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Under investigation in this paper is a more general time-dependent-coefficient Whitham-Broer-Kaup (tdcWBK) system, which
includes some important models as special cases, such as the approximate equations for long water waves, the WBK equations
in shallow water, the Boussinesq-Burgers equations, and the variant Boussinesq equations. To construct doubly periodic wave
solutions, we extend the generalized F-expansion method for the first time to the tdcWBK system. As a result, many new Jacobi
elliptic doubly periodic solutions are obtained; the limit forms of which are the hyperbolic function solutions and trigonometric
function solutions. It is shown that the original F-expansion method cannot derive Jacobi elliptic doubly periodic solutions of
the tdcWBK system, but the novel approach of this paper is valid. To gain more insight into the doubly periodic waves
contained in the tdcWBK system, we simulate the dynamical evolutions of some obtained Jacobi elliptic doubly periodic
solutions. The simulations show that the doubly periodic waves possess time-varying amplitudes and velocities as well as
singularities in the process of propagations.

1. Introduction

Nonlinear complex phenomena in natural world, for exam-
ple, solitons first observed by Russell in 1834 [1], are often
described by nonlinear PDEs. Usually, people restore to exact
solutions of nonlinear PDEs to gain more insight into the
essence behind these nonlinear phenomena for further appli-
cations. In the past several decades, many effective methods
for exactly solving nonlinear PDEs have been presented like
those in [2–22]. In 2003, Zhou et al. proposed the so-
called F-expansion method [22] to construct different
Jacobi elliptic doubly periodic solutions of nonlinear PDEs
in a uniform way, which can be thought of as an overall gen-
eralization of the Jacobi elliptic function expansion method
[23]. The F-expansion method has been widely used to a
great many of nonlinear PDEs [24–26] and was improved
in different manners [27–30]. In 2006, Zhang and Xia [30]
generalized the F-expansion method by introducing a new

and more general ansätz. The present paper is motivated by
the desire to extend the generalized F-expansion method
[30] to the new and more general tcdWBK system [31, 32]:

ut + γ1uux + γ2vx + γ3uxx = 0,
vt + γ4uxv + γ4uvx − γ5vxx + γ6uxxx = 0,

1

where γi i = 1, 2,… , 6 are arbitrary smooth functions of t,
which represent different dispersion and dissipation forces.
Clearly, (1) includes some existing well-known important
equations as special cases; they are the approximate equa-
tions for long water waves [33]:

ut − uux − vx +
1
2 uxx = 0,

vt − uv x −
1
2 vxx = 0,

2
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the WBK equations in shallow water [34]:

ut + uux + vx + βuxx = 0,
vt + uv x + αuxxx − βvxx = 0,

3

the Boussinesq-Burgers (BB) equations [35]:

ut + 2uux −
1
2 vx = 0,

vt + 2 uv x −
1
2 uxxx = 0,

4

the variant Boussinesq equations [34]:

ut + uux + vx = 0,
vt + uv x + uxxx = 0

5

It should be pointed out that the F-expansion method
[22] cannot derive Jacobi elliptic doubly periodic solu-
tions of (1). To be specific, according to the F-expansion
method [22], we first suppose that (1) has exact solutions of
the forms:

u = a0 + 〠
n

i=1
aiF

i ξ + biF
−i ξ ,

v = A0 + 〠
m

i=1
AiF

i ξ + BiF
−i ξ ,

6

where ξ = kx + η, the integers n and m and the constant k
are to be determined, while a0 = a0 t , ai = ai t , bi = bi t ,
A0 = A0 t , Ai = Ai t , Bi = Bi t , and η = η t are all unde-
termined functions of the indicated variables; F ξ satisfies

