fuzzy multiattribute group decision making based on the
generalized Shapley-Choquet integral. Pythagorean fuzzy(R, S) −norm information measure for multicriteria decision
making problem was presented by Guleria and Bajaj [22].
Furthermore, Yang and Hussain [23] proposed distance and
similarity measures of hesitant fuzzy sets based on Hausdorff
metric with applications tomulticriteria decision making and
clustering. Hussain and Yang [24] gave entropy for hesitant
fuzzy sets based on Hausdorff metric with construction of
hesitant fuzzy TOPSIS.

The entropy of fuzzy sets is a measure of fuzziness
between fuzzy sets. De Luca and Termini [25] first intro-
duced the axiom construction for entropy of fuzzy sets
with reference to Shannon’s probability entropy. Yager [26]
defined fuzziness measures of fuzzy sets in terms of a lack
of distinction between the fuzzy set and its negation based
on Lp norm. Kosko [27] provided a measure of fuzziness
between fuzzy sets using a ratio of distance between the fuzzy
set and its nearest set to the distance between the fuzzy set
and its farthest set. Liu [28] gave some axiom definitions
of entropy and also defined a 𝜎-entropy. Pal and Pal [29]
proposed exponential entropies. While Fan andMa [30] gave
some new fuzzy entropy formulas. Some extended entropy
measures for IFS were proposed by Burillo and Bustince [31],
Szmidt and Kacprzyk [32], Szmidt and Baldwin [33], and
Hung and Yang [34].

In this paper, we propose new entropies of PFS based on
probability-type, distance, Pythagorean index, and min–max
operation. We also extend the concept to 𝜎-entropy and

then apply it to multicriteria decision making. This paper is
organized as follows. In Section 2, we review some definitions
of IFSs and PFSs. In Section 3, we propose several new
entropies of PFSs and then construct an axiomatic definition
of entropy for PFSs. Based on the definition of entropy for
PFSs, we find that the proposed nonprobabilistic entropies of
PFSs are 𝜎-entropy. In Section 4, we exhibit some examples
for comparisons and also use structured linguistic variables
to validate our proposed methods. In Section 5, we construct
a new Pythagorean fuzzy TOPSIS based on the proposed
entropy measures. A comparison analysis of the proposed
Pythagorean fuzzy TOPSIS with the recently developed
entropy of PFS [20] is shown. We then apply the proposed
method tomulticriterion decisionmaking for rankingChina-
Pakistan Economic Corridor projects. Finally, we state our
conclusion in Section 6.

2. Intuitionistic and Pythagorean Fuzzy Sets

In this section, we give a brief review for intuitionistic fuzzy
sets (IFSs) and Pythagorean fuzzy sets (PFSs).

Definition 1. An intuitionistic fuzzy set (IFS) 𝑀̃ in 𝑋 is
defined by Atanassov [5] with the following form:

𝑀̃ = {(𝑥, 𝜇𝑀̃ (𝑥) , ]𝑀̃ (𝑥)) : 𝑥 ∈ 𝑋} (1)

where 0 ≤ 𝜇𝑀̃(𝑥) + ]𝑀̃(𝑥) ≤ 1, ∀𝑥 ∈ 𝑋, and the functions𝜇𝑀̃(𝑥) : 𝑋 󳨀→ [0, 1] denotes the degree of membership
of 𝑥 in 𝑀̃ and ]𝑀̃(𝑥) : 𝑋 󳨀→ [0, 1] denotes the degree
of nonmembership of 𝑥 in 𝑀̃. The degree of uncertainty
(or intuitionistic index, or indeterminacy) of 𝑥 to 𝑀̃ is
represented by 𝜋𝑀̃(𝑥) = 1 − (𝜇𝑀̃(𝑥) + ]𝑀̃(𝑥)).

For modeling daily life problems carrying imprecision,
uncertainty, and vagueness more precisely and with high
accuracy than IFSs, Yager [9, 10] presented Pythagorean
fuzzy sets (PFSs), where PFSs are the generalizations of
IFSs. Yager [9, 10] also validated that IFSs are contained in
PFSs. The concept of Pythagorean fuzzy set was originally
developed by Yager [8, 9], but the general mathematical form
of Pythagorean fuzzy set was developed by Zhang and Xu
[11].

Definition 2 (Zhang and Xu [11]). A Pythagorean fuzzy set
(PFS) 𝑃̃ in 𝑋 proposed by Yager [8, 9] is mathematically
formed as

𝑃̃ = {⟨𝑥, 𝜇𝑃̃ (𝑥) , ]𝑃̃ (𝑥)⟩ : 𝑥 ∈ 𝑋} (2)

where the functions 𝜇𝑃̃(𝑥) : 𝑋 󳨀→ [0, 1] represent the degree
of membership of 𝑥 in 𝑃̃ and ]𝑃̃(𝑥) : 𝑋 󳨀→ [0, 1] represent
the degree of nonmembership of 𝑥 in 𝑃̃. For every 𝑥 ∈ 𝑋, the
following condition should be satisfied:

0 ≤ 𝜇2
𝑃̃
(𝑥) + ]2

𝑃̃
(𝑥) ≤ 1. (3)
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Definition 3 (Zhang and Xu [11]). For any PFS 𝑃̃ in 𝑋, the
value 𝜋𝑃̃(𝑥) is called Pythagorean index of the element 𝑥 in 𝑃̃
with

𝜋𝑃̃ (𝑥) = √1 − {𝜇2
𝑃̃
(𝑥) + ]2

𝑃̃
(𝑥)}

or 𝜋2
𝑃̃
(𝑥) = 1 − 𝜇2

𝑃̃
(𝑥) − ]2

𝑃̃
(𝑥) . (4)

In general, 𝜋𝑃̃(𝑥) is also called hesitancy (or indetermi-
nacy) degree of the element 𝑥 in 𝑃̃. It is obvious that 0 ≤𝜋2
𝑃̃
(𝑥) ≤ 1, ∀𝑥 ∈ 𝑋. It is worthy to note, for a PFS 𝑃̃, if𝜇2
𝑃̃
(𝑥) = 0 then ]2

𝑃̃
(𝑥) + 𝜋2

𝑃̃
(𝑥) = 1, and if 𝜇2

𝑃̃
(𝑥) = 1 then

]2
𝑃̃
(𝑥) = 0 and 𝜋2

𝑃̃
(𝑥) = 0. Similarly, if ]2

𝑃̃
(𝑥) = 0 then𝜇2

𝑃̃
(𝑥)+𝜋2

𝑃̃
(𝑥) = 1. If ]2

𝑃̃
(𝑥) = 1 then 𝜇2

𝑃̃
(𝑥) = 0 and 𝜋2

𝑃̃
(𝑥) = 0.

If 𝜋2
𝑃̃
(𝑥) = 0 then 𝜇2

𝑃̃
(𝑥) + ]2

𝑃̃
(𝑥) = 1. If 𝜋2

𝑃̃
(𝑥) = 1 then𝜇2

𝑃̃
(𝑥) = ]2

𝑃̃
(𝑥) = 0. For convenience, Zhang and Xu [11]

denoted the pair (𝜇𝑃̃(𝑥), ]𝑃̃(𝑥)) as Pythagorean fuzzy number
(PFN), which is represented by 𝑝 = (𝜇𝑝, ]𝑝).

Since PFSs are a generalized form of IFSs, we give the
following definition for PFSs.

Definition 4. Let 𝑃̃ be a PFS in 𝑋. 𝑃̃ is called a completely
Pythagorean if 𝜇2

𝑃̃
(𝑥) = ]2

𝑃̃
(𝑥) = 0, ∀𝑥 ∈ 𝑋.

Peng et al. [16] suggested various mathematical opera-
tions for PFSs as follows:

Definition 5 (Peng et al. [16]). If 𝑃̃ and 𝑄 are two PFSs in 𝑋,
then

(i) 𝑃̃ ≤ 𝑄 if and only if ∀𝑥 ∈ 𝑋, 𝜇2
𝑃̃
(𝑥) ≤ 𝜇2

𝑄̃
(𝑥) and

]2
𝑃̃
(𝑥) ≥ ]2

𝑄̃
(𝑥);

(ii) 𝑃̃ = 𝑄 if and only if ∀𝑥 ∈ 𝑋, 𝜇2
𝑃̃
(𝑥) = 𝜇2

𝑄̃
(𝑥) and

]2
𝑃̃
(𝑥) = ]2

𝑄̃
(𝑥);

(iii) 𝑃̃ ∪ 𝑄 = {⟨𝑥,max(𝜇2
𝑃̃
(𝑥), 𝜇2
𝑄̃
(𝑥)),min(]2

𝑃̃
(𝑥), ]2
𝑄̃
(𝑥))⟩ :𝑥 ∈ 𝑋};

(iv) 𝑃̃ ∩ 𝑄 = {⟨𝑥,min(𝜇2
𝑃̃
(𝑥), 𝜇2
𝑄̃
(𝑥)),max(]2

𝑃̃
(𝑥), ]2
𝑄̃
(𝑥))⟩ :𝑥 ∈ 𝑋};

(v) 𝑃̃𝑐 = {⟨𝑥, ]2
𝑃̃
(𝑥), 𝜇2
𝑄̃
(𝑥)⟩ : 𝑥 ∈ 𝑋}.

We next define more operations of PFS in 𝑋, especially
about hedges of “very”, “highly”, “more or less”, “concentra-
tion”, “dilation”, and other terms that are needed to represent
linguistic variables. We first define the n power (or exponent)
of PFS as follows.

Definition 6. Let 𝑃̃ = {⟨𝑥, 𝜇𝑃̃(𝑥), ]𝑃̃(𝑥)⟩ : 𝑥 ∈ 𝑋} be a PFS in𝑋. For any positive real number n, the n power (or exponent)
of the PFS 𝑃̃, denoted by 𝑃̃𝑛, is defined as

𝑃̃𝑛 = {⟨𝑥, (𝜇𝑃̃ (𝑥))𝑛 , √1 − (1 − ]2
𝑃̃
(𝑥))𝑛⟩ : 𝑥 ∈ 𝑋} . (5)

It can be easily verified that, for any positive real number n,0 ≤ [𝜇𝑃̃(𝑥)]𝑛 + [√1 − (1 − ]2
𝑃̃
(𝑥))𝑛] ≤ 1, ∀𝑥 ∈ 𝑋.

By using Definition 6, the concentration and dilation of a
PFS 𝑃̃ can be defined as follows.

Definition 7. The concentration 𝐶𝑂𝑁(𝑃̃) of a PFS 𝑃̃ in 𝑋 is
defined as

𝐶𝑂𝑁(𝑃̃) = {⟨𝑥, 𝜇𝐶𝑂𝑁(𝑃̃) (𝑥) , ]𝐶𝑂𝑁(𝑃̃) (𝑥)⟩ : 𝑥 ∈ 𝑋} (6)

where 𝜇𝐶𝑂𝑁(𝑃̃)(𝑥) = [𝜇𝑃̃(𝑥)]2 and ]𝐶𝑂𝑁(𝑃̃)(𝑥) =√1 − [1 − ]2
𝑃̃
(𝑥)]2.

