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The aim of this paper is to develop partitioned Pythagorean fuzzy interaction Bonferroni mean operators based on the Pythagorean
fuzzy set, Bonferroni mean, and interaction between membership and nonmembership. Several new aggregation operators are
developed including the Pythagorean fuzzy interaction partitioned Bonferroni mean (PFIPBM) operator, the Pythagorean fuzzy
weighted interaction partitioned Bonferroni mean (PFWIPBM) operator, the Pythagorean fuzzy interaction partitioned
geometric Bonferroni mean (PFIPGBM) operator, and the Pythagorean fuzzy weighted interaction partitioned geometric
Bonferroni mean (PFWIPGBM) operator. Some main properties and some special particular cases of the new operators are
studied. Many existing operators are the special cases of new aggregation operators. Moreover, a multiple-attribute decision-
making method based on the proposed operator has been developed and the investment company selection problem is
presented to illustrate feasibility and practical advantages of the new method.

1. Introduction

Pythagorean fuzzy set was first developed by Yager [1, 2],
which is the extension of intuitionistic fuzzy set [3–5].

In Pythagorean fuzzy set, the square sum of membership
and nonmembership is no more than 1, which can lead to
larger feasible space than that of intuitionistic fuzzy set.
Hence, comparing with the existing tools to model fuzzy
and uncertain information, the Pythagorean fuzzy set is more
powerful and flexible. In the literature, many studies have
been conducted for decision-making problems with complex
uncertainty in Pythagorean fuzzy environment [6–12].

Yager [12] developed the Pythagorean fuzzy weighted
averaging (PFWA) operator and Pythagorean fuzzy weighted
geometric averaging (PFWGA) operator. Garg proposed
some Pythagorean fuzzy Einstein aggregation operations in
[13] and Pythagorean fuzzy Einstein geometric aggregation
operators using t-norm and t-conorm in [14]. Some Pythag-
orean fuzzy interaction weighted geometric aggregation

operators were proposed in [15]. Yang and Pang [16] devel-
oped some Pythagorean fuzzy interaction Maclaurin sym-
metric mean operators. Peng and Yang [17] defined the
Pythagorean fuzzy Choquet integral aggregation operator.
Zhang et al. [18] proposed generalized Pythagorean fuzzy
Bonferroni mean operator. Liang et al. [19] developed
Pythagorean fuzzy geometric Bonferroni mean and weighted
Pythagorean fuzzy geometric Bonferroni mean operator. Wei
[20] presented some Pythagorean fuzzy interaction aggrega-
tion operators. Wei and Lu proposed some Pythagorean
fuzzy power aggregation operators in [21] and presented
some Pythagorean fuzzy Maclaurin symmetric mean opera-
tors in [22]. Zeng [23] developed Pythagorean fuzzy probabi-
listic ordered weighted averaging operator by considering
probabilistic information in aggregating Pythagorean fuzzy
values. Garg [24] proposed some probabilistic Pythagorean
fuzzy aggregation operators by considering probabilistic
information and decision maker’s attitudinal character. Peng
andDai [25] proposed Pythagorean fuzzy stochastic decision-
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making method based on the prospect theory and regret the-
ory. Some Pythagorean fuzzy multiple-attribute decision-
making methods have been developed including the TOPSIS
[26], QUALIFLEX [27], clustering analysis [28], TODIM
[29], andVIKOR [30]. Pythagorean fuzzy set has been further
extended to accommodate interval values [31, 32], linguistic
variables [33] and so on.

Though several studies have been conducted in Pythago-
rean fuzzy environments, interaction between membership
and nonmembership is considered less in existing studies
and partitioned Pythagorean fuzzy values to be aggregated
are rarely considered yet.

