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This paper concerns the problem on the fuzzy synchronization for a kind of disturbed memristive chaotic system. First, based on
fuzzy theory, the fuzzy model for a memristive chaotic system is presented; next, based on H-infinity technique, a multidimensional
fuzzy controller and a single-dimensional fuzzy controller are designed to realize the synchronization of master-slave chaotic
systems with disturbances. Finally, some typical examples are included to illuminate the correctness of the given control method.

1. Introduction

Since May 2008, by using nanotechnology physical tech-
niques, HP laboratory research team successfully obtain the
resistance with memory characteristic [1], which confirmed
the concept of memristor proposed by Chua [2, 3]. As the
fourth basic passive device, memristor establishes the rela-
tionship between the magnetic flux and the charge. It has
been reported that memristor can be applied in the field of
computer science [4], biological engineering [5], and elec-
tronic engineering [6]. Especially, memristor can be used to
construct the chaotic circuits.

For chaotic circuits, the nonlinear device is the key com-
ponent. In 2008, Itoh and Chua built the first memristor-
based chaotic system by replacing the diode with a piecewise
linear magnetron Chua’s memristor [7]. Compared with the
conventional nonlinear-device-based chaotic circuits, the
memristor-based circuit has two main characteristics: first,
the memristor-based circuit can produce the complicated
dynamical behavior, which is different from the general
chaotic dynamical behavior; secondly, the memristor-based
circuit is more suitable to generate the high-frequency
chaotic signal and have potential applications in chaotic
secure communication, signal generator, and image process
[8–12]. Hence, up to now, a number of memristor-based

chaotic circuit with different structures are proposed. For
example, the chaotic circuit with one memristor is studied
in [13, 14], the chaotic circuit with two memristor is con-
cerned in [15, 16], the integer-order chaotic memristor cir-
cuit is investigated in [17, 18], and the fractional chaotic
memristor circuit are researched in [19, 20].

Chaos synchronization is a common phenomenon and
can be found in biological systems, chemical reactions, power
converters, secure communication system, and so on. Fuzzy
technique is a powerful tool [21–27] and especially suitable
for the chaos synchronization in the case that disturbances
exist. For general fuzzy control, the control input is multidi-
mensional and requires all system state information. How-
ever, in practical engineering, it is not easy to get all system
state information. The multidimensional control can not
only increase the control cost but also result in disturbance
input problem. Hence, it is meaningful to design a single-
dimensional fuzzy controller which is just based on one sys-
tem state variable. In addition, disturbance inputs exist in
actual system widely, which should be considered in syn-
chronization control. All these motivate our research.

The paper is schemed as follows: the fuzzy model for a
memristor-based chaotic circuit is constructed and the
preliminary knowledge will be given in Section 2; a multi-
dimensional fuzzy controller and a single-dimensional
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fuzzy controller will be designed to achieve the chaos syn-
chronization of the master-slave systems in Section 3; the
typical simulation example will be included to validate
the correctness of the scheme in Section 4; and finally,
the paper will be concluded in Section 5.

Notations used in this paper are fairly standard. diag
… represents a block diagonal matrix, Rn is the n-dimen-

sional Euclidean space, Rn×m denotes the set of n ×m real
matrix, the superscript T stands for matrix transposition,
⋅ 2 refers to the Euclidean vector norm or the induced

matrix 2-norm, and λmin ⋅ represents the maximum
eigenvalue.

2. System Description and Preliminaries

First, consider a memristor-based circuit as Figure 1.
One can get the equivalent dynamic system as

C1
dVC1

t

dt
= iL1 t −W φ t VC1

t ,

L1
diL1 t

dt
=VC2

t −VC1
t + R1iL1 t ,

C2
dVC2

t

dt
= 1
R

VC3
t −VC2

t − iL1 t ,

C3
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= 1
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VC2
t −VC3
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diL2 t

dt
=VC3

t − R2iL2 ,

dφ t
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=VC1
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1