Definition 8. The dilation 𝐷𝐼𝐿(𝑃̃) of a PFS 𝑃̃ in 𝑋 is defined
as

𝐷𝐼𝐿 (𝑃̃) = {⟨𝑥, 𝜇𝐷𝐼𝐿(𝑃̃) (𝑥) , ]𝐷𝐼𝐿(𝑃̃) (𝑥)⟩ : 𝑥 ∈ 𝑋} (7)

where 𝜇𝐷𝐼𝐿(𝑃̃)(𝑥) = [𝜇𝑃̃(𝑥)]1/2 and ]𝐷𝐼𝐿(𝑃̃)(𝑥) =√1 − [1 − ]2
𝑃̃
(𝑥)]1/2.

In next section, we construct new entropy measures for
PFSs based on probability-type, entropy induced by distance,
Pythagorean index, and max-min operation. We also give an
axiomatic definition of entropy for PFSs.

3. New Fuzzy Entropies for
Pythagorean Fuzzy Sets

We first provide a definition of entropy for PFSs. De Luca
and Termini [25] gave the axiomatic definition of entropy
measure of fuzzy sets. Later on, Szmidt and Kacprzyk [32]
extended it to entropy of IFS. Since PFSs developed by Yager
[8, 9] are generalized forms of IFSs, we use similar notions
as IFSs to give a definition of entropy for PFSs. Assume that𝑃𝐹𝑆(𝑋) represents the set of all PFSs in X.

Definition 9. A real function 𝐸 : 𝑃𝐹𝑆(𝑋) 󳨀→ [0, 1] is called
an entropy on 𝑃𝐹𝑆(𝑋) if E satisfies the following axioms:

(A0) (𝑁𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖V𝑖𝑡𝑦) 0 ≤ 𝐸(𝑃̃) ≤ 1;
(A1) (𝑀𝑖𝑛𝑖𝑚𝑎𝑙𝑖𝑡𝑦) 𝐸(𝑃̃) = 0, 𝑖𝑓𝑓 𝑃̃ 𝑖𝑠 𝑎 𝑐𝑟𝑖𝑠𝑝 𝑠𝑒𝑡;(A2) (𝑀𝑎𝑥𝑖𝑚𝑎𝑙𝑖𝑡𝑦) 𝐸(𝑃̃) = 1, 𝑖𝑓𝑓 𝜇𝑃̃(𝑥) = ]𝑃̃(𝑥), ∀𝑥 ∈ 𝑋;
(A3) (𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 𝐸(𝑃̃) ≤ 𝐸(𝑄), 𝑖𝑓 𝑃̃ is crisper than 𝑄,

i.e., ∀𝑥 ∈ 𝑋,

𝜇𝑃̃(𝑥) ≤ 𝜇𝑄̃(𝑥) and ]𝑃̃(𝑥) ≥ ]𝑄̃(𝑥) for 𝜇𝑄̃(𝑥) ≤
]𝑄̃(𝑥) 𝑜𝑟𝜇𝑃̃(𝑥) ≥ 𝜇𝑄̃(𝑥) and ]𝑃̃(𝑥) ≤ ]𝑄̃(𝑥) 𝑓𝑜𝑟 𝜇𝑄̃(𝑥) ≥
]𝑄̃(𝑥);

(A4) (𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐) 𝐸(𝑃̃) = 𝐸(𝑃̃𝑐), where 𝑃̃𝑐 is the comple-
ment of 𝑃̃;

For probabilistic-type entropy, we need to omit the axiom
(A0).On the other hand, becausewe take the three-parameter𝜇2
𝑃̃
, ]2
𝑃̃
, and 𝜋2

𝑃̃
as a probability mass function 𝑝 = {𝜇2

𝑃̃
, ]2
𝑃̃
, 𝜋2
𝑃̃
},

the probabilistic-type entropy 𝐸(𝑃̃) should attain a unique
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maximum at 𝜇𝑃̃(𝑥) = ]𝑃̃(𝑥) = 𝜋𝑃̃(𝑥) = 1/√3, ∀𝑥 ∈𝑋. Therefore, for probabilistic-type entropy, we replace the
axiom (𝐴2) with (𝐴2󸀠) and the axiom (𝐴3) with (𝐴3󸀠) as
follows:

(A2󸀠) (𝑀𝑎𝑥𝑖𝑚𝑎𝑙𝑖𝑡𝑦) 𝐸(𝑃̃) attains a unique maximum at𝜇𝑃̃(𝑥) = ]𝑃̃(𝑥) = 𝜋𝑃̃(𝑥) = 1/√3, ∀𝑥 ∈ 𝑋.
(A3󸀠) (𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 𝐸(𝑃̃) ≤ 𝐸(𝑄), if 𝑃̃ is crisper than 𝑄, i.e.,,∀𝑥 ∈ 𝑋, 𝜇𝑃̃(𝑥) ≤ 𝜇𝑄̃(𝑥) and ]𝑃̃(𝑥) ≤ ]𝑄̃(𝑥)

for max(𝜇𝑄̃(𝑥), ]𝑄̃(𝑥)) ≤ 1/√3 and 𝜇𝑃̃(𝑥) ≥ 𝜇𝑄̃(𝑥),
]𝑃̃(𝑥) ≥ ]𝑄̃(𝑥) for min(𝜇𝑄̃(𝑥), ]𝑄̃(𝑥)) ≥ 1/√3.

In addition to the five axioms (A0)∼(A4) in Definition 9,
if we add the following axiom (A5), E is called 𝜎- entropy:
(A5) (𝑉𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛) 𝐸(𝑃̃) + 𝐸(𝑄) = 𝐸(𝑃̃ ∪ 𝑄) + 𝐸(𝑃̃ ∩ 𝑄),𝑖𝑓 ∀𝑥 ∈ 𝑋

𝜇𝑃̃(𝑥) ≤ 𝜇𝑄̃(𝑥) and ]𝑃̃(𝑥) ≥ ]𝑄̃(𝑥) for 𝜇𝑄̃(𝑥) ≤
]𝑄̃(𝑥) or𝜇𝑃̃(𝑥) ≥ 𝜇𝑄̃(𝑥) and ]𝑃̃(𝑥) ≤ ]𝑄̃(𝑥) for 𝜇𝑄̃(𝑥) ≥
]𝑄̃(𝑥).

We present a property for the axiom (𝐴3󸀠) when 𝑃̃ is
crisper than 𝑄.
Property 10. If 𝑃̃ is crisper than 𝑄 in the axiom (𝐴3󸀠), then
we have the following inequality:

(𝜇𝑃̃ (𝑥𝑖) − 1√3)
2 + (]𝑃̃ (𝑥𝑖) − 1√3)

2

+ (𝜋𝑃̃ (𝑥𝑖) − 1√3)
2

≥ (𝜇𝑄̃ (𝑥𝑖) − 1√3)
2 + (]𝑄̃ (𝑥𝑘) − 1√3)

2

+ (]𝑄̃ (𝑥𝑘) − 1√3)
2 , ∀𝑥𝑖

(8)

Proof. If 𝑃̃ is crisper than 𝑄, then ∀𝑥𝑖, 𝜇𝑃̃(𝑥) ≤ 𝜇𝑄̃(𝑥) and
]𝑃̃(𝑥) ≤ ]𝑄̃(𝑥) for max(𝜇𝑄̃(𝑥), ]𝑄̃(𝑥)) ≤ 1/√3. Therefore,
we have that 𝜇𝑃̃(𝑥) − 1/√3 ≤ 𝜇𝑄̃(𝑥) − 1/√3 ≤ 0 and
]𝑃̃(𝑥) − 1/√3 ≤ ]𝑄̃(𝑥) − 1/√3 ≤ 0 and so 1 − 𝜇2

𝑃̃
(𝑥) − ]2

𝑃̃
(𝑥) ≥1 − 𝜇2

𝑄̃
(𝑥) − ]2

𝑄̃
(𝑥) ≥ 1/3, i.e., 𝜋2

𝑃̃
(𝑥) ≥ 𝜋2

𝑄̃
(𝑥) ≥ 1/3

and 𝜋𝑃̃(𝑥) − 1/√3 ≥ 𝜋𝑄̃(𝑥) − 1/√3 ≥ 0. Thus, we have(𝜇𝑃̃(𝑥) − 1/√3)2 ≥ (𝜇𝑄̃(𝑥) − 1/√3)2, (]𝑃̃(𝑥) − 1/√3)2 ≥(]𝑄̃(𝑥) − 1/√3)2, and (𝜋𝑃̃(𝑥) − 1/√3)2 ≥ (𝜋𝑄̃(𝑥) − 1/√3)2.
This induces the inequality. Similarly, the part of 𝜇𝑃̃(𝑥) ≥𝜇𝑄̃(𝑥) and ]𝑃̃(𝑥) ≥ ]𝑄̃(𝑥) for min(𝜇𝑄̃(𝑥), ]𝑄̃(𝑥)) ≥ 1/√3 also
induces the inequality. Hence, we prove the property.

Since PFSs are generalized form of IFSs, the distances
between PFSs need to be computed by considering all
the three components 𝜇2

𝑃̃
(𝑥), ]2
𝑃̃
(𝑥) and 𝜋2

𝑃̃
(𝑥) in PFSs.

The well-known distance between PFSs is Euclidean dis-
tance. Therefore, the inequality in Property 10 indicates that
the Euclidean distance between (𝜇𝑃̃(𝑥), ]𝑃̃(𝑥), 𝜋𝑃̃(𝑥)) and(1/√3, 1/√3, 1/√3) is larger than the Euclidean distance
between (𝜇𝑄̃(𝑥), ]𝑄̃(𝑥), 𝜋𝑄̃(𝑥)) and (1/√3, 1/√3, 1/√3). This
manifests that (𝜇𝑄̃(𝑥), ]𝑄̃(𝑥), 𝜋𝑄̃(𝑥)) is located more nearby
to (1/√3, 1/√3, 1/√3) than that of (𝜇𝑃̃(𝑥), ]𝑃̃(𝑥), 𝜋𝑃̃(𝑥)).
From a geometrical perspective, the axiom (𝐴3󸀠) is rea-
sonable and logical because the closer PFS to the unique
point (1/√3, 1/√3, 1/√3)withmaximumentropy reflects the
greater entropy of that PFS.