Bonferroni mean (BM) was introduced by Bonferroni
[34], which has the capability of capturing interrelationship
among arguments to be aggregated by considering conjunc-
tion among each pair of aggregated arguments. Yager [35]
provided an interpretation of Bonferroni mean as involving
a product of each argumentwith the average of the other argu-
ments. Beliakov et al. [36] developed generalized Bonferroni
mean to extend the Bonferroni mean in a more general form.
Beliakov and James [37] extended the generalized Bonferroni
mean to intuitionistic fuzzy environment. Xu and Yager
[38] extended the Bonferroni mean to accommodate intui-
tionistic fuzzy values. Zhu and Xu [39] developed hesitant
fuzzy Bonferroni mean operator and weighted hesitant fuzzy
Bonferroni mean operator. Zhu et al. [40] explored the
geometric Bonferroni mean under hesitant fuzzy environ-
ment. Xia et al. [41] introduced the Bonferroni geometric
mean and further developed intuitionistic fuzzy geometric
Bonferroni mean operator. Blanco-Mesa et al. [42] developed
Bonferroni ordered weighted averaging index of maximum
and minimum level operators by using Bonferroni mean,
OWA operators, and some distance measures. Liang et al.
[43] proposed the Pythagorean fuzzy Bonferroni mean and
the weighted Pythagorean fuzzy Bonferroni mean. Dutta
and Guha [44] presented the partitioned Bonferroni mean
for 2-tuple linguistic information by considering the parti-
tioned attribute class. Z. Liu and P. Liu [45] developed intui-
tionistic uncertain linguistic partitioned Bonferroni mean.

In some cases, the interrelationship does not exist in the
whole attributes, but in some of the attributes. For example,
consider a candidate selection problem for research sector
in a university where the best candidate is selected among
several candidates based on the following attributes: manage-
ment skill (A1), interpersonal relationship A2 , research
ability A3 , and grant A4 . The attributes should be parti-
tioned into two classes P1 = A1, A2 and P2 = A3, A4 .
Obviously, A1 and A2 are interrelated and they belong to
P1. A3 and A4 are interrelated and they belong to P2. But
there is no interrelation between P1 and P2. Hence, there is
a need to partition attributes into several classes when there
is no interrelationship among all the attributes but there is
interrelationship among parts of the attributes. Though
many useful Bonferroni mean operators have been developed
in various environments, the partitioned aggregation opera-
tors in Pythagorean fuzzy environment have not been con-
sidered yet. Moreover, interaction between the membership
and nonmembership of Pythagorean fuzzy values should be
considered in the partitioned Pythagorean fuzzy aggregation

operator. Hence in this paper, based on the partitioned
Bonferroni mean operator, we develop Pythagorean fuzzy
interaction partitioned Bonferroni mean operators by con-
sidering partitioned values and interaction between member-
ship and nonmembership. Then, we give a new multiple-
attribute decision-making method based on the partitioned
Bonferroni mean operators. Comparing with the existing
methods based on the Bonferroni mean operators, our pro-
posed method is a good complement to the existing work and
it can be used to solve more complex multiple-attribute
decision-making problems.

The structure of the paper is as follows. In Section 2, some
basic concepts on Pythagorean fuzzy set and Bonferroni
mean have been reviewed. In Section 3, some Bonferroni
mean operators in Pythagorean fuzzy environments con-
sidering interaction have been developed including the
Pythagorean fuzzy interaction partitioned Bonferroni mean
(PFIPBM) operator, the Pythagorean fuzzy weighted inter-
action partitioned Bonferroni mean (PFWIPBM) operator,
the Pythagorean fuzzy interaction partitioned geometric
Bonferroni mean (PFIPGBM) operator, and the Pythago-
rean fuzzy weighted interaction partitioned geometric Bon-
ferroni mean (PFWIPGBM) operator. Some properties and
some special cases of the new aggregation operators have
been studied. In Section 4, a new multiple-attribute group
decision-making method based on the new proposed opera-
tors has been proposed. In Section 5, the problem of invest-
ment company selection has been presented to illustrate the
new method and some comparisons with other methods
have been conducted. Conclusions have been given in the
last section.