F′2 ξ = PF4 ξ +QF2 ξ + R, 7

and hence holds

F″ ξ = 2PF3 ξ +QF ξ ,

F 3 ξ = 6PF2 ξ +Q F′ ξ ,

F 4 ξ = 24P2F5 ξ + 20PQF3 ξ + Q2 + 12PR F ξ ,… ,
8

where P, Q, and R are parameters. In [30], Jacobi elliptic
function solutions and their degenerated solutions of (7)
are listed, which depend on the values of parameters P,
Q, and R. Secondly, substituting (6) along with (7) and
(8) into (1) and then balancing the highest order partial
derivative uux and the highest order nonlinear term uxx
yield the integer 2n + 1 = n + 2 which gives n = 1. Similarly,
we determine the integer m = 2 by balancing uvx and uxxx.
Thirdly, we substitute (6) given the values of n = 1 and
m = 2 along with (7) and (8) into (1) and collect all terms

with the same order of Fj ξ F′s ξ j = 0, ±1, ±2,… , s = 0, 1
together, we have

−k b21γ1 + 2B2γ2 F′ ξ F−3 ξ

− ka0b1γ1 + kB1γ2 + b1η′ F′ ξ F−2 ξ

+ ka0a1γ1 + kA1γ2 + a1η′ F′ ξ

+ k a21γ1 + 2A2γ2 F′ ξ F ξ

+ 2k2Rb1γ3F−3 ξ + k2Qb1γ3 + b1′ F−1 ξ

+ a0′ + k2Qa1γ3 + a1′ F ξ

+ 2k2Pa1γ3F3 ξ = 0,

−3kb1 B2γ4 + 2k2Rγ6 F′ ξ F−4 ξ

− 2 kb1B1γ4 + ka0B2γ4 + B2η′ F′ ξ F−3 ξ

− kA0b1γ4 + ka0B1γ4 + ka1B2γ4 + k3Qb1γ6 + B1η′ F′

ξ F−2 ξ + kA0a1γ4 + ka0A1γ4 + kA2b1γ4

+ k3Qa1γ6 + A1η′ F′ ξ

+ 2 ka1A1γ4 + ka0A2γ4 + A2η′ F′ ξ F ξ

+ 3ka1 A2γ4 + 2k2Pγ6 F′ ξ F2 ξ

− 6k2RB2γ5F
−4 ξ − 2k2RB1γ5F

−3 ξ

− 4k2QB2γ5 − B2′ F−2 ξ − k2QB1γ5 − B1′ F−1 ξ

− 2k2RA2γ5 − 2k2PB2γ5 + A0′ − k2QA1γ5 − A1′ F ξ

− 4k2QA2γ5 − A2′ F2 ξ − 2k2PA1γ5F
3 ξ

− 6k2PA2γ5F
4 ξ = 0

9

Since PQR ≠ 0 is the necessary condition that (7) exists
Jacobi elliptic doubly periodic, without loss of generality,
we have

a0′ = a1 = b1 = A0′ = A1 = A2 = B1 = B2 = 0, 10

when setting each coefficient of Fj ξ F′s ξ of (9) to zeros.
This tells that (6) let (1) has only constant solutions but not
Jacobi elliptic doubly periodic solutions as expected.

The present paper is motivated by the desire to inves-
tigate Jacobi elliptic doubly periodic solutions of (1). The
rest of the paper is organized as follows. In Section 2, the
generalized F-expansion method [30] is extended to (1) for
constructing Jacobi elliptic doubly periodic solutions. In
Section 3, we simulate the dynamical evolutions of some
obtained Jacobi elliptic doubly periodic solutions to gain
more insight into the doubly periodic waves contained in
(1). In Section 4, we conclude this paper.
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2. Doubly Periodic Waves

To extend the generalized F-expansion method [30] to (1), in
this section, we suppose that (1) has Jacobi elliptic doubly
periodic solutions of the forms:

u = a0 + a1F ξ + b1F
−1 ξ + c1F′ ξ

+ d1F
−1 ξ F′ ξ ,

v = A0 + A1F ξ + A2F
2 ξ + B1F

−1 ξ

+ B2F
−2 ξ + C1F′ ξ + C2F ξ F′ ξ

+D1F
−1 ξ F′ ξ +D2F

−2 ξ F′ ξ

11

Substituting (11) along with (7) and (8) into (1) and col-
lecting all terms with the same order of Fj ξ F′s ξ j = 0, ±
1, ±2,… , s = 0, 1 together, we derive a set of nonlinear PDEs
for a0, a1, b1, c1, d1, A0, A1, A2, B1, B2, C1, C2,D1,D2, η, and k.
Solving this set of nonlinear PDEs, we have three cases.