We next construct entropies for PFSs based on a probabil-
ity-type. To formulate the probability-type of entropy for
PFSs, we use the idea of entropy𝐻𝛾(𝑝)of Havrda and Chara-
vát [35] to a probability mass function 𝑝 = {𝑝1, . . . , 𝑝𝑘} with

𝐻𝛾 (𝑝) =
{{{{{{{{{{{

1𝛾 − 1 (1 − 𝑘∑
𝑖=1

𝑝𝛾𝑖 ) , 𝛾 ̸= 1 (𝛾 > 0)
− 𝑘∑
𝑖=1

𝑝𝑖 log𝑝𝑖, 𝛾 = 1. (9)

Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a finite universe of discourses.
Thus, for a PFS 𝑃̃ in𝑋, we propose the following probability-
type entropy for the PFS 𝑃̃ with

𝑒𝛾𝐻𝐶 (𝑃̃) = {{{{{{{{{

1𝑛
𝑛∑
𝑖=1

1𝛾 − 1 [1 − ((𝜇2
𝑃̃
(𝑥𝑖))𝛾 + (]2

𝑃̃
(𝑥𝑖))𝛾 + (𝜋2

𝑃̃
(𝑥𝑖))𝛾)] , 𝛾 ̸= 1 (𝛾 > 0)

1𝑛
𝑛∑
𝑖=1

− (𝜇2
𝑃̃
(𝑥𝑖) log 𝜇2𝑃̃ (𝑥𝑖) + ]2

𝑃̃
(𝑥𝑖) log ]2𝑃̃ (𝑥𝑖) + 𝜋2

𝑃̃
(𝑥𝑖) log𝜋2𝑃̃ (𝑥𝑖)) , 𝛾 = 1. (10)

Apparently, one may ask a question: “Are these pro-
posed entropy measures for PFSs are suitable and accept-
able?” To answer this question, we present the following
theorem.

Theorem 11. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a finite universe
of discourses. The proposed probabilistic-type entropy 𝑒𝛾𝐻𝐶 for
a PFS 𝑃̃ satisfies the axioms (𝐴1), (𝐴2󸀠), (𝐴3󸀠), and (𝐴4) in
Definition 9.

To prove the axioms (𝐴2󸀠) and (𝐴3󸀠) for Theorem 11, we
need Lemma 12.

Lemma 12. Let 𝜓𝛾(𝑥), 0 < 𝑥 < 1 be defined as
𝜓𝛾 (𝑥) = {{{

1𝛾 − 1 (𝑥 − 𝑥𝛾) , 𝛾 ̸= 1 (𝛾 > 0)
−𝑥 log 𝑥, 𝛾 = 1. (11)

Then 𝜓𝛾(𝑥) is a strictly concave function of 𝑥.
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Proof. By twice differentiating 𝜓𝛾(𝑥), we get 𝜓󸀠󸀠𝛾 (𝑥) =−𝛾𝑥𝛾−2 < 0, for 𝛾 ̸= 1(𝛾 > 0).Then 𝜓𝛾(𝑥) is a strictly concave
function of 𝑥. Similarly, we can show that 𝜓𝛾=1(𝑥) = 𝑥 log 𝑥
is also a strictly concave function of 𝑥.
Proof of Theorem 11. It is easy to check that 𝑒𝛾𝐻𝐶 satisfies
the axioms (𝐴1) and (𝐴4). We need only to prove that 𝑒𝛾𝐻𝐶
satisfies the axioms (𝐴2󸀠) and (𝐴3󸀠). To prove 𝑒𝛾𝐻𝐶 for the case𝛾 ̸= 1(𝛾 > 0) that satisfies the axiom (𝐴2󸀠), we use Lagrange
multipliers for 𝑒𝛾𝐻𝐶 with 𝐹(𝜇2

𝑃̃
, ]2
𝑃̃
, 𝜋2
𝑃̃
, 𝜆) = (1/𝑛)∑𝑛𝑖=1(1/(𝛾 −1))[1 − ((𝜇2

𝑃̃
(𝑥𝑖))𝛾 + (]2

𝑃̃
(𝑥𝑖))𝛾 + (𝜋2

𝑃̃
(𝑥𝑖))𝛾)] +∑𝑛𝑖=1 𝜆𝑖(𝜇2𝑃̃(𝑥𝑖) +

]2
𝑃̃
(𝑥𝑖)+𝜋2

𝑃̃
(𝑥𝑖)−1). By taking the derivative of 𝐹(𝜇2

𝑃̃
, ]2
𝑃̃
, 𝜋2
𝑃̃
, 𝜆)

with respect to 𝜇2
𝑃̃
(𝑥𝑖), ]2𝑃̃(𝑥𝑖), 𝜋2𝑃̃(𝑥𝑖), and 𝜆𝑖, we obtain

𝜕𝐹𝜕𝜇2
𝑃̃
(𝑥𝑖) = −𝛾(𝛾 − 1) (𝜇2

𝑃̃
(𝑥𝑖))𝛾−1 + 𝜆𝑖 𝑠𝑒𝑡󳨐󳨐󳨐󳨐 0,

𝜕𝐹𝜕]2
𝑃̃
(𝑥𝑖) = −𝛾(𝛾 − 1) (]2

𝑃̃
(𝑥𝑖))𝛾−1 + 𝜆𝑖 𝑠𝑒𝑡󳨐󳨐󳨐󳨐 0,

𝜕𝐹𝜕𝜋2
𝑃̃
(𝑥𝑖) = −𝛾(𝛾 − 1) (𝜋2

𝑃̃
(𝑥𝑖))𝛾−1 + 𝜆𝑖 𝑠𝑒𝑡󳨐󳨐󳨐󳨐 0,

𝜕𝐹𝜕𝜆𝑖 = 𝜇2
𝑃̃
(𝑥𝑖) + ]2

𝑃̃
(𝑥𝑖) + 𝜋2

𝑃̃
(𝑥𝑖) − 1 𝑠𝑒𝑡󳨐󳨐󳨐󳨐 0.

(12)

From above PDEs, we get (𝜇2
𝑃̃
(𝑥𝑖))𝛾−1 = 𝜆𝑖(𝛾 − 1)/𝛾 and then𝜇2

𝑃̃
(𝑥𝑖) = (𝜆𝑖(𝛾 − 1)/𝛾)1/(𝛾−1); (]2

𝑃̃
(𝑥𝑖))𝛾−1 = 𝜆𝑖(𝛾 − 1)/𝛾 and

]2
𝑃̃
(𝑥𝑖) = (𝜆𝑖(𝛾 − 1)/𝛾)1/(𝛾−1); (𝜋2

𝑃̃
(𝑥𝑖))𝛾−1 = 𝜆𝑖(𝛾 − 1)/𝛾 and𝜋2

𝑃̃
(𝑥𝑖) = (𝜆𝑖(𝛾 − 1)/𝛾)1/(𝛾−1); 𝜇2

𝑃̃
(𝑥𝑖) + ]2

𝑃̃
(𝑥𝑖) + 𝜋2

𝑃̃
(𝑥𝑖) = 1 and

then (𝜆𝑖(𝛾 − 1)/𝛾)1/(𝛾−1) = 1/3. Thus, we have 𝜆𝑖 = (𝛾/(𝛾 −1))(1/3)𝛾−1. We obtain 𝜇2
𝑃̃
(𝑥𝑖) = ((𝛾/(𝛾 − 1))(1/3)𝛾−1(𝛾 −1)/𝛾)1/(𝛾−1), and then 𝜇𝑃̃(𝑥𝑖) = 1/√3. We also get ]𝑃̃(𝑥𝑖) =1/√3 and 𝜋𝑃̃(𝑥𝑖) = 1/√3. That is, 𝜇𝑃̃(𝑥𝑖) = ]𝑃̃(𝑥𝑖) = 𝜋𝑃̃(𝑥𝑖) =1/√3, ∀𝑖. Similarly, we can show that the equation of 𝑒𝛾𝐻𝐶 for

the case 𝛾 = 1 also obtains 𝜇𝑃̃(𝑥𝑖) = ]𝑃̃(𝑥𝑖) = 𝜋𝑃̃(𝑥𝑖) =1/√3, ∀𝑖. By Lemma 12, we learn that the function 𝜓𝛾(𝑥)
is a strictly concave function of 𝑥. We know that 𝑒𝛾𝐻𝐶(𝑃̃) =(1/𝑛)∑𝑛𝑖=1(𝜓𝛾(𝜇2𝑃̃(𝑥𝑖))+𝜓𝛾(]2𝑃̃((𝑥𝑖)))+𝜓𝛾(𝜋2𝑃̃(𝑥𝑖))) and so 𝑒𝛾𝐻𝐶
is also a strictly concave function. Therefore, it is proved
that 𝑒𝛾𝐻𝐶 attains a unique maximum at 𝜇𝑃̃(𝑥𝑖) = ]𝑃̃(𝑥𝑖) =𝜋𝑃̃(𝑥𝑖) = 1/√3, ∀𝑖. We next prove that the probabilistic-
type entropy 𝑒𝛾𝐻𝐶 satisfies the axiom (𝐴3󸀠). If 𝑃̃ is crisper
than𝑄, we notice that 𝑃̃ is far away from (1/√3, 1/√3, 1/√3)
compared to 𝑄 according to Property 10. However, 𝑒𝛾𝐻𝐶 is a
strictly concave function and 𝑒𝛾𝐻𝐶 attains a unique maximum
at 𝜇𝑃̃(𝑥𝑖) = ]𝑃̃(𝑥𝑖) = 𝜋𝑃̃(𝑥𝑖) = 1/√3, ∀𝑖. From here, we
obtain 𝑒𝛾𝐻𝐶(𝑃̃) ≤ 𝑒𝛾𝐻𝐶(𝑄) if 𝑃̃ is crisper than𝑄.Thus, we prove
the axiom (𝐴3󸀠).