Define the state variable as

x1 t =VC1
t ,

x2 t = RiL1 t ,
x3 t =VC2

t ,
x4 t =VC3

t ,
x5 t = RiL2 t ,
x6 t = φ t

2

One can obtain the equivalent dynamical equation as

x1 t = r1 x2 t −W x6 t x1 t ,
x2 t = r2 x3 t − x1 t + r7x2 t ,
x3 t = r3 x4 t − x3 t − x2 t ,
x4 t = r4 x3 t − x4 t − x5 t ,
x5 t = r5 x4 t − r6x5 t ,
x6 t = x1 t ,

3

with

W x6 t = RW φ t =
a, x6 t ≤ 1,
b, x6 t > 1

, 4

where xi, i = 1, 2,… , 7 is the state variable of the system and
ri > 0, i = 1, 2,… , 7 is the system parameter. The memristive
system will possess the chaotic dynamical behavior when
the system parameters are r1 = 5, r2 = 2, r3 = 2, r4 = 4, r5 =
3, r6 = 0 1, r7 = 0 8, a = 0 1, and b = 6.

Next, consider the fuzzy modeling of the memristive
chaotic system.

For x1 t = r1 x2 t −W x6 x1 t

Rule 1. If x1 t is H11, then

x1 t = r1 x2 t − ax1 t , 5

where H11 means x6 t ≤ 1, and define

M11 =
1, x6 t ≤ 1,
0, x6 t > 1

6

Rule 2. If x1 t is H12, then

x1 t = r1 x2 t − bx1 t , 7

where H12 means x6 t > 1, and define

M12 =
0, x6 t ≤ 1,
1, x6 t > 1

8

Hence, the fuzzy model of the memristive chaotic system
is defined as

x1 t

x2 t

x3 t

x4 t

x5 t

x6 t

=

M11 0 0 0 0 0

0 M11 0 0 0 0

0 0 M11 0 0 0

0 0 0 M11 0 0

0 0 0 0 M11 0

0 0 0 0 0 M11

L2

R2

C2C3 C1

−R1

MR

L1R

Figure 1: The memristor-based chaotic circuit.
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r1 x2 t − ax1 t

r2 x3 t − x1 t + r7x2 t

r3 x4 t − x3 t − x2 t

r4 x3 t − x4 t − x5 t

r5 x4 t − r6x5 t

x1 t

+

M12 0 0 0 0 0
0 M12 0 0 0 0
0 0 M12 0 0 0
0 0 0 M12 0 0
0 0 0 0 M12 0
0 0 0 0 0 M12

r1 x2 t − bx1 t

r2 x3 t − x1 t + r7x2 t

r3 x4 t − x3 t − x2 t

r4 x3 t − x4 t − x5 t

r5 x4 t − r6x5 t

x1 t

9

Above model can be rewritten as

x t = 〠
2

i=1
ΘiAix t , 10

where

Θi = diag M1i,M1i,M1i,M1i,M1i,M1i ,

A1 =

−ar1 r1 0 0 0 0
−r2 r2r7 r2 0 0 0
0 −r3 −r3 r3 0 0
0 0 r4 −r4 −r4 0
0 0 0 r5 −r5r6 0
1 0 0 0 0 0

,

A2 =

−br1 r1 0 0 0 0
−r2 r2r7 r2 0 0 0
0 −r3 −r3 r3 0 0
0 0 r4 −r4 −r4 0
0 0 0 r5 −r5r6 0
1 0 0 0 0 0

11

System (3) is supposed as the master system, and the slave
system is constructed as

y1 t = r1 y2 t −W y6 t y1 t + u1 t +w1 t ,
y2 t = r2 y3 t − y1 t + r7y2 t + u2 t +w2 t ,
y3 t = r3 y3 t − y4 t − y2 t + u3 t +w3 t ,
y3 t = r4 y4 t − y3 t − y5 t + u4 t +w4 t ,
y5 t = r5 y4 t − r6y5 t + u5 t +w5 t ,
y6 t = y1 t + u6 t +w6 t ,

12

where y t = y1 t , y2 t , y3 t , y4 t , y5 t , y6 t T is the
state variable vector of the slave system and w t =
w1 t ,w2 t ,w3 t ,w4 t ,w5 t ,w6 t T is the disturbance
input of the slave system.