Case 1.

a1 = ±
2k P γ23 + c0γ1γ6

γ1
,

b1 = ±
2k R γ23 + c0γ1γ6

γ1
,

a0 = A0 = const

A2 = −
2k2Pγ3 γ23 + c0γ1γ6

c0γ
2
1

,

B2 = −
2k2Rγ3 γ23 + c0γ1γ6

c0γ
2
1

,

C1 = ∓
2k2γ3 P γ23 + c0γ1γ6

c0γ
2
1

,

D2 = ±
2k2γ3 R γ23 + c0γ1γ6

c0γ
2
1

,

c1 = d1 = A1 = B1 = C2 =D1 = 0,

η = −ka0 γ1dt,

12

where k is an arbitrary constant; the signs “±” and “∓” in (12)
and (13) mean that all possible combinations of “+” and “−”
can be taken. If it is taken the same sign in a1 and b1, then it
must be taken “−” in γ3′ and γ6′. If it is taken the different signs
in a1 and b1, then it must be taken “+” in γ3′ and γ6′. At the
same time, it must be taken the different signs in a1 and C1
and the same sign in b1 and D2. While γi i = 1, 3, 6 in (12)
satisfy the constraints:

Case 2.

a1 = ±
2k P γ23 + c0γ1γ6

γ1
,

a0 = A0 = const
14

A2 = −
2k2Pγ3 γ23 + c0γ1γ6

c0γ
2
1

,

C1 = ∓
2k2γ3 P γ23 + c0γ1γ6

c0γ
2
1

,

15

b1 = c1 = d1 = A1 = B1 = B2 = C2 =D1 =D2 = 0,

η = −ka0 γ1dt,
16

where k is an arbitrary constant; the signs “±” and “∓” in (14)
and (15) mean that it must be taken the different signs in a1

γ4 = γ1,
γ5 = γ3,
γ2 = c0γ1,

γ3′ = c0A0γ
2
1 + k2 Q ∓ 2 P γ23 + c0γ1γ6 + γ3γ1′

γ1
,

γ6′ =
2c0γ1γ1′γ23 + c20γ

2
1γ1′γ6 − 2c0γ21γ3 c0A0γ

2
1 + k2 Q ∓ 2 P γ23 + c0γ1γ6 − 2c0γ1γ1′γ3
c20γ

3
1

13
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and C1, while γi i = 1, 3, 6 in (14), (15), and (16) satisfy
the constraints:

Case 3.

b1 = ±
2k R γ23 + c0γ1γ6

γ1
,

a0 = A0 = const
18

B2 = −
2k2Rγ3 γ23 + c0γ1γ6

c0γ
2
1

,

D2 = ∓
2k2γ3 R γ23 + c0γ1γ6

c0γ
2
1

,
19

a1 = c1 = d1 = A1 = A2 = B1 = C1 = C2 =D1 = 0,

η = −ka0 γ1dt,
20

where k is an arbitrary constant; the signs “±” and “∓” in (18)
and (19) mean that it must be taken the same sign in b1 and
D2, while γi i = 1, 3,… , 6 in (18), (19), and (20) satisfy the
same constraints as Case 2 in (17).

From Cases 1–3, we obtain three formulae of fundamen-
tal solutions of (1) as follows:

where a0, A0, and k are arbitrary constants, ξ = kx − ka0 γ1
dt, and γi i = 1, 2, 3, 6 in (21) satisfy the constraints in (13).

u = a0 ±
2k P γ23 + c0γ1γ6

γ1
F ξ ,

v = A0 −
2k2P γ23 + c0γ1γ6

c0γ
2
1

F2 ξ

∓
2k2γ3 P γ23 + c0γ1γ6

c0γ
2
1

F′ ξ ,

22

where a0, A0, and k are arbitrary constants, ξ = kx − ka0 γ1
dt, and γi i = 1, 3, 6 in (22) satisfy the constraints in (17).