Concept to determine uncertainty from a fuzzy set and
its complement was first given by Yager [26]. In this section,
we first use the similar idea to measure uncertainty of PFSs
in terms of the amount of distinction between a PFS 𝑃̃
and its complement 𝑃̃𝑐. However, various distance measures

are made to express numerically the difference between two
objects with high accuracy. Therefore, the distance between
two fuzzy sets plays a vital role in theoretical and practical
issues. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a finite universe of dis-
courses; we first define a Pythagorean normalized Euclidean
(PNE) distance between two Pythagorean fuzzy sets 𝑃̃, 𝑄 ∈𝑃𝐹𝑆𝑠(𝑋) as
𝜁𝐸 (𝑃̃, 𝑄) = [ 12𝑛

𝑛∑
𝑖=1

((𝜇2
𝑃̃
(𝑥𝑖) − 𝜇2

𝑄̃
(𝑥𝑖))2

+ (]2
𝑃̃
(𝑥𝑖) − ]2

𝑄̃
(𝑥𝑘))2 + (𝜋2

𝑃̃
(𝑥𝑖) − 𝜋2

𝑄̃
(𝑥𝑖))2)]1/2

(13)

We next propose fuzzy entropy induced by the PNE distance𝜁𝐸 between the PFS 𝑃̃ and its complement 𝑃̃𝑐. Let 𝑃̃ ={⟨𝑥𝑖, 𝜇𝑃̃(𝑥𝑖), ]𝑃̃(𝑥𝑖)⟩ : 𝑥𝑖 ∈ 𝑋} be any Pythagorean fuzzy
set on the universe of discourse 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} with
its complement 𝑃̃𝑐 = {⟨𝑥, ]𝑃̃(𝑥𝑖), 𝜇𝑃̃(𝑥𝑖)⟩ : 𝑥𝑖 ∈ 𝑋}. The
PNE distance between PFSs 𝑃̃ and 𝑃̃𝑐 will be 𝜁𝐸(𝑃̃, 𝑃̃𝑐) =[(1/𝑛)∑𝑛𝑖=1(𝜇2𝑃̃(𝑥𝑖) − ]2

𝑃̃
(𝑥𝑖))2]1/2. Thus, we define a new

entropy 𝑒𝐸 for the PFS 𝑃̃ as

𝑒𝐸 (𝑃̃) = 1 − 𝜁𝐸 (𝑃̃, 𝑃̃𝑐)
= 1 − √ 1𝑛

𝑛∑
𝑖=1

(𝜇2
𝑃̃
(𝑥𝑖) − ]2

𝑃̃
(𝑥𝑖))2 (14)

Theorem 13. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a finite universe of
discourse. The proposed entropy 𝑒𝐸 for a PFS 𝑃̃ satisfies the
axioms (A0)∼(A5) in Definition 9, and so 𝑒𝐸 is a 𝜎-entropy.
Proof. We first prove the axiom (A0). Since the distance𝜁𝐸(𝑃̃, 𝑃̃𝑐) is between 0 and 1, 0 ≤ 1 − 𝜁𝐸(𝑃̃, 𝑃̃𝑐) ≤ 1, and
then 0 ≤ 𝑒𝐸(𝑃̃) ≤ 1. The axiom (A0) is satisfied. For the
axiom (A1), if 𝑃̃ is crisp, i.e., 𝜇2

𝑃̃
(𝑥𝑖) = 0, ]2

𝑃̃
(𝑥𝑖) = 1

or 𝜇2
𝑃̃
(𝑥𝑖) = 1, ]2

𝑃̃
(𝑥𝑖) = 0, ∀𝑥𝑖 ∈ 𝑋, then 𝜁𝐸(𝑃̃,𝑃̃𝑐) = √(1/𝑛)∑𝑛𝑖=1(𝜇2𝑃̃(𝑥𝑖) − ]2

𝑃̃
(𝑥𝑖))2 = 1. Thus, we obtain𝑒𝐸(𝑃̃) = 1 − 1 = 0. Conversely, if 𝑒𝐸(𝑃̃) = 0, then 𝜁𝐸(𝑃̃, 𝑃̃𝑐) =1 − 𝑒𝐸(𝑃̃) = 1, i.e., √(1/𝑛)∑𝑛𝑖=1(𝜇2𝑃̃(𝑥𝑖) − ]2

𝑃̃
(𝑥𝑖))2 = 1.

Thus, 𝜇2
𝑃̃
(𝑥𝑖) = 1, ]2

𝑃̃
(𝑥𝑖) = 0 or 𝜇2

𝑃̃
(𝑥𝑖) = 0, ]2

𝑃̃
(𝑥𝑖) = 1

and so 𝑃̃ is crisp. Thus, the axiom (A1) is satisfied. Now,
we prove the axiom (A2). 𝜇2

𝑃̃
(𝑥𝑖) = ]2

𝑃̃
(𝑥𝑖), ∀𝑥𝑖 ∈ 𝑋,

implies that 𝜁𝐸(𝑃̃, 𝑃̃𝑐) = 0, 𝑒𝐸(𝑃̃) = 1. Conversely,𝑒𝐸(𝑃̃) = 1 implies 𝜁𝐸(𝑃̃, 𝑃̃𝑐) = 0. Thus, we have that𝜇2
𝑃̃
(𝑥𝑖) = ]2

𝑃̃
(𝑥𝑖), ∀𝑥𝑖 ∈ 𝑋. For the axiom (A3), since𝜇2

𝑃̃
(𝑥𝑖) ≤ 𝜇2

𝑄̃
(𝑥𝑖) and ]2

𝑃̃
(𝑥𝑖) ≥ ]2

𝑄̃
(𝑥𝑖) for 𝜇2

𝑄̃
(𝑥𝑖) ≤ ]2

𝑄̃
(𝑥𝑖)

imply that 𝜇2
𝑃̃
(𝑥𝑖) ≤ 𝜇2

𝑄̃
(𝑥𝑖) ≤ ]2

𝑄̃
(𝑥𝑖) ≤ ]2

𝑃̃
(𝑥𝑖), then we

have the distance ∀𝑥𝑖 ∈ 𝑋,√(1/𝑛)∑𝑛𝑖=1(𝜇2𝑃̃(𝑥𝑖) − ]2
𝑃̃
(𝑥𝑖))2 ≥

√(1/𝑛)∑𝑛𝑖=1(𝜇2𝑄̃(𝑥𝑖) − ]2
𝑄̃
(𝑥𝑖))2. Again from the axiom

(A3) of Definition 9, we have 𝜇2
𝑃̃
(𝑥𝑖) ≥ 𝜇2

𝑄̃
(𝑥𝑖) and
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]2
𝑃̃
(𝑥𝑖) ≤ ]2

𝑄̃
(𝑥𝑖) for 𝜇2

𝑄̃
(𝑥𝑖) ≥ ]2

𝑄̃
(𝑥𝑖) implies that

]2
𝑃̃
(𝑥𝑖) ≤ ]2

𝑄̃
(𝑥𝑖) ≤ 𝜇2

𝑄̃
(𝑥𝑖) ≤ 𝜇2

𝑃̃
(𝑥𝑖), and then

the distance ∀𝑥𝑖 ∈ 𝑋,√(1/𝑛)∑𝑛𝑖=1(𝜇2𝑃̃(𝑥𝑖) − ]2
𝑃̃
(𝑥𝑖))2

≥ √(1/𝑛)∑𝑛𝑖=1(𝜇2𝑄̃(𝑥𝑖) − ]2
𝑄̃
(𝑥𝑖))2. From inequalities

√(1/𝑛)∑𝑛𝑖=1(𝜇2𝑃̃(𝑥𝑖) − ]2
𝑃̃
(𝑥𝑖))2 ≥ √(1/𝑛)∑𝑛𝑖=1(𝜇2𝑄̃(𝑥𝑖) − ]2

𝑄̃
(𝑥𝑖))2

and √(1/𝑛)∑𝑛𝑖=1(𝜇2𝑃̃(𝑥𝑖) − ]2
𝑃̃
(𝑥𝑖))2 ≥

√(1/𝑛)∑𝑛𝑖=1(𝜇2𝑄̃(𝑥𝑖) − ]2
𝑄̃
(𝑥𝑖))2, we have 𝜁𝐸(𝑃̃, 𝑃̃𝑐) ≥ 𝜁𝐻(𝑄,

𝑄𝑐), and then 1 − 𝜁𝐸(𝑃̃, 𝑃̃𝑐) ≤ 1 − 𝜁𝐸(𝑄, 𝑄𝑐). This concludes
that 𝑒𝐸(𝑃̃) ≤ 𝑒𝐸(𝑄). In this way the axiom (A3) is proved.
Next, we prove the axiom (A4). Since ∀𝑥𝑖 ∈ 𝑋, 𝑒𝐸(𝑃̃) =1 − 𝜁𝐸(𝑃̃, 𝑃̃𝑐) = 1 − √(1/𝑛)∑𝑛𝑖=1(𝜇2𝑃̃(𝑥𝑖) − ]2

𝑃̃
(𝑥𝑖))2 =

1 − √(1/𝑛)∑𝑛𝑖=1(]2𝑃̃(𝑥𝑖) − 𝜇2
𝑃̃
(𝑥𝑖))2, 1 − 𝜁𝐸(𝑃̃𝑐, 𝑃̃) = 𝑒𝐸(𝑃̃𝑐).

Hence, the axiom (A4) is satisfied. Finally, for proving
the axiom (A5), let 𝑃̃ and 𝑄 be two PFSs. Then, we
have

(i) 𝜇2
𝑃̃
(𝑥𝑖) ≤ 𝜇2

𝑄̃
(𝑥𝑖) and ]2

𝑃̃
(𝑥𝑖) ≥ ]2

𝑄̃
(𝑥𝑖) for 𝜇2

𝑄̃
(𝑥𝑖) ≤

]2
𝑄̃
(𝑥𝑖), ∀𝑥𝑖 ∈ 𝑋, or

(ii) 𝜇2
𝑃̃
(𝑥𝑖) ≥ 𝜇2

𝑄̃
(𝑥𝑖) and ]2

𝑃̃
(𝑥𝑖) ≤ ]2

𝑄̃
(𝑥𝑖) for 𝜇2

𝑄̃
(𝑥𝑖) ≥

]2
𝑄̃
(𝑥𝑖), ∀𝑥𝑖 ∈ 𝑋.

From (i), we have ∀𝑥𝑖 ∈ 𝑋, 𝜇2
𝑃̃
(𝑥𝑖) ≤ 𝜇2

𝑄̃
(𝑥𝑖) ≤ ]2

𝑄̃
(𝑥𝑖) ≤

]2
𝑃̃
(𝑥𝑖), then max(𝜇2

𝑃̃
(𝑥𝑖), 𝜇2𝑄̃(𝑥𝑖)) = 𝜇2

𝑄̃
(𝑥𝑖) and min(]2

𝑃̃
(𝑥𝑖),

]2
𝑄̃
(𝑥𝑖)) = ]2

𝑄̃
(𝑥𝑖). That is, (𝑃̃ ∪ 𝑄) = (𝜇2

𝑄̃
(𝑥𝑖), ]2𝑄̃(𝑥𝑖)) = 𝑄

which implies that 𝑒𝐸(𝑃̃ ∪ 𝑄) = 𝑒𝐸(𝜇2𝑄̃(𝑥𝑖), ]2𝑄̃(𝑥𝑖)) = 𝑒𝐸(𝑄).
Also, ∀𝑥𝑖 ∈ 𝑋, min(𝜇2

𝑃̃
(𝑥𝑖), 𝜇2𝑄̃(𝑥𝑖)) = 𝜇2

𝑃̃
(𝑥𝑖) and max(]2

𝑃̃
(𝑥𝑖),

]2
𝑄̃
(𝑥𝑖)) = ]2

𝑃̃
(𝑥𝑖), then (𝑃̃ ∩ 𝑄) = (𝜇2

𝑃̃
(𝑥𝑖), ]2𝑃̃(𝑥𝑖)) = 𝑃̃

implies 𝑒𝐸(𝑃̃ ∩ 𝑄) = 𝑒𝐸(𝜇2𝑃̃(𝑥𝑖), ]2𝑃̃(𝑥𝑖)) = 𝑒𝐸(𝑃̃). Hence,𝑒𝐸(𝑃̃) + 𝑒𝐸(𝑄) = 𝑒𝐸(𝑃̃ ∩ 𝑄) + 𝑒𝐸(𝑃̃ ∪ 𝑄). Again, from (ii),
we have ∀𝑥𝑖 ∈ 𝑋, ]2