2. Preliminaries

Pythagorean fuzzy set [1, 2] is the extension of fuzzy set and
intuitionistic fuzzy set. We review some concepts of Pythag-
orean fuzzy set and their operations in the following.

Definition 1 (see [26]). Let X be a fixed set. A Pythagorean
fuzzy set P on X can be represented as follows:

P = <x, μP x , νP x > x ∈ X , 1

where μP x : X→ 0, 1 is the membership function and νP
x : X → 0, 1 is the nonmembership function. For each
x ∈ X, it satisfies the following condition 0 ≤ μP x 2 +
νP x 2 ≤ 1. πP x = 1 − μP x 2 − νP x 2 is the inde-

terminacy degree of x to X. For simplicity, μP x , νP x
is called a Pythagorean fuzzy number (PFN), denoted by

μP, νP , where μP , νP ∈ 0, 1 , πP = 1 − μP
2 − νP

2, and

0 ≤ μP
2 + νP

2 ≤ 1.

Definition 2 (see [26]). Let α = μα, να , α1 = μα1 , να1 , and
α2 = μα2 , να2 be three PFNs. The operations are as follows:

(1) α1 ⊕ α2 = μ2α1 + μ2α2 − μ2α1μ
2
α2
, να1να2 .
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(2) α1 ⊗ α2 = μα1μα2 , ν2α1 + ν2α2 − ν2α1ν
2
α2

(3) kα = 1 − 1 − μ2α
k, να

k , k ≥ 0.

(4) αk = μkα, 1 − 1 − ν2α
k , k ≥ 0.

Let α = μα, να be a PFN; the score function [26] is
defined as

S α = μα
2 − να

2 2

The accuracy function [46] is defined as

A α = μα
2 + να

2 3

Definition 3 (see [2]). Let α1 = μα1 , να1 and α2 = μα2 , να2
be two PFNs. Yager and Abbasov defined the following
method to compare two PFNs:

(1) If S α1 < S α2 , then α1 < α2.

(2) If S α1 = S α2 ,

(i) If A α1 < A α2 , then α1 < α2.

(ii) If A α1 = A α2 , then α1 = α2.

Example 1. Suppose α1 = 0 6,0 4 , α2 = 0 5,0 6 , and α3 =
0 7,0 0 , the corresponding weight vector is 0 25,0 4,0 35 ,
then α =w1α1 ⊕w2α2 ⊕w3α3 = 0 6045,0 . This means that
nonmemberships have no effects on the overall results,
which is not reasonable. In order to overcome this shortcom-
ing, some new operational laws on Pythagorean fuzzy set
were developed.

Definition 4 (see [20]). Let α = μα, να , α1 = μα1 , να1 , and
α2 = μα2 , να2 be three PFNs. The operation laws can be
defined as follows:

(1) α1 ⊕ α2 = μ2α1 + μ2α2 − μ2α1μ
2
α2
,

ν2α1 + ν2α2 − ν2α1ν
2
α2
− μ2α1ν

2
α2
− ν2α1μ

2
α2

.

(2) α1 ⊗ α2 = μ2α1 + μ2α2 − μ2α1μ
2
α2
− ν2α1μ

2
α2
− μ2α1ν

2
α2
,

ν2α1 + ν2α2 − ν2α1ν
2
α2

.

(3) λα = 1 − 1 − μ2α
λ, 1 − μ2α

λ − 1 − μ2α + ν2α
λ ,

λ > 0.