u = a0 ±
2k R γ23 + c0γ1γ6

γ1
F−1 ξ ,

v = A0 −
2k2R γ23 + c0γ1γ6

c0γ
2
1

F−2 ξ

±
2k2γ3 R γ23 + c0γ1γ6

c0γ
2
1

F−2 ξ F′ ξ ,

23

γ4 = γ1,
γ5 = γ3,
γ2 = c0γ1,

γ3′ = c0A0γ
2
1 + k2Q γ23 + c0γ1γ6 + γ3γ1′

γ1
,

γ6′ =
2c0γ1γ1′γ23 + c20γ

2
1γ1′γ6 − 2c0γ21γ3 c0A0γ

2
1 + k2Q γ23 + c0γ1γ6 − 2c0γ1γ1′γ3

c20γ
3
1

17

u = a0 ±
2k P γ23 + c0γ1γ6

γ1
F ξ ±

2k R γ23 + c0γ1γ6
γ1

F−1 ξ ,

v = A0 −
2k2P γ23 + c0γ1γ6

c0γ
2
1

F2 ξ −
2k2R γ23 + c0γ1γ6

c0γ
2
1

F−2 ξ ∓
2k2γ3 P γ23 + c0γ1γ6

c0γ
2
1

F′ ξ

±
2k2γ3 R γ23 + c0γ1γ6

c0γ
2
1

F−2 ξ F′ ξ ,

21
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where a0, A0, and k are arbitrary constants, ξ = kx − ka0 γ1
dt, and γi i = 1, 2, 3, 6 in (24) and (25) satisfy the constraints
in (17).

With the help of (22), (23), (24), and (25) and (Appendi-
ces A, B, and C [30]), we obtain many exact solutions of
(1). For example, selecting P = 1, Q = − 1 +m2 , R =m2,
and F ξ = nsξ, from (21), we obtain new Jacobi elliptic
doubly periodic solutions of (1):

u = a0 ±
2k γ23 + c0γ1γ6

γ1
nsξ

± 2km γ23 + c0γ1γ6
γ1

snξ,
24

v = A0 −
2k2 γ23 + c0γ1γ6

c0γ
2
1

ns2ξ

−
2k2m2 γ23 + c0γ1γ6

c0γ
2
1

sn2ξ

± 2k2γ3 γ23 + c0γ1γ6
c0γ

2
1

csξdsξ

∓
2k2mγ3 γ23 + c0γ1γ6

c0γ
2
1

sn2ξcsξdsξ,

25

where a0, A0, and k are arbitrary constants, ξ = kx − ka0
γ1dt, and γi i = 1, 3, 6 in (24) and (25) satisfy the con-
straints γ4 = γ1, γ5 = γ3, γ2 = c0γ1, and

Selecting P = −1, Q = 2 −m2, R =m2 − 1, and F ξ = dnξ,
from (22), we obtain new Jacobi elliptic doubly periodic
solutions of (1):

u = a0 ±
2k − γ23 + c0γ1γ6

γ1
dnξ,

v = A0 +
2k2 γ23 + c0γ1γ6

c0γ
2
1

dn2 ξ

±
2k2m2γ3 − γ23 + c0γ1γ6

c0γ
2
1

snξcnξ,

27

where a0, A0, and k are arbitrary constants, ξ = kx − ka0
γ1dt, and γi i = 1, 3, 6 in (27) satisfy the constraints γ4 =

γ1, γ5 = γ3, γ2 = c0γ1, and

Selecting P = 1, Q = − 1 +m2 , R =m2, and F ξ = nsξ,
from (22), we obtain new Jacobi elliptic doubly periodic solu-
tions of (1):