𝑃̃
(𝑥𝑖) ≤ ]2

𝑄̃
(𝑥𝑖) ≤ 𝜇2

𝑄̃
(𝑥𝑖) ≤ 𝜇2

𝑃̃
(𝑥𝑖). Then,

max(𝜇2
𝑃̃
(𝑥𝑖), 𝜇2𝑄̃(𝑥𝑖)) = 𝜇2

𝑃̃
(𝑥𝑖) and min(]2

𝑃̃
(𝑥𝑖), ]2𝑄̃(𝑥𝑖)) =

]2
𝑃̃
(𝑥𝑖), and so (𝑃̃ ∪ 𝑄) = (𝜇2

𝑃̃
(𝑥𝑖), ]2𝑃̃(𝑥𝑖)) = 𝑃̃ which implies

that 𝑒𝐸(𝑃̃ ∪ 𝑄) = 𝑒𝐸(𝜇2𝑃̃(𝑥𝑖), ]2𝑃̃(𝑥𝑖)) = 𝑒𝐸(𝑃̃). Also, ∀𝑥𝑖 ∈𝑋,min(𝜇2
𝑃̃
(𝑥𝑖), 𝜇2𝑄̃(𝑥𝑖)) = 𝜇2

𝑄̃
(𝑥𝑖) and max(]2

𝑃̃
(𝑥𝑖), ]2𝑄̃(𝑥𝑖)) =

]2
𝑄̃
(𝑥𝑖), then (𝑃̃ ∩ 𝑄) = (𝜇2

𝑄̃
(𝑥𝑖), ]2𝑄̃(𝑥𝑖)) = 𝑄 implies that𝑒𝐸(𝑃̃ ∩ 𝑄) = 𝑒𝐸(𝜇2𝑄̃(𝑥𝑖), ]2𝑄̃(𝑥𝑖)) = 𝑒𝐸(𝑄). Hence, 𝑒𝐸(𝑃̃) +𝑒𝐸(𝑄) = 𝑒𝐸(𝑃̃ ∩ 𝑄) + 𝑒𝐸(𝑃̃ ∪ 𝑄). Thus, we complete the proof

of Theorem 13.

Burillo and Bustince [31] gave fuzzy entropy of intu-
itionistic fuzzy sets by using intuitionistic index. Now, we
modify and extend the similar concept to construct the new
entropy measure of PFSs by using Pythagorean index as
follows.

Let 𝑃̃ be a PFS on 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}. We define an
entropy 𝑒𝑃𝐼 of 𝑃̃ using Pythagorean index as

𝑒𝑃𝐼 (𝑃̃) = 1𝑛
𝑛∑
𝑘=1

(1 − 𝜇2
𝑃̃
(𝑥𝑘) − ]2

𝑃̃
(𝑥𝑘))

= 1𝑛
𝑛∑
𝑘=1

𝜋2
𝑃̃
(𝑥𝑘)

(15)

Theorem 14. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a finite universe
of discourse. The proposed entropy 𝑒𝑃𝐼 for the PFS 𝑃̃ using
Pythagorean index satisfies the axioms (A0)∼(A4) and (A5) in
Definition 9, and so it is a 𝜎- entropy.
Proof. Similar to Theorem 13.

We next propose a new and simple method to calculate
fuzzy entropy of PFSs by using the ratio of min and max
operations. All three components (𝜇2

𝑃̃
, ]2
𝑃̃
, 𝜋2
𝑃̃
) of a PFS 𝑃̃ are

given equal importance to make the results more authentic
and reliable. The new entropy is easy to be computed. Let 𝑃̃
be a PFS on𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, and we define a new entropy
for the PFS 𝑃̃ as

𝑒min/max (𝑃̃) = 1𝑛
𝑛∑
𝑖=1

min (𝜇2
𝑃̃
(𝑥𝑖) , ]2𝑃̃ (𝑥𝑖) , 𝜋2𝑃̃ (𝑥))

max (𝜇2
𝑃̃
(𝑥𝑖) , ]2𝑃̃ (𝑥𝑖) , 𝜋2𝑃̃ (𝑥)) (16)

Theorem 15. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a finite universe of
discourse. The proposed entropy 𝑒min/max for a PFS 𝑃̃ satisfies
the axioms (A0)∼(A4) and (A5) in Definition 9, and so it is a𝜎-entropy.
Proof. Similar to Theorem 13.

Recently, Xue at el. [20] developed the entropy of
Pythagorean fuzzy sets based on the similarity part and the
hesitancy part that reflect fuzziness and uncertainty features,
respectively. They defined the following Pythagorean fuzzy
entropy for a PFS in a finite universe of discourses 𝑋 ={𝑥1, 𝑥2, . . . , 𝑥𝑛}. Let 𝑃̃ = {⟨𝑥𝑖, 𝜇𝑃̃(𝑥𝑖), ]𝑃̃(𝑥𝑖)⟩ : 𝑥𝑖 ∈ 𝑋} be a
PFS in𝑋. The Pythagorean fuzzy entropy, 𝐸𝑋𝑢𝑒(𝑃̃), proposed
by Xue at el. [20], is defined as

𝐸𝑋𝑢𝑒 (𝑃̃)
= 1𝑛
𝑛∑
𝑖=1

[1 − (𝜇2
𝑃̃
(𝑥𝑖) + ]2

𝑃̃
(𝑥𝑖)) 󵄨󵄨󵄨󵄨󵄨𝜇2𝑃̃ (𝑥𝑖) − ]2

𝑃̃
(𝑥𝑖)󵄨󵄨󵄨󵄨󵄨 ] . (17)

The entropy 𝐸𝑋𝑢𝑒(𝑃̃) will be compared and exhibited in next
section.

4. Examples and Comparisons

In this section, we present simple examples to observe
behaviors of our proposed fuzzy entropies for PFSs. To make
it mathematically sound and practically acceptable as well as
choose better entropy by comparative analysis, we give an
example involving linguistic hedges. By considering linguistic
example, we use various linguistic hedges like “more or less
large”, “quite large” “very large”, “very very large”, etc. in
the problems under Pythagorean fuzzy environment to select
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Table 1: Comparison of the degree of fuzziness with different entropy measures of PFSs.

𝑃𝐹𝑆𝑠 𝑒1𝐻𝐶 𝑒2𝐻𝐶 𝑒𝐸 𝑒𝑃𝐼 𝑒min/max𝑃̃ 0.4378 0.2368 0.2576 0.0126 0.0146𝑄 0.8131 0.5310 0.5700 0.5041 0.0643𝑅̃ 1.0363 0.6276 0.7225 0.3527 0.3999

Table 2: Degree of fuzziness from entropies of different PFSs.

PFSs 𝑒1𝐻𝐶 𝑒2𝐻𝐶 𝑒𝐸 𝑒𝑃𝐼 𝑒min/max𝑃̃1/2 0.6407 0.3923 0.3490 0.2736 0.2013𝑃̃ 0.6066 0.3762 0.3386 0.3100 0.0957𝑃̃3/2 0.5375 0.3311 0.2969 0.3053 0.0542𝑃̃2 0.4734 0.2908 0.2638 0.2947 0.0233𝑃̃5/2 0.4231 0.2625 0.2414 0.2843 0.0108𝑃̃3 0.3848 0.2425 0.2267 0.2763 0.0050

better entropy. We check the performance and behaviors of
the proposed entropy measures in the environment of PFSs
by exhibiting its simple intuition as follows.

Example 1. Let 𝑃̃, 𝑄, and 𝑅̃ be singleton element PFSs in
the universe of discourse 𝑋 = {𝑥1} defined as 𝑃̃ ={⟨𝑥1, 0.93, 0.35, 0.1122⟩}, 𝑄 = {⟨𝑥1, 0.68, 0.18, 0.7100⟩}, and𝑅̃ = {⟨𝑥1, 0.68, 0.43, 0.5939⟩}. The numerical simulation
results of entropy measures 𝑒1𝐻𝐶, 𝑒2𝐻𝐶, 𝑒𝐸, 𝑒𝑃𝐼, and 𝑒min/max are
shown in Table 1 for the purpose of numerical comparison.
From Table 1, we can see the entropy measures of 𝑅̃ almost
have larger entropy than 𝑃̃ and𝑄without any conflict, except𝑒𝑃𝐼.That is, the degree of uncertainty of 𝑅̃ is greater than that
of 𝑃̃ and𝑄. Furthermore, the behavior and performance of all
entropies are analogous to each other, except 𝑒𝑃𝐼. Apparently,
all entropies 𝑒1𝐻𝐶, 𝑒2𝐻𝐶, 𝑒𝐸, and 𝑒min/max behavewell, except 𝑒𝑃𝐼.

However, in Example 1, it seems to be difficult for
choosing appropriate entropy that may provide a better way
to decide the fuzziness of PFSs. To overcome it, we give
an example with structured linguistic variables to further
analyze and compare these entropy measures in Pythagorean
fuzzy environment. Thus, the following example with lin-
guistic hedges is presented to further check behaviors and
performance of the proposed entropy measures.

Example 2. Let 𝑃̃ be a PFS in a universe of discourse 𝑋 ={1, 3, 5, 7, 9} defined as 𝑃̃ = {⟨1, 0.1, 0.8⟩, ⟨3, 0.4, 0.7⟩,⟨5, 0.5, 0.3⟩, ⟨7, 0.9, 0.0⟩, ⟨9, 1.0, 00⟩}. By Definitions 6, 7, and
8 where the concentration and dilation of 𝑃̃ are defined
as Concentration: 𝐶𝑂𝑁(𝑃̃) = 𝑃̃2, Dilation: 𝐷𝐼𝐿(𝑃̃)1/2. By
considering the characterization of linguistic variables, we
use the PFS 𝑃̃ to define the strength of the structural linguistic
variable𝑃 in𝑋 = {1, 3, 5, 7, 9}. Using above defined operators,
we consider the following:𝑃̃1/2 is regarded as “More or less LARGE”; 𝑃̃ is

regarded as “LARGE”;𝑃̃3/2 is regarded as “Quite LARGE”; 𝑃̃2 is regarded as
“Very LARGE”;

𝑃̃5/2 is regarded as “Quite very LARGE”; 𝑃̃3 is
regarded as “Very very LARGE”.