(4) α λ = 1 − ν2α
λ − 1 − μ2α + ν2α

λ,

1 − 1 − ν2α
λ , λ > 0

Equations (1) and (2) can be rewritten as follows:

(1)

α1 ⊕ α2 = 1 − 1 − μ2α1 1 − μ2α2 ,

1 − μ2α1 1 − μ2α2 − 1 − μ2α1 + ν2α1 1 μ2α2 + ν2α2
1/2

= 1 − 2
j=1

1 − μ2α j
,

2
j=1

1 − μ2α j
− 2

j=1
1 − μ2α j

+ ν2α j

(2)

α1 ⊗ α2 = 1 − ν2α1 1 − ν2α2 − 1 − μ2α1 + ν2α1 1 − μ2α2 + ν2α2

1 − 1 − ν2α1 1 − ν2α2

2
j=1
1 − ν2α j

− 2
j=1

1 − μ2α j
+ ν2α j

,

1 − 2
j=1

1 − ν2α j

Definition 5. Let α1 = μα1 , να1 and α2 = μα2 , να2 be two
Pythagorean fuzzy numbers. The Hamming distance
between α1 and α2 can be defined as follows:

d α1, α2 = 1
2 μ2α1 − μ2α2 + ν2α1 − ν2α2

4

3. Pythagorean Fuzzy Weighted Interaction
Partitioned Bonferroni Mean Operator

The Bonferroni mean (BM) aggregation operator was
defined by Bonferroni [34] in 1950. It was generalized by
Yager [35] and others. The BM operator has the following
forms.

Definition 6 (see [35]). For any p, q ≥ 0 with p + q > 0, the BM
aggregation operator of dimension n is a mapping BM:
R+ n → R+, such that

BMp,q a1, a2,… , an = 1
n n − 1 〠

n

i,j=1,i≠j
api a

q
j

1/ p+q

5

Definition 7 (see [44]). For any p, q ≥ 0 with p + q > 0 and
T = a1, a2,… , an with ak ≥ 0 k = 1, 2,… , n , which is
partitioned into d distinct sorts P1, P2,… , Pd , where
⋃d

h=1Ph = T , the partitioned Bonferroni mean aggregation
operator of dimension n is a mapping PBM:

PBMp,q a1, a2,… , an

= 1
d

〠
d

h=1

1
Ph

〠
i∈Ph

api
1

Ph − 1 〠
j∈Ph ,j≠i

aqj

1/ p+q

,

6

where Ph denotes the cardinality of Ph, d is the number
of partitioned sorts, and ∑d

h=1 Ph = n.

Definition 8. Let T = α1, α2,… , αn be a collection of PFNs,
which is partitioned into d distinct sorts P1, P2,… , Pd , where
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αi = μi, νi i = 1, 2,… , n and⋃d
h=1Ph = T . The Pythagorean

fuzzy interaction partitioned Bonferroni mean (PFIPBM)
operator is defined as follows:

PFIPBMp,q α1, α2,… , αn

= 1
d

⊕ d
h=1

1
Ph

⊕ i∈Ph
αpi ⊗

1
Ph − 1 ⊕ j∈Ph ,j≠iα

q
j

1/ p+q
,

7

where p, q ≥ 0, Ph denotes the cardinality of Ph, d is the
number of the partitioned sorts, and ∑d

h=1 Ph = n.

Theorem 1. Let αi = μi, νi i = 1, 2,… , n be a collection of
PFNs and p, q ≥ 0. The aggregated result of PFIPBM operator
is still of a PFN, which has the following form:

PFIPBMp,q α1, α2,… , αn

= 1
d

⊕ d
h=1

1
Ph

⊕ i∈Ph αpi ⊗
1

Ph − 1 ⊕ j∈Ph , j≠iα
q
j

1/ p+q

= 1 −
d

h=1
1 − 1 −

i∈Ph

1 − 1 − ν2i
p 1 − ξ + η

+ 1 − μ2i + ν2i
p
η

1/ Ph +
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph
1/ p+q

+
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph

1/ p+q 1/d 1/2

,

d

h=1
1 − 1 −

i∈Ph

1 − 1 − ν2i
p 1 − ξ + η

+ 1 − μ2i + ν2i
p
η

1/ Ph +
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph
1/ p+q

+
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph

1/ p+q 1/d

−
d

h=1 i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph
1/ p+q 1/d 1/2

,

8

where ξ = j∈Ph ,j≠i 1 − 1 − ν2j
q + 1 − μ2j + ν2j

q 1/ Ph −1

and η = j∈Ph ,j≠i 1 − μ2j + ν2j
q 1/ Ph −1 .