γ3′ = c0A0γ1′ + k2 −1 −m2 ∓ 2 γ3′ + c0γ1γ6 + γ3γ1′
γ1

,

γ6′ =
2c0γ1γ1′γ23 + c20γ

2
1γ1′γ6 − 2c0γ21γ3 c0A0γ

2
1 + k2 −1 −m2 ∓ 2 γ23 + c0γ1γ6 − 2c0γ1γ1′γ3
c20γ

3
1

26

γ3′ = c0A0γ
2
1 + k2 2 −m2 γ23 + c0γ1γ6 + γ3γ1′

γ1
,

γ6′ =
2c0γ1γ1′γ23 + c20γ

2
1γ1′γ6 − 2c0γ21γ3 c0A0γ

2
1 + k2 2 −m2 γ23 + c0γ1γ6 − 2c0γ1γ1′γ3
c20γ

3
1

28

u = a0 ±
2k γ23 + c0γ1γ6

γ1
nsξ,

v = A0 −
2k2 γ23 + c0γ1γ6

c0γ
2
1

ns2 ξ ± 2k2γ3 γ23 + c0γ1γ6
c0γ

2
1

csξdsξ,
29
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where a0, A0, and k are arbitrary constants, ξ = kx − ka0 γ1
dt, and γi i = 1, 3, 6 in (29) satisfy the constraints γ4 = γ1,
γ5 = γ3, γ2 = c0γ1, and

Selecting P = 1 −m2, Q = 2 −m2, R = 1, and F ξ = scξ,
from (22), we obtain new Jacobi elliptic doubly periodic solu-
tions of (1):

where a0, A0, and k are arbitrary constants, ξ = kx − ka0 γ1
dt, and γi i = 1, 3, 6 in (31) satisfy the constraints γ4 = γ1,
γ5 = γ3, γ2 = c0γ1, and

Selecting P = 1, Q = 2m2 − 1, R = −m2 1 −m2 , and
F ξ = dsξ, from (22), we obtain new Jacobi elliptic doubly
periodic solutions of (1):

u = a0 ±
2k γ23 + c0γ1γ6

γ1
dsξ,

v = A0 −
2k2 γ23 + c0γ1γ6

c0γ
2
1

ds2ξ ± 2k2γ3 γ23 + c0γ1γ6
c0γ

2
1

csξnsξ,

33

where a0, A0, and k are arbitrary constants, ξ = kx − ka0 γ1
dt, and γi i = 1, 3, 6 in (33) satisfy the constraints γ4 = γ1,
γ5 = γ3, γ2 = c0γ1, and

γ3′ = c0A0γ
2
1 − k2 1 +m2 γ23 + c0γ1γ6 + γ3γ1′

γ1
,

γ6′ =
2c0γ1γ1′γ23 + c20γ

2
1γ1′γ6 − 2c0γ21γ3 c0A0γ

2
1 − k2 1 +m2 γ23 + c0γ1γ6 − 2c0γ1γ1′γ3
c20γ

3
1

30

u = a0 ±
2k 1 −m2 γ23 + c0γ1γ6

γ1
scξ,

v = A0 −
2k2 1 −m2 γ23 + c0γ1γ6

c0γ
2
1

sc2 ξ ∓
2k2γ3 1 −m2 γ23 + c0γ1γ6

c0γ
2
1

dcξncξ,

31

γ3′ = c0A0γ
2
1 + k2 2 −m2 γ23 + c0γ1γ6 + γ3γ1′

γ1
,

γ6′ =
2c0γ1γ1′γ23 + c20γ

2
1γ1′γ6 − 2c0γ21γ3 c0A0γ

2
1 + k2 2 −m2 γ23 + c0γ1γ6 − 2c0γ1γ1′γ3
c20γ

3
1

32

γ3′ = c0A0γ
2
1 + k2 2m2 − 1 γ23 + c0γ1γ6 + γ3γ1′

γ1
, 34

γ6′ =
2c0γ1γ1′γ23 + c20γ

2
1γ1′γ6 − 2c0γ21γ3 c0A0γ

2
1 + k2 2m2 − 1 γ23 + c0γ1γ6 − 2c0γ1γ1′γ3
c20γ

3
1

35
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In the limits at m→ 1 and m→ 0, the above obtained
Jacobi elliptic doubly periodic solutions degenerate into
hyperbolic function solutions and trigonometric function
solutions, respectively. When m→ 1, the Jacobi elliptic dou-
bly periodic solutions (24) and (25) degenerate into hyper-
bolic function solutions:

u = a0 ±
2k γ23 + c0γ1γ6

γ1
coth ξ

± 2k γ23 + c0γ1γ6
γ1

tanh ξ,

v = A0 −
2k2 γ23 + c0γ1γ6

c0γ
2
1

coth2ξ

−
2k2 γ23 + c0γ1γ6

c0γ
2
1

tanh2ξ

± 2k2γ3 γ23 + c0γ1γ6
c0γ

2
1

csch2ξ

∓
2k2γ3 γ23 + c0γ1γ6

c0γ
2
1

sech2ξ,

36

where a0, A0, and k are arbitrary constants, ξ = kx − ka0 γ1
dt, and γi i = 1, 3, 6 in (36) satisfy the constraints γ4 = γ1,
γ5 = γ3, γ2 = c0γ1, and

When m→ 0, the Jacobi elliptic doubly periodic solu-
tions (24) and (25) degenerate into trigonometric function
solutions:

u = a0 ±
2k γ23 + c0γ1γ6

γ1
csc ξ,

v = A0 −
2k2 γ23 + c0γ1γ6

c0γ
2
1

csc2ξ

± 2k2γ3 γ23 + c0γ1γ6
c0γ

2
1

cot ξ csc ξ,

38

where a0, A0, and k are arbitrary constants, ξ = kx − ka0 γ1
dt, and γi i = 1, 3, 6 in (38) satisfy the constraints γ4 = γ1,
γ5 = γ3, γ2 = c0γ1, and

When m→ 1, the Jacobi elliptic doubly periodic solu-
tions (27) degenerate into hyperbolic function solutions:

u = a0 ±
2k − γ23 + c0γ1γ6

γ1
sech ξ,

v = A0 −
2k2 γ23 + c0γ1γ6

c0γ
2
1

sech2 ξ

±
2k2γ3 − γ23 + c0γ1γ6

c0γ
2
1

tanh ξ sech ξ,

40

γ3′ = c0A0γ
2
1 + k2 −2 ∓ 2 γ23 + c0γ1γ6 + γ3γ1′

γ1
,

γ6′ =
2c0γ1γ1′γ23 + c20γ

2
1γ1′γ6 − 2c0γ21γ3 c0A0γ

2
1 + k2 −2 ∓ 2 γ23 + c0γ1γ6 − 2c0γ1γ1′γ3
c20γ

3
1

37

γ3′ = c0A0γ
2
1 + k2 −1 ∓ 2 γ23 + c0γ1γ6 + γ3γ1′

γ1
,

γ6′ =
2c0γ1γ1′γ23 + c20γ

2
1γ1′γ6 − 2c0γ21γ3 c0A0γ

2
1 + k2 −1 ∓ 2 γ23 + c0γ1γ6 − 2c0γ1γ1′γ3
c20γ

3
1

39
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where a0, A0, and k are arbitrary constants, ξ = kx − ka0 γ1
dt, and γi i = 1, 3, 6 in (40) satisfy the constraints γ4 = γ1,
γ5 = γ3, and

When m→ 1, the Jacobi elliptic doubly periodic solu-
tions (29) degenerate into hyperbolic function solutions:

u = a0 ±
2k γ23 + c0γ1γ6

γ1
coth ξ, 42

v = A0 −
2k2 γ23 + c0γ1γ6

c0γ
2
1

coth2 ξ

± 2k2γ3 γ23 + c0γ1γ6
c0γ

2
1

csch2ξ,
43

where a0, A0, and k are arbitrary constants, ξ = kx − ka0 γ1
dt, and γi i = 1, 3, 6 in (42) and (43) satisfy the constraints
γ4 = γ1, γ5 = γ3, γ2 = c0γ1, and

When m→ 0, the Jacobi elliptic doubly periodic solu-
tions (31) degenerate into trigonometric function solutions:

u = a0 ±
2k γ23 + c0γ1γ6

γ1
tan ξ,

v = A0 −
2k2 γ23 + c0γ1γ6

c0γ
2
1

tan2 ξ

∓
2k2γ3 γ23 + c0γ1γ6

c0γ
2
1

sec2ξ,

45

where a0, A0, and k are arbitrary constants, ξ = kx − ka0 γ1
dt, and γi i = 1, 3, 6 in (45) satisfy the constraints γ4 = γ1,
γ5 = γ3, γ2 = c0γ1, and