Hence, the fuzzy model of the slave system can be repre-
sented as

y t = 〠
2

i=1
ΘiAiy t +w t + u t , 13

where u t = u1 t , u2 t , u3 t , u4 t , u5 t , u6 t T is the
synchronization fuzzy controller.

Define the synchronization error vector of the master-
slave systems as

E t = y t − x t , 14

where E t = e1 t , e2 t , e3 t , e4 t , e5 t , e6 t T .
One can get the error dynamic system as

E t = y t − x t = 〠
2

i=1
ΘiAiy t − 〠

2

i=1
ΘiAix t

+w t + u t = 〠
2

i=1
ΘiAiE t +w t + u t

15

In this paper, the following lemmas are concerned:

Lemma 1 (see [28]). If f t ∈ L∞ ∩ L2 and f t ∈ L∞, one
can get

lim
t→+∞

f t = 0 16

Definition 1. For nonzero w t ∈ L2 t0,∞ and under the
assumption of zero initial condition, if there exists a posi-
tive scalar γ such that

E t 2 ≤ γ w t 2 17

Then, the slave system will synchronize to the master sys-
tem with H∞ norm bound γ.
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3. Main Results

Based on fuzzy theory and Lyapunov theory, a controller is
presented as follows.

Theorem 1. If there exist scalar Kj
i > 0, i = 1, 2, j = 1,… , 6,

design the multidimensional fuzzy controller with following
control regulation

u t = −〠
2

i=1
ΘikiE t , 18

with

k1
1 = K1

1 − r1a + 2,

k2
1 = K2

1 + r1 − r2
2

4 + r2r7 + 1,

k3
1 = K3

1 + r2 − r3
2

4 − r3 + 1,

k4
1 = K4

1 + −r3 − r4
2

4 − r4 + 1,

k5
1 = K5

1 + r5 − r4
2

4 − r5r6,

k6
1 = K6

1 + 1
4 ,

k1
2 = K1

2 − r1b + 2,

k2
2 = K2

2 + r1 − r2
2

4 + r2r7 + 1,

k3
2 = K3

2 + r2 − r3
2

4 − r3 + 1,

k4
2 = K4

2 + −r3 − r4
2

4 − r4 + 1,

k5
2 = K5

2 + r5 − r4
2

4 − r5r6,

k6
2 = K6

2 + 1
4 ,

19

I − 〠
2

i=1
ΘiKi

I
2

∗ −γ2I

< 0, 20

ki = diag k1
i, k2i, k3i, k4i, k5i, k6i , 21

Ki = diag K1
i, K2

i, K3
i, K4

i, K5
i, K6

i 22

Then, the slave system (12) can synchronize to the master sys-
tem (3) with H∞ norm bound γ.