We use above linguistic hedges for PFSs to compare the
entropy measures 𝑒1𝐻𝐶, 𝑒2𝐻𝐶, 𝑒𝐸, 𝑒𝑃𝐼, and 𝑒min/max, respectively.
From intuitive point of view, the following requirement of (18)
for a good entropy measure should be followed:

𝑒 (𝑃̃1/2) > 𝑒 (𝑃̃) > 𝑒 (𝑃̃3/2) > 𝑒 (𝑃̃2) > 𝑒 (𝑃̃5/2)
> 𝑒 (𝑃̃3) . (18)

After calculating these entropy measures 𝑒1𝐻𝐶, 𝑒2𝐻𝐶, 𝑒𝐸, 𝑒𝑃𝐼,
and 𝑒min/max for these PFSs, the results are shown in Table 2.
From Table 2, it can be seen that these entropy measures𝑒1𝐻𝐶, 𝑒2𝐻𝐶, 𝑒𝐸, and 𝑒min/max satisfy the requirement of (18), but𝑒𝑃𝐼 fails to satisfy (18) that has 𝑒𝑃𝐼(𝑃̃) > 𝑒𝑃𝐼(𝑃̃3/2) > 𝑒𝑃𝐼(𝑃̃2) >𝑒𝑃𝐼(𝑃̃5/2) > 𝑒𝑃𝐼(𝑃̃3) > 𝑒𝑃𝐼(𝑃̃1/2). Therefore, we say that the
behaviors of 𝑒1𝐻𝐶, 𝑒2𝐻𝐶, 𝑒𝐸, and 𝑒min/max are good, but 𝑒𝑃𝐼 is not.

In order to make more comparisons of entropy measures,
we shake the degree of uncertainty of the middle value “5” in𝑋.We decrease the degree of uncertainty for the middle point
in X, and then we observe the amount of changes and also the
impact of entropymeasureswhen the degree of uncertainty of
the middle value in X is decreasing. To observe how different
PFS “LARGE” in X affects entropy measures, we modify 𝑃̃ as

“LARGE” = 𝑃̃1 = {⟨1, 0.1, 0.8⟩ , ⟨3, 0.4, 0.7⟩ ,
⟨5, 0.6, 0.5⟩ , ⟨7, 0.9, 0.0⟩ , ⟨9, 1.0, 00⟩} (19)

Again, we use PFSs 𝑃̃1/21 , 𝑃̃1, 𝑃̃3/21 , 𝑃̃21 , 𝑃̃5/21 , and 𝑃̃31 with lin-
guistic hedges to compare and observe behaviors of entropy
measures.The results of degree of fuzziness for different PFSs
from entropy measures are shown in Table 3. From Table 3,
we can see that these entropies 𝑒1𝐻𝐶, 𝑒𝐸, and 𝑒min/max satisfy
the requirement of (18), but 𝑒2𝐻𝐶 and 𝑒𝑃𝐼 could not fulfill the
requirement of (18) with 𝑒2𝐻𝐶(𝑃̃) > 𝑒2𝐻𝐶(𝑃̃1/2) > 𝑒2𝐻𝐶(𝑃̃3/2) >𝑒2𝐻𝐶(𝑃̃2) > 𝑒2𝐻𝐶(𝑃̃5/2) > 𝑒2𝐻𝐶(𝑃̃3) and 𝑒𝑃𝐼(𝑃̃) > (𝑃̃3/2) >𝑒𝑃𝐼(𝑃̃1/2) > 𝑒𝑃𝐼(𝑃̃2) > 𝑒𝑃𝐼(𝑃̃5/2) > 𝑒𝑃𝐼(𝑃̃3). Therefore, the
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Table 3: Degree of fuzziness from entropies of different PFSs.

PFSs 𝑒1𝐻𝐶 𝑒2𝐻𝐶 𝑒𝐸 𝑒𝑃𝐼 𝑒min/max𝑃̃1/21 0.6569 0.3952 0.3473 0.2360 0.2276𝑃̃11 0.6554 0.4086 0.3406 0.2560 0.1966𝑃̃3/21 0.5997 0.3757 0.2944 0.2440 0.1201𝑃̃21 0.5351 0.3356 0.2526 0.2281 0.0662𝑃̃5/21 0.4753 0.2993 0.2209 0.2145 0.0329𝑃̃31 0.4233 0.2682 0.1976 0.2038 0.0171

Table 4: Degree of fuzziness from entropies of different PFSs.

PFSs 𝐸𝑋𝑢𝑒 𝑒1𝐻𝐶 𝑒𝐸 𝑒min/max𝑃̃ 0.4718 0.7532 0.3603 0.1270𝑄 0.4718 0.6886 0.3066 0.0470𝑅̃ 0.4718 0.7264 0.4241 0.1111

performance of 𝑒1𝐻𝐶, 𝑒𝐸, and 𝑒min/max is good, and 𝑒2𝐻𝐶 is not
good, but 𝑒𝑃𝐼 presents very poor.We see that a little change in
uncertainty for the middle value in X did not affect entropies𝑒1𝐻𝐶, 𝑒𝐸, and 𝑒min/max, and it brings a slight change in 𝑒2𝐻𝐶, but
it gives an absolute big effect for entropy 𝑒𝑃𝐼.

In viewing the results from Tables 1, 2, and 3, we may
say that entropy measures 𝑒1𝐻𝐶, 𝑒𝐸, and 𝑒min/max present better
performance. On the other hand, from the viewpoint of
structured linguistic variables, we see that entropy measures𝑒1𝐻𝐶, 𝑒𝐸, and 𝑒min/max are more suitable, reliable, and well
suited in Pythagorean fuzzy environment for exhibiting the
degree of fuzziness of PFS. We, therefore, recommend these
entropies 𝑒1𝐻𝐶, 𝑒𝐸, and 𝑒min/max in a subsequent application
involving multicriteria decision making.

In the following example, we conduct the comparison
analysis of proposed entropies 𝑒1𝐻𝐶, 𝑒𝐸, and 𝑒min/max with the
entropy 𝐸𝑋𝑢𝑒(𝑃̃), developed by Xue at el. [20], to demonstrate
the advantages of our developed entropies 𝑒1𝐻𝐶, 𝑒𝐸, and𝑒min/max.

Example 3. Let 𝑃̃, 𝑄, and 𝑅̃ be PFSs in the singleton universe
set𝑋 = {𝑥1} as

𝑃̃ = {⟨𝑥1, 0.305, 856, 0.4174⟩} ,
𝑄 = {⟨𝑥1, 0.1850, 0.8530, 0.4880⟩} ,
𝑅̃ = {⟨𝑥1, 0.4130, 0.8640, 0.2880⟩} .

(20)

The degrees of entropy for different PFSs between the pro-
posed entropies 𝑒1𝐻𝐶, 𝑒𝐸, 𝑒min/max and the entropy 𝐸𝑋𝑢𝑒(𝑃̃) by
Xue at el. [20] are shown in Table 4. As can be seen from
Table 4, we find that despite having three different PFSs, the
entropy measure 𝐸𝑋𝑢𝑒 could not distinguish the PFSs 𝑃̃, 𝑄,
and 𝑅̃. However, the proposed entropy measures 𝑒1𝐻𝐶, 𝑒𝐸, and𝑒min/max can actually differentiate these different PFSs 𝑃̃, 𝑄,
and 𝑅̃.

5. Pythagorean Fuzzy Multicriterion Decision
Making Based on New Entropies

In this section, we construct a new multicriterion decision
making method. Specifically, we extend the technique for
order preference by similarity to an ideal solution (TOPSIS)
to multicriterion decision making, based on the proposed
entropy measures for PFSs. Impreciseness and vagueness is
a reality of daily life which requires close attentions in the
matters of management and decision. In real life setting
with decision making process, information available is often
uncertain, vague, or imprecise. PFSs are found to be a power-
ful tool to solve decision making problems involving uncer-
tain, vague, or imprecise information with high precision. To
display practical reasonability and validity, we apply our pro-
posed new entropies 𝑒1𝐻𝐶, 𝑒𝐸, and 𝑒min/max in a multicriteria
decision making problem, involving unknown information
about criteria weights for alternatives in Pythagorean fuzzy
environment.

We formalize the problem in the form of decision matrix
in which it lists various project alternatives. We assume that
there arem project alternatives and wewant to compare them
on n various criteria 𝐶𝑗, 𝑗 = 1, 2, . . . , 𝑛. Suppose, for each
criterion, we have an evaluation value. For instance, the first
project on the first criterion has an evaluation 𝑥11. The first
project on the second criterion has an evaluation 𝑥12, and
the first project on nth criterion has an evaluation 𝑥1𝑛. Our
objective is to have these evaluations on individual criteria
and come up with a consolidated value for the project 1 and
do something similar to the project 2 and so on. We then
ultimately obtain a value for each of the projects. Finally, we
can rank the projects with selecting the best one among all
projects.

Let 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑚} be the set of alternatives, and
let the set of criteria for the alternatives 𝐴 𝑖, 𝑖 = 1, 2, . . . , 𝑚
be represented by 𝐶𝑗, 𝑗 = 1, 2, . . . , 𝑛. The aim is to choose
the best alternative out of the n alternatives. The construction
steps for the new Pythagorean fuzzy TOPSIS based on the
proposed entropy measures are as follows.
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Step 1 (construction of Pythagorean fuzzy decision matrix).
Consider that the alternative 𝐴 𝑖 acting on the criteria 𝐶𝑗 is
represented in terms of Pythagorean fuzzy value 𝑏̃𝑖𝑗 = (𝜇𝑖𝑗, ]𝑖𝑗,𝜋𝑖𝑗)𝑝, 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, where 𝜇𝑖𝑗 denotes the
degree of fulfillment, ]𝑖𝑗 represents the degree of not fulfill-
ment, and 𝜋𝑖𝑗 represents the degree of hesitancy against the

alternative 𝐴 𝑖 to the criteria𝐶𝑗 with the following conditions:0 ≤ 𝜇2𝑖𝑗 ≤ 1, 0 ≤ ]2𝑖𝑗 ≤ 1, 0 ≤ 𝜋2𝑖𝑗 ≤ 1, and𝜇2𝑖𝑗+]2𝑖𝑗+𝜋2𝑖𝑗 = 1.The
decisionmatrix𝐷 = (𝑏̃𝑖𝑗)𝑚×𝑛 is constructed to handle the prob-
lems involving multicriterion decision making, where the
decision matrix 𝐷 = (𝑏̃𝑖𝑗)𝑚×𝑛 can be constructed as follows:

𝐷 = (𝑏̃𝑖𝑗)𝑚×𝑛 =
𝐶1𝐴1𝐴2...𝐴𝑚

[[[[[[[[

(𝜇11, ]11, 𝜋11)𝑝(𝜇21, ]21, 𝜋21)𝑝...(𝜇𝑚1, ]𝑚1, 𝜋𝑚1)𝑝

𝐶2(𝜇12, ]12, 𝜋12)𝑝(𝜇22, ]22, 𝜋22)𝑝...(𝜇𝑚2, ]𝑚2, 𝜋𝑚2)𝑝

⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅...⋅ ⋅ ⋅

𝐶𝑛(𝜇1𝑛, ]1𝑛, 𝜋1𝑛)𝑝(𝜇2𝑛, ]2𝑛, 𝜋2𝑛)𝑝...(𝜇𝑚𝑛, ]𝑚𝑛, 𝜋𝑚𝑛)𝑝

]]]]]]]]
(21)

Step 2 (determination of the weights of criteria). In this step,
the crux to the problem is that weights to criteria have to
be identified. The weights or priorities can be obtained by
different ways. Suppose that the criteria information weights
are unknown and therefore, the weights 𝑤𝑗, 𝑗 = 1, 2, 3, . . . , 𝑛
of criteria for Pythagorean fuzzy entropy measures can be
obtained by using 𝑒1𝐻𝐶, 𝑒𝐸, and 𝑒min/max, respectively. Suppose
the weights of criteria 𝐶𝑗, 𝑗 = 1, 2, . . . , 𝑛 are 𝑤𝑗, 𝑗 =1, 2, 3, . . . , 𝑛 with 0 ≤ 𝑤𝑗 ≤ 1 and ∑𝑛𝑗=1𝑤𝑗 = 1. Since
weights of criteria are completely unknown, we propose
a new entropy weighting method based on the proposed
Pythagorean fuzzy entropy measures as follows:

𝑤𝑗 = 𝐸𝑗∑𝑛𝑗=1 𝐸𝑗 (22)

where the weights of the criteria 𝐶𝑗 is calculated with 𝐸𝑗 =(1/𝑚)∑𝑚𝑖=1 𝑏̃𝑖𝑗.
Step 3 (Pythagorean fuzzy positive-ideal solution (PFPIS)
and Pythagorean fuzzy negative-ideal solution (PFNIS)).
In general, it is important to determine the positive-ideal
solution (PIS) and negative-ideal solution (NIS) in a TOPSIS
method. Since the evaluation criteria can be categorized into
two categories, benefit and cost criteria in TOPSIS, let𝑀1 and𝑀2 be the sets of benefit criteria and cost criteria in criteria𝐶𝑗, respectively. According to Pythagorean fuzzy sets and the
principle of a TOPSISmethod, we define a Pythagorean fuzzy
PIS (PFPIS) as follows:

𝐴+ = {⟨𝐶𝑗, (𝜇+𝑗 , ]+𝑗 , 𝜋+𝑗 )⟩} ,
𝑤ℎ𝑒𝑟𝑒 (𝜇+𝑗 , ]+𝑗 , 𝜋+𝑗 ) = (1, 0, 0) ,

(𝜇−𝑗 , ]−𝑗 , 𝜋−𝑗 ) = (0, 1, 0) ,
𝑗 ∈ 𝑀1

(23)

Similarly, a Pythagorean fuzzy NIS (PFNIS) is defined as

𝐴− = {⟨𝐶𝑗, (𝜇−𝑗 , ]−𝑗 , 𝜋−𝑗 )⟩} ,

𝑤ℎ𝑒𝑟𝑒 (𝜇−𝑗 , ]−𝑗 , 𝜋−𝑗 ) = (0, 1, 0) ,
(𝜇+𝑗 , ]+𝑗 , 𝜋+𝑗 ) = (1, 0, 0) ,

𝑗 ∈ 𝑀2
(24)

Step 4 (calculation of distance measures from PFPIS and
PFNIS). In this step, we need to use a distance between two
PFSs. Following the similar idea from the previously defined
PNE distance 𝜁𝐸 between two PFSs, we define a Pythagorean
weighted Euclidean (PWE) distance for any two PFSs 𝑃̃, 𝑄 ∈𝑃𝐹𝑆(𝑋) as
𝜁𝑤𝐸 (𝑃̃, 𝑄) = [12

𝑛∑
𝑖=1

𝑤𝑖 ((𝜇2𝑃̃ (𝑥𝑖) − 𝜇2
𝑄̃
(𝑥𝑖))2

+ (]2
𝑃̃
(𝑥𝑖) − ]2

𝑄̃
(𝑥𝑖))2 + (𝜋2

𝑃̃
(𝑥𝑖) − 𝜋2

𝑄̃
(𝑥𝑖))2)]1/2

(25)

We next use the PWE distance 𝜁𝑤𝐸 to calculate the distances𝐷+(𝐴 𝑖) and 𝐷−(𝐴 𝑖) of each alternative 𝐴 𝑖 from PFPIS and
PFNIS, respectively, as follows:

𝐷+ (𝐴 𝑖) = 𝑑𝐸 (A𝑖,A+)
= √ 12

𝑛∑
𝑗=1

𝑤𝑗 [(1 − 𝜇2𝑖𝑗)2 + (]2𝑖𝑗)2 + (1 − 𝜇2𝑖𝑗 − ]2𝑖𝑗)2]
𝐷− (𝐴 𝑖) = 𝑑𝐸 (A𝑖,A−)

= √ 12
𝑛∑
𝑗=1

𝑤𝑗 [(𝜇2𝑖𝑗)2 + (1 − ]2𝑖𝑗)2 + (1 − 𝜇2𝑖𝑗 − ]2𝑖𝑗)2]

(26)

Step 5 (calculation of relative closeness degree and ranking
of alternatives). The relative closeness degree 𝑁̃(𝐴 𝑖) of each
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Table 5: Criteria to evaluate an audit company.

Criteria Description of criteria

Required experience and capability to
make independent decision (𝐶1)

Certification and required knowledge on accounting business and taxation law,
understanding of management system, auditor should not be trembled or influence
by anyone, actions, decision and report should be based on careful analysis.

The capability to comprehend different
business needs (𝐶2) Ability to work with different companies setups, analytical ability, planning and

strategy.

Effective communication skills (𝐶3) Mastered excellent communication skills, well versed in compelling report,
convincing skills to present their reports, should be patient enough to elaborate
points to the entire satisfaction of the auditee.

Table 6: Pythagorean fuzzy decision matrices.

Alternatives Criteria Evalution∗𝐶1 𝐶2 𝐶3𝐴1 (0.5500, 0.4130, 0.7259) (0.6030, 0.51400, 0.6101) (0.5000, 0.1000, 0.8602)𝐴2 (0.4000, 0.2000, 0.8944) (0.4000, 0.2000, 0.8944) (0.4500, 0.5050, 0.7365)𝐴3 (0.5000, 0.1000, 0.8602) (0.6030, 0.51400, 0.6101) (0.5500, 0.4130, 0.7259)
Table 7: Weight of criteria.

𝑤1 𝑤2 𝑤3𝐸𝑋𝑢𝑒 0.3333 0.3333 0.3333𝑒1𝐻𝐶 0.2912 0.3646 0.3442𝑒min/max 0.2209 0.4640 0.3151

alternative 𝐴 𝑖 with respect to PFPIS and PFNIS is obtained
by using the following expression:

𝑁̃ (𝐴 𝑖) = 𝐷− (𝐴 𝑖)𝐷− (𝐴 𝑖) + 𝐷+ (𝐴 𝑖) (27)

Finally, the alternatives are ordered according to the
relative closeness degrees. The larger value of the relative
closeness degrees reflects that an alternative is closer to
PFPIS and farther from PFNIS, simultaneously. Therefore,
the ranking order of all alternatives can be determined
according to ascending order of the relative closeness degrees.
The most preferred alternative is the one with the highest
relative closeness degree.

In the next example, we present a comparison between the
proposed entropies 𝑒1𝐻𝐶 and 𝑒min/max with the entropy 𝐸𝑋𝑢𝑒
by Xue at el. [20] based on PFSs for multicriteria decision
making problem. The prime objective of decision makers is
to select a best alternative from a set of available alternatives
according to some criteria in multicriteria decision making
process. Corruption is the misuse and mishandle of public
power and resources for private and individual interest and
benefits, usually in the form of bribery and favouritism. In
addition, corruption twists andmanipulates the basis of com-
petitions by misallocating resources and slowing economic
activity (Wikipedia).

Example 4. In this example, a real world problemon selection
of well renowned national or international audit company is
taken into account to demonstrate the comparison analysis

among the proposed probabilistic entropy 𝑒1𝐻𝐶 and non-
probabilistic entropy 𝑒min/max with the entropy 𝐸𝑋𝑢𝑒 [20].
To ensure the transparency and accountability of state run
intuitions, the ministry of finance of a developing country
offers quotations to select a renowned audit company to
get unbiased and fair audit report to keep on tract the
economic development of a state. The quotations which are
gone through scrutiny process and found successful by a
committee are comprised of experts. The quotations which
are found successfully by the committee are called eligible
while the rest are rejected. A commission of experts is
invited to rank the audit companies {𝐴1, 𝐴2, 𝐴3} and to
select the best one on the basis of set criteria {𝐶1, 𝐶2, 𝐶3}.
The descriptions about criteria are given in Table 5, and
Pythagorean fuzzy decision matrices are presented in Table 6.
The obtained weights of criteria from the entropies 𝑒1𝐻𝐶,𝑒min/max, and 𝐸𝑋𝑢𝑒 are shown in Table 7. From Table 7, it
is seen that the weights of criteria obtained by the entropy𝐸𝑋𝑢𝑒 are always the same despite having different alternatives.
However, the proposed entropies 𝑒1𝐻𝐶 and 𝑒min/max correctly
differentiate the weights of criteria for each alternative 𝐴 𝑖.
The weights of criteria in Table 7 are also used to calculate
the distances 𝐷+(𝐴 𝑖) and𝐷−(𝐴 𝑖) of each alternative 𝐴 𝑖 from
PFPIS and PFNIS, respectively, where the results are shown
in Table 8. Furthermore, the relative closeness degrees of
each alternative to ideal solution are shown in Table 9. It can
be seen that the relative closeness degrees obtained by the
proposed entropies 𝑒1𝐻𝐶 and 𝑒min/max are different for different
alternatives𝐴 𝑖 , but the relative closeness degrees obtained
by the entropy 𝐸𝑋𝑢𝑒 [20] could not differentiate different
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Table 8: Distance for each alternative.

𝐸𝑋𝑢𝑒 𝐷− (𝐴 𝑖) 𝐷+ (𝐴 𝑖) 𝑒1𝐻𝐶 𝐷− (𝐴 𝑖) 𝐷+ (𝐴 𝑖) 𝑒min/max 𝐷− (𝐴 𝑖) 𝐷+ (𝐴 𝑖)𝐴1 0.7593 0.6476 𝐴1 0.7587 0.6468 𝐴1 0.7455 0.6363𝐴2 0.8230 0.7842 𝐴2 0.8208 0.7830 𝐴2 0.8269 0.7862𝐴3 0.7593 0.6476 𝐴3 0.7493 0.6403 𝐴3 0.7284 0.6244

Table 9: Degree of relative closeness.