γ3′ = c0A0γ
2
1 + k2 γ23 + c0γ1γ6 + γ3γ1′

γ1
,

γ6′ =
2c0γ1γ1′γ23 + c20γ

2
1γ1′γ6 − 2c0γ21γ3 c0A0γ

2
1 + k2 γ23 + c0γ1γ6 − 2c0γ1γ1′γ3

c20γ
3
1

41

γ3′ = c0A0γ
2
1 − 2k2 γ23 + c0γ1γ6 + γ3γ1′

γ1
,

γ6′ =
2c0γ1γ1′γ23 + c20γ

2
1γ1′γ6 − 2c0γ21γ3 c0A0γ

2
1 − 2k2 γ23 + c0γ1γ6 − 2c0γ1γ1′γ3

c20γ
3
1

44

γ3′ = c0A0γ
2
1 + 2k2 γ23 + c0γ1γ6 + γ3γ1′

γ1
,

γ6′ =
2c0γ1γ1′γ23 + c20γ

2
1γ1′γ6 − 2c0γ21γ3 c0A0γ

2
1 + 2k2 γ23 + c0γ1γ6 − 2c0γ1γ1′γ3

c20γ
3
1

46
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When m→ 1, the Jacobi elliptic doubly periodic solu-
tions (33) degenerate into trigonometric function solutions:

u = a0 ±
2k γ23 + c0γ1γ6

γ1
csch ξ,

v = A0 −
2k2 γ23 + c0γ1γ6

c0γ
2
1

csch2ξ

± 2k2γ3 γ23 + c0γ1γ6
c0γ

2
1

coth ξ csch ξ,

47

where a0, A0, and k are arbitrary constants, ξ = kx − ka0 γ1
dt, and γi i = 1, 3, 6 in (47) satisfy the constraints γ4 = γ1,
γ5 = γ3, γ2 = c0γ1, and

When m→ 0, the Jacobi elliptic doubly periodic solu-
tions (33) degenerate into the following trigonometric func-
tion solutions which have the same expressions as solutions
(38) but with different constraints (50):

u = a0 ±
2k γ23 + c0γ1γ6

γ1
csc ξ,

v = A0 −
2k2 γ23 + c0γ1γ6

c0γ
2
1

csc2ξ

± 2k2γ3 γ23 + c0γ1γ6
c0γ

2
1

cot ξ csc ξ,

49

where a0, A0, and k are arbitrary constants, ξ = kx − ka0 γ1
dt, and γi i = 1, 3, 6 in (49) satisfy the constraints γ4 = γ1,
γ5 = γ3, γ2 = c0γ1, and

3. Singular Nonlinear Dynamics

In this section, we further investigate the nonlinear dynamics
of (1) by means of Jacobi elliptic doubly periodic solutions.

Firstly, we consider solutions (24) and (25). To determine
γ3 and γ6 with the sign “−” in (26), we select γ1 = et and
then have

γ3′ = c0A0γ
2
1 + k2 γ23 + c0γ1γ6 + γ3γ1′

γ1
,

γ6′ =
2c0γ1γ1′γ23 + c20γ

2
1γ1′γ6 − 2c0γ21γ3 c0A0γ

2
1 + k2 γ23 + c0γ1γ6 − 2c0γ1γ1′γ3

c20γ
3
1

48

γ3′ = c0A0γ
2
1 − k2 γ23 + c0γ1γ6 + γ3γ1′

γ1
,

γ6′ =
2c0γ1γ1′γ23 + c20γ

2
1γ1′γ6 − 2c0γ21γ3 c0A0γ

2
1 − k2 γ23 + c0γ1γ6 − 2c0γ1γ1′γ3

c20γ
3
1

50

γ3 = e− e−2t /2A0c0 c1 ee−2t /2A0c0dt + c2 ,

γ6 =
−e− e−2t /2A0c0 −t A0c0c1 −1 +m2 2e e−2t /2A0c0 +2t + k2 −1 +m2 2 + k2 1 −m 2 c1 ee−2t /2A0c0dt + c2