Proof 1. With (18), the error dynamic system can be trans-
formed as

e1 t

e2 t

e3 t

e4 t

e5 t

e6 t

=

M11 0 0 0 0 0

0 M11 0 0 0 0

0 0 M11 0 0 0

0 0 0 M11 0 0

0 0 0 0 M11 0

0 0 0 0 0 M11
r1 e2 t − ae1 t − k1

1e1 t +w1 t

r2 e3 t − e1 t + r7e2 t − k2
1e2 t +w2 t

r3 e4 t − e3 t − e2 t − k3
1e3 t +w3 t

r4 e3 t − e4 t − e5 t − k4
1e4 t +w4 t

r5 e4 t − r6e5 t − k5
1e5 t +w5 t

e1 t − k6
1e6 t +w6 t

+

M12 0 0 0 0 0

0 M12 0 0 0 0

0 0 M12 0 0 0

0 0 0 M12 0 0

0 0 0 0 M12 0

0 0 0 0 0 M12
r1 e2 t − be1 t − k1

2e1 t +w1 t

r2 e3 t − e1 t + r7e2 t − k2
2e2 t +w2 t

r3 e4 t − e3 t − e2 t − k3
2e3 t +w3 t

r4 e3 t − e4 t − e5 t − k4
2e4 t +w4 t

r5 e4 t − r6e5 t − k5
2e5 t +w5 t

e1 t − k6
2e6 t +w6 t

23

Choose the Lyapunov function candidate as

V t = 1
2 e1

2 t + e2
2 t + e3

2 t

+ e4
2 t + e5

2 t + e6
2 t

24

One can get the time derivative of V t as

V t = e1 t M11 r1 e2 t − ae1 t − k1
1e1 t +w1 t

+M12 r1 e2 t − be1 t − k1
2e1 t +w1 t
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+ e2 t M11r2 e3 t − e1 t + r7e2 t − k2
1e2 t

+w2 t +M12 r2 e3 t − e1 t + r7e2 t

− k2
2e2 t +w2 t + e3 t M11 r3 e4 t

− e3 t − e2 t − k3
1e3 t +w3 t

+M12 r3 e4 t − e3 t − e2 t − k3
2e3 t

+w3 t + e4 t M11 r4 e3 t − e4 t

− e5 t − k4
1e4 t +w4 t +M12 r4 e3 t

− e4 t − e5 t − k4
2e4 t +w4 t

+ e5 t M11 r5 e4 t − r6e5 t − k5
1e5 t +w5 t

+M12 r5 e4 t − r6e5 t − k5
2e5 t +w5 t

+ e6 t M11 e1 t − k6
1e6 t +w6 t

+M12 e1 t − k6
2e6 t +w6 t

= −r1 M11a +M12b e1
2 t + r1 − r2 e1 t e2 t

+ r2r7e2
2 t + r2 − r3 e2 t e3 t − r3e3

2 t

+ r3 + r4 e3 t e4 t − r4e4
2 t

+ r5 − r4 e4 t e5 t − r5r6e5
2 t + e1 t e6 t

− 〠
6

j=1
M11kj

1ej
2 t +M12kj

2ej
2 t +wT t E t

≤ − r1 M11a +M12b − 2 +M11k1
1 +M12k1

2 e1
2 t

− e1 t − r1 − r2 e2
t
2

2
− −

r1 − r2
2

4

− 1 − r2r7 +M11k2
1 +M12k2

2 e2
2 t

− e2 t − r2 − r3 e3
t
2

2
− −

r2 − r3
2

4 − 1 + r3

+M11k3
1 +M12k3

2 e3
2 t − e3 t − r3 + r4 e4

t
2

2

− −
r3 + r4

2

4 − 1 + r4 +M11k4
1 +M12k4

2 e4
2 t

− e4 t − r5 − r4 e5
t
2

2
− −

r5 − r4
2

4 + r5r6

+M11k5
1 +M12k5

2 e5
2 t − e1 t − e6

t
2

2

− −
1
4 +M11k6

1 +M12k6
2 e6

2 t +wT t E t

25

With (19), one can conclude that

V t ≤ −ET t 〠
2

i=1
ΘiKiE t +wT t E t 26

Consider the H∞ performance index as

J =
tT

t0

ET t E t − γ2wT t w t dt

=
tT

t0

ET t E t − γ2wT t w t +V t dt

+V t0 − V tT

27

For V t0 = 0 and V tT ≥ 0,

J ≤
tT

t0

ET t E t − γ2wT t w t +V t dt

=
tT

t0

ηT t Ωη t dt,
28

where

η t = ET t ,wT t
T ,

Ω =
I − 〠

2

i=1
ΘiKi

I
2

∗ −γ2I

29

Consider (20), it can be concluded that J ≤ 0. Based on
Definition 1, slave system (12) can synchronize to master sys-
tem (3) with H∞ norm bound γ.

Next, consider the design for the single-dimensional
fuzzy synchronization controller.