𝐸𝑋𝑢𝑒 𝑁(𝐴 𝑖) 𝑒1𝐻𝐶 𝑁(𝐴 𝑖) 𝑒min/max 𝑁(𝐴 𝑖)𝐴1 0.5397 𝐴1 0.5398 𝐴1 0.5395𝐴2 0.5121 𝐴2 0.5118 𝐴2 0.5126𝐴3 0.5397 𝐴3 0.5392 𝐴3 0.5384

Table 10: Ranking of alternatives by different methods.

Method Ranking Best alternative𝐸𝑋𝑢𝑒 𝐴2 ≺ 𝐴1 = 𝐴3 None𝑒1𝐻𝐶 𝐴2 ≺ 𝐴3 ≺ 𝐴1 𝐴1𝑒min/max 𝐴2 ≺ 𝐴3 ≺ 𝐴1 𝐴1
alternatives so that it gives bias ranking of alternatives. These
ranking results of different alternatives by the entropies 𝑒1𝐻𝐶,𝑒min/max and 𝐸𝑋𝑢𝑒 are shown in Table 10. As can be seen, the
ranking of alternatives by the proposed entropies 𝑒1𝐻𝐶 and𝑒min/max is well; however, the entropy𝐸𝑋𝑢𝑒 [20] could not rank
the alternative 𝐴1 and 𝐴3. It is found that there is no conflict
in ranking alternatives by using the proposed Pythagorean
fuzzy TOPSIS method based on the proposed entropies 𝑒1𝐻𝐶
and 𝑒min/max. Totally, the comparative analysis shows that the
best alternative is 𝐴1.

We next apply the constructed Pythagorean fuzzy TOP-
SIS in multicriterion decision making for China-Pakistan
Economic Corridor projects.

Example 5. A case study in ranking China-Pakistan Eco-
nomic Corridor projects on priorities basis in the light of
related experts’ opinions is used in order to demonstrate the
efficiency of the proposed Pythagorean fuzzy TOPSIS being
applied to multicriterion decision making. China-Pakistan
Economic Corridor (CPEC) is a collection of infrastructure
projects that are currently under construction throughout
in Pakistan. Originally valued at $46 billion, the value of
CPEC projects is now worth $62 billion. CPEC is intended
to rapidly modernize Pakistani infrastructure and strengthen
its economy by the construction of modern transportation
networks, numerous energy projects, and special economic
zones. CPEC became partly operational when Chinese cargo
was transported overland to Gwadar Port for onward mar-
itime shipment to Africa and West Asia (see Wikipedia). It
is not only to benefit China and Pakistan, but also to have
positive impact on other countries and regions. Under CPEC
projects, it will have more frequent and free exchanges of
growth, people to people contacts, and integrated region of
shared destiny by enhancing understanding through aca-
demic, cultural, regional knowledge, and activity of higher

volume of flows in trades and businesses. The enhancement
of geographical linkages and cooperation by awin-winmodel
will result in improving the life standard of people, road,
rail, and air transportation systems and also sustainable and
perpetual development in China and Pakistan.

Now suppose the concern and relevant experts are
allowed to rank the CPEC projects according to needs of both
countries on priorities basis. Assume that initially there are
fivemega projectswhich areGwadar Port (A1 ), Infrastructure
(A2), Economic Zones (A3), Transportation and Energy
(A4), and Social Sector Development (A5), according to
the following four criteria: time frame and infrastructural
improvement (C1), maintenance and sustainability (C2),
socioeconomic development (C3), and eco-friendly (C4). A
detailed description of such criteria is displayed in Table 11.
Consider a decision organization with the five concerns,
where relevant experts are authorized to rank the satisfactory
degree of an alternative with respect to the given criterion,
which is represented by a Pythagorean fuzzy value (PFV).The
evaluation values of the five alternatives 𝐴 𝑖, 𝑖 = 1, 2, . . . , 5
with Pythagorean fuzzy decision matrix are given in Table 12.

We next use entropymeasures 𝑒1𝐻𝐶, 𝑒𝐸, and 𝑒min/max based
on better performance in numerical analysis to calculate the
criteria weights 𝑤𝑗 using (22). These results are shown in
Table 13. From Table 13, we can see that the criteria weights
and ranking of weights obtained by each entropy measure are
different. We find the distances𝐷+ and𝐷− of each alternative
from PFPIS and PFNIS using (23) and (24). The results are
shown in Table 14. We also calculate the relative closeness
degrees 𝑁̃ of alternatives using (27). The results are shown
in Table 15. From Table 15, it can be clearly seen that, under
different entropy measures, the relative closeness degrees
of alternatives obtained are different, but the gap between
these values are considerably small. Thus, the ranking of
alternatives is almost the same.The final ranking results from
different entropies are shown in Table 16. From Table 16, it
can be identified that there is no conflict in selecting the
best alternative among alternatives by using the proposed
Pythagorean fuzzy TOPSIS method based on the entropies𝑒1𝐻𝐶, 𝑒𝐸, and 𝑒min/max.There is only one conflict to be found in
deciding the preference ordering of alternatives 𝐴4 and𝐴5 in𝑒𝐸. Hence, the results of ranking of alternatives according to



12 Complexity

Table 11: Criteria to assess CPEC projects.

Criterion Description of criterion

Time frame and infrastructural
improvement 𝐶1

Roadmap to ensure timely completion of project without any interruption and
hurdle and play a vital role in making infrastructural improvement and
development

Maintenance and sustainability 𝐶2 Themaintenance, repair, reliability and sustainability of the project

Socioeconomic development 𝐶3 Bring visible development and improvement in GDP, economy stability and
prosperity, life expectancy, education, health, employment, personal dignity,
personal safety and freedom

Eco − friendly 𝐶4 Not harmful to the environment, contributes to green living, practices that help
conserve natural resources and prevent contribution to air, water and land pollution.

Table 12: Pythagorean fuzzy decision matrix.

Alternatives Criteria Evaluation𝐶1 𝐶2 𝐶3 𝐶4𝐴1 (0.60, 0.50, 0.6245) (0.65, 0.45, 0.6124) (0.35, 0.70, 0.6225) (0.50, 0.70, 0.5099)𝐴2 (0.80, 0.40, 0.4472) (0.80, 0.40, 0.4472) (0.70, 0.30, 0.6481) (0.60, 0.30, 0.7416)𝐴3 (0.60, 0.50, 0.6245) (0.70, 0.50, 0.5099) (0.70, 0.35, 0.6225) (0.40, 0.20, 0.8944)𝐴4 (0.90, 0.30, 0.3162) (0.80, 0.35, 0.4873) (0.50, 0.30, 0.8124) (0.20, 0.50, 0.8426)𝐴5 (0.80, 0.40, 0.4472) (0.50, 0.30, 0.8124) (0.70, 0.50, 0.5099) (0.60, 0.50, 0.6245)
Table 13: Entropies and weights of the criteria.

𝑤1 𝑤2 𝑤3 𝑤4𝑒1𝐻𝐶 0.2487 0.2563 0.2585 0.2366𝑒𝐸 0.2063 0.2411 0.2539 0.2987𝑒min/max 0.3048 0.2524 0.2141 0.2288

Table 14: Distance for each alternative.

𝑒1𝐻𝐶 𝐷− (𝐴 𝑖) 𝐷+ (𝐴 𝑖) 𝑒𝐸 𝐷− (𝐴 𝑖) 𝐷+ (𝐴 𝑖) 𝑒min/max 𝐷− (𝐴 𝑖) 𝐷+ (𝐴 𝑖)𝐴1 0.5732 0.6297 𝐴1 0.5608 0.6354 𝐴1 0.5825 0.6196𝐴2 0.7757 0.4381 𝐴2 0.7776 0.4557 𝐴2 0.7741 0.4294𝐴3 0.7445 0.5848 𝐴3 0.7592 0.6055 𝐴3 0.7377 0.5865𝐴4 0.8012 0.5819 𝐴4 0.7944 0.6163 𝐴4 0.8049 0.5582𝐴5 0.7252 0.5268 𝐴5 0.7180 0.5331 𝐴5 0.7302 0.5195

Table 15: Degree of relative closeness for each alternative.

𝑒1𝐻𝐶 𝑁(𝐴 𝑖) 𝑒𝐸 𝑁(𝐴 𝑖) 𝑒min/max 𝑁(𝐴 𝑖)𝐴1 0.4765 𝐴1 0.4688 𝐴1 0.4846𝐴2 0.6391 𝐴2 0.6305 𝐴2 0.6432𝐴3 0.5601 𝐴3 0.5563 𝐴3 0.5571𝐴4 0.5793 𝐴4 0.5631 𝐴4 0.5905𝐴5 0.5792 𝐴5 0.5739 𝐴5 0.5843

the closeness degrees are made in an increasing order.There-
fore, our analysis shows that the most feasible alternative is𝐴2 which is unanimously chosen by all proposed entropy
measures.

6. Conclusions

In this paper, we have proposed new fuzzy entropy measures
for PFSs based on probabilistic-type, distance, Pythagorean
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Table 16: Ranking of alternative for different entropies.

Method Ranking Best alternative𝑒1𝐻𝐶 𝐴1 ≺ 𝐴3 ≺ 𝐴5 ≺ 𝐴4 ≺ 𝐴2 𝐴2𝑒𝐸 𝐴1 ≺ 𝐴3 ≺ 𝐴4 ≺ 𝐴5 ≺ 𝐴2 𝐴2𝑒min/max 𝐴1 ≺ 𝐴3 ≺ 𝐴5 ≺ 𝐴4 ≺ 𝐴2 𝐴2
index, and min–max operator. We have also extended non-
probabilistic entropy to𝜎-entropy for PFSs.The entropymea-
sures are considered especially for PFSs on finite universes
of discourses. As these are not only used in purposes of
computing environment, but also used in more general cases
for large universal sets. Structured linguistic variables are
used to analyze and compare behaviors and performance
of the proposed entropies for PFSs in different Pythagorean
fuzzy environments. We have examined and analyzed these
comparison results obtained from these entropy measures
and then selected appropriate entropies which can be useful
and also be helpful to decide fuzziness of PFSs more clearly
and efficiently. We have utilized our proposed methods to
perform comparison analysis with the most recently devel-
oped entropy measure for PFSs. In this connection, we have
demonstrated a simple example and a problem involving
MCDM to show the advantages of our suggested methods.
Finally, the proposed entropy measures of PFSs are applied
in an application to multicriterion decision making for
ranking China-Pakistan Economic Corridor projects. Based
on obtained results, we conclude that the proposed entropy
measures for PFSs are reasonable, intuitive, and well suited
in handling different kinds of problems, involving linguistic
variables and multicriterion decision making in Pythagorean
fuzzy environment.
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