2

c0k
2 −1 +m2 2 ,

51
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where c1 and c2 are two integration constants.
In Figures 1 and 2, the spatial structures and contour

lines of solutions (24) and (25) determined by (51) are shown
by selecting the parameters as a0 = 2, A0 = 0 5, c0 = −4, c1 = 3,

c2 = −1, k = 1 5, and m = 0 8, respectively. We shown the
nonlinear dynamical evolutions of solutions (24) and (25)
in Figures 3 and 4. It is easy to see from Figures 1–4 that
the doubly periodic waves determined by solutions (24) and
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Figure 1: Spatial structures of solutions (24) and (25) determined by (51).
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Figure 2: Contour lines of solutions (24) and (25) determined by (51).
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Figure 3: Nonlinear dynamical evolutions of solution (24) determined by (51).
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(25) possess time-varying amplitudes and velocities as well as
singularities in the process of propagations.

Secondly, we consider solutions (27). To determine γ3
and γ6 in (28), we let γ1 = et and then have

γ3 = c1et + c2e2t ,

γ6 =
et −A0c0 + c2 − k2 2 −m2 c1 + c2et

2

c0k
2 2 −m2

,
52
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Figure 4: Nonlinear dynamical evolutions of solution (25) determined by (51).
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Figure 5: Spatial structures of solutions (27) determined by (52).
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Figure 6: Spatial structures of solutions (40) determined by (52) given m = 1.

where c1 and c2 are two integration constants.
In Figure 5, the spatial structures of solutions (27)

determined by (52) are shown by selecting the parameters
as a0 = 2, A0 = 0 5, c0 = −4, c1 = 3, c2 = −1, k = 1 5, and m =
0 8, respectively. We shown the spatial structures of solutions
(40) in Figure 6. It is easy to see from Figures 5 and 6 that
both the doubly periodic waves determined by solutions
(27) and the hyperbolic function solutions (40) possess
time-varying amplitudes and velocities as well as singularities
in the process of propagations.
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Finally, we consider solutions (33). To determine γ3 and
γ6 in (34), (35), we let γ1 = et and then have

γ3 = c1et + c2e2t ,

γ6 =
et −A0c0 − c2 − k2 1 −m2 c1 + c2et 2

c0k
2 1 −m2 ,

53

where c1 and c2 are two integration constants.
In Figure 7, the spatial structures of solutions (33)

determined by (53) are shown by selecting the parameters
as a0 = 2, A0 = 0 5, c0 = −4, c1 = 3, c2 = −1, k = 1 5, and m =
0 8, respectively. We can see from Figure 7 that the doubly
periodic waves determined by solutions (33) possess time-
varying amplitudes and velocities as well as singularities in
the process of propagations.

4. Conclusion

In summary, new and more general Jacobi elliptic doubly
periodic solutions of the tdcWBK system have been obtained,
which degenerate into the hyperbolic function solutions and
trigonometric function solutions in the limit cases. To the
best of our knowledge, the obtained Jacobi elliptic doubly
periodic solutions have not been reported in literatures. It is
shown that the original F-expansion method cannot derive
Jacobi elliptic doubly periodic solutions of the tdcWBK sys-
tem but the novel approach of this paper is valid. In this
sense, we would like to conclude that a novel approach of
the generalized F-expansion method is extended to the
tdcWBK system. The simulations show that the doubly
periodic waves possess time-varying amplitudes and veloci-
ties as well as singularities in the process of propagations.
Recently, fractional-order differential calculus and its appli-
cations have attached much attention [36–51]. Constructing
Jacobi elliptic doubly periodic solutions of nonlinear PDEs
with fractional derivatives is worthy of the study. At the same
time, constructing multisoliton solutions via the Riemann-
Hilbert approach, for example, see Kang et al.’s meaningful
work [52, 53], has been a hot topic. Dealing with initial-

boundary problems of nonlinear PDEs by means of the
Riemann-Hilbert approach is also worthy of the study.
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