Construct the slave system as

y1 t = r1 y2 t −W y6 t y1 t ,
y2 t = r2 y3 t − y1 t + r7y2 t +w t + u t ,
y3 t = r3 y4 t − y3 t − y2 t ,
y3 t = r4 y3 t − y4 t − y5 t ,
y5 t = r5 y4 t − r6y5 t ,
y6 t = y1 t ,

30

where u t is the single-dimensional synchronization fuzzy
controller.

Theorem 2. If there exist scalar ki > 0, i = 1, 2, design the
single-dimensional fuzzy controller with following control
regulation

u t = −〠
2

i=1
M1ikie2 t , 31

5Complexity



where

ki = ki + r7 r2

− M11a +M12b 0 0 0

0 1 − M11k
1 +M12k

2 0 1
2r2

0 0 −r6 0

0 1
2r2

0 −γ2

≤ 0

32

Then, slave system (30) with any initial conditions can syn-
chronize to master system (3) with H∞ norm bound γ.

Proof 2. With (31), the error dynamic system can be trans-
formed as

e1 t

e2 t

e3 t

e4 t

e5 t

e6 t

=

M11 0 0 0 0 0

0 M11 0 0 0 0

0 0 M11 0 0 0

0 0 0 M11 0 0

0 0 0 0 M11 0

0 0 0 0 0 M11

r1 e2 t − ae1 t

r2 e3 t − e1 t + r7e2 t +w t − k1e2 t

r3 e4 t − e3 t − e2 t

r4 e3 t − e4 t − e5 t

r5 e4 t − r6e5 t

e1 t

+

M12 0 0 0 0 0
0 M12 0 0 0 0
0 0 M12 0 0 0
0 0 0 M12 0 0
0 0 0 0 M12 0
0 0 0 0 0 M12

r1 e2 t − be1 t

r2 e3 t − e1 t + r7e2 t +w t − k2e2 t

r3 e4 t − e3 t − e2 t

r4 e3 t − e4 t − e5 t

r5 e4 t − r6e5 t

e1 t

33

Choose the Lyapunov function candidate as

V0 t = 1
2r1

e1
2 t + 1

2r2
e2

2 t + 1
2r3

e3
2 t

+ 1
2r4

e4
2 t + 1

2r5
e5

2 t
34

One can get the time derivative of V0 t as

V0 t = 1
r1
e1 t e1 t + 1

r2
e2 t e2 t + 1

r3
e3 t e3 t

+ 1
r4
e4 t e4 t + 1

r5
e5 t e5 t

= e1 t M11 e2 t − ae1 t +M12 e2 t − be1 t

+ e2 t M11 e3 t − e1 t + r7e2 t

+M12 e3 t − e1 t + r7e2 t +w t /r2 + u t /r2
+ e3 t M11 e4 t − e3 t − e2 t

+M12 e4 t − e3 t − e2 t

+ e4 t M11 e3 t − e4 t − e5 t

+M12 e3 t − e4 t − e5 t

+ e5 t M11 e4 t − r6e5 t +M12 e4 t − r6e5 t

= e1 t M11 e2 t − ae1 t +M12 e2 t − be1 t

+ e2 t M11 e3 t − e1 t − k1e2 t

+M12 e3 t − e1 t − k2e2 t

+ e3 t M11 e4 t − e3 t − e2 t

+M12 e4 t − e3 t − e2 t

+ e4 t M11 e3 t − e4 t − e5 t

+M12 e3 t − e4 t − e5 t

+ e5 t M11 e4 t − r6e5 t

+M12 e4 t − r6e5 t + e t 2w t /r2
= − M11a +M12b e1

2 t − M11k
1 +M12k

2 e2
2 t

− e3 t − e4 t 2 − r6e5
2 t + e2 t w t /r2

35

−20
−10

0
10

20

−20
−10

0
10

20
−20

−10

0

10

20

x1x2

x 3

Figure 2: Attractor of the memristive chaotic system.

6 Complexity



With (31), one can conclude that

V0 t ≤ −ET t 〠
2

i=1
ΘiKiE t + 1

r2
w t e2 t , 36

where

K1 = diag a, k1, r6 ≥ 0,

K2 = diag b, k2, r6 ≥ 0,

E = e1 t , e2 t , e5 t T ,
Θi = diag M1i,M1i,M1i

37

Consider the H∞ performance index as

J =
tT

t0

e2
2 t − γ2wT t w t dt

=
tT

t0

e2
2 t − γ2wT t w t +V0 t dt

+V t0 − V tT

38

For V t0 = 0 and V tT ≥ 0,

J ≤
tT

t0

e2
2 t − γ2wT t w t +V0 t dt =

tT

t0

ηT t Ωη t dt,

39

where

η t = ET t ,wT t
T
,

Ω =

− M11a +M12b 0 0 0

0 1 − M11k
1 +M12k

2 0 1
2r2

0 0 −r6 0

0 1
2r2

0 −γ2

40

Consider (32), it can be concluded that J ≤ 0. Based on
Definition 1, slave system (30) can synchronize to master sys-
tem (3) with H∞ norm bound γ.

4. Example and Simulation

First, consider the dynamics of the memristive chaotic sys-
tem, and the simulation result is shown in Figure 2.

Next, we study the synchronization control of the
master-slave systems. In the simulation, the system initial
values are y 0 = 1, −1, 0 5, −1, 2, −1 T and x 0 = 0 001 ×
1, 1, 1, 1, 1, 1 T . The disturbance input is w t =wi t = 2
sin 2t sin et/ t + 1 , t ≥ 20s. Let γ = 0 4, and based on
Theorem 1, the control parameters for the multidimensional
fuzzy controller are k1 = diag 4 06, 7 41, 1 56, 8 56, 2 21,
2 81 and k2 = diag −35 43, 7 41, 1 56, 8 56, 2 21, 2 81 ;
the simulation result is shown in Figure 3. Then, based
on Theorem 2, the control parameters for the single-
dimensional fuzzy controller are k1 = 9 73 and k2 = 7 38;
the simulation result is shown in Figure 4.

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

−2

0

2

e 1
 (t

)

−2

0

2
e 2

 (t
)

−1

0

1

e 3
 (t

)

−1

0

1

e 4
 (t

)

Figure 3: Time response of synchronization error variables with multidimensional fuzzy controller.
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Remark 2. Figure 3 depicts the time response of the synchro-
nization error variables of the memristive master-slave sys-
tems with the multidimensional fuzzy controller. Figure 4
depicts the time response of the synchronization error vari-
ables of the master-slave systems with the single-dimensional
fuzzy controller. It can be seen that although there exists just
one disturbance w t for single-dimensional fuzzy control,
the disturbance has impact on all error synchronization
variables. In addition, it can be seen that both controllers
can be able to realize the synchronization of the master-
slave systems; the multidimensional fuzzy controller has
the better control performance and realizes the chaos syn-
chronization during 2.0 seconds. However, the possession
of the good control performance is at the cost of the
acquirement of all system state information. In addition,
multidimensional control may introduce more disturbance
input. The single-dimensional synchronization controller
has the general control performance but requires just one
system state information, which can decrease the control
cost and the disturbance input. Hence, two kinds of con-
trollers are useful and recommended for the different
applied cases.

Remark 3. For the nonlinear disturbed chaotic system, the
fuzzy modeling technique is adopted to realize the exact lin-
earization control, which can eliminate the constraint on the
system nonlinear term, compared with the general nonlinear
control method; in addition, H-infinity approach is intro-
duced to deal with the case that disturbances exist.

5. Conclusion

This paper focuses on the fuzzy synchronization for a new
memristive chaotic system with disturbances. Based on fuzzy

theory and Lyapunov stability theory, we have built the fuzzy
model for the memristive chaotic system. Then, by using H-
infinity technique, we have presented two kinds of fuzzy con-
trollers for the possible application in chaos synchronization
of slave-master systems. Finally, we have included some
example to demonstrate the effectiveness of the given fuzzy
controllers. In addition, the proposed results can be extended
to the memristive chaotic control system with daelay or event
trigger, which is our future work.
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