Proof 1.

αqj = 1 − ν2j
q
− 1 − μ2j + ν2j

q 1/2
, 1 − 1 − ν2j

q
,

αpi = 1 − ν2i
p − 1 − μ2i + ν2i

p 1/2
, 1 − 1 − ν2i

p ,

⊕ j∈Ph ,j≠iα
q
j

= 1 −
j∈Ph ,j≠i

1 − 1 − ν2j
q
+ 1 − μ2j + ν2j

q
1/2

,

j∈Ph ,j≠i
1 − 1 − ν2j

q
+ 1 − μ2j + ν2j

q

−
j∈Ph,j≠i

1 − μ2j + ν2j
q

1/2

,

1
Ph − 1 ⊕ j∈Ph , j≠iα

q
j

= 1 −
j∈Ph ,j≠i

1 − 1 − ν2j
q
+ 1 − μ2j + ν2j

q 1/ Ph −1
1/2

,

j∈Ph , j≠i
1 − 1 − ν2j

q
+ 1 − μ2j + ν2j

q 1/ Ph −1

−
j∈Ph , j≠i

1 − μ2j + ν2j
q

1/ Ph −1 1/2

9

Let

ξ =
j∈Ph ,j≠i

1 − 1 − ν2j
q
+ 1 − μ2j + ν2j

q 1/ Ph −1 ,

η =
j∈Ph ,j≠i

1 − μ2j + ν2j
q

1/ Ph −1

,

αpi ⊗
1

∣Ph ∣ −1
⊕ j∈Ph ,j≠iα

q
j

= 1 − ν2i
p 1 − ξ + η − 1 − μ2i + ν2i

pη,

1 − 1 − ν2i
p 1 − ξ + η ,

⊕ i∈Ph αpi ⊗
1

Ph − 1 ⊕ j∈Ph ,j≠iα
q
j

= 1 −
i∈Ph

1 − 1 − ν2i
p 1 − ξ + η

+ 1 − μ2i + ν2i
p
η

1/2

,

i∈Ph

1 − 1 − ν2i
p ∗ 1 − ξ + η + 1 − μ2i + ν2i

p
η

−
i∈Ph

1 − μ2i + ν2i
p
η

1/2

,

4 Complexity



1
Ph

⊕ i∈Ph
αpi ⊗

1
Ph − 1 ⊕ j∈Ph ,j≠iα

q
j

1/ p+q

= 1 −
i∈Ph

1 − 1 − ν2i
p 1 − ξ + η

+ 1 − μ2i + ν2i
p
η

1/ Ph

+
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph

1/ p+q

−
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph

1/ p+q 1/2

,

1 − 1 −
i∈Ph

1 − 1 − ν2i
p 1 − ξ + η

+ 1 − μ2i + ν2i
p
η

1/ Ph

+
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph

1/ p+q 1/2

,

1
d

⊕ d
h=1

1
Ph

⊕ i∈Ph
αpi ⊗

1
Ph − 1 ⊕ j∈Ph ,j≠iα

q
j

1/ p+q

= 1 −
d

h=1
1 − 1 −

i∈Ph

1 − 1 − ν2i
p 1 − ξ + η

+ 1 − μ2i + ν2i
p
η

1/ Ph

+
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph

1/ p+q

+
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph

1/ p+q 1/d 1/2

,

d

h=1
1 − 1 −

i∈Ph

1 − 1 − ν2i
p 1 − ξ + η

+ 1 − μ2i + ν2i
p
η

1/ Ph

+
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph

1/ p+q

+
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph

1/ p+q 1/d

−
d

h=1 i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph
1/ p+q 1/d 1/2

10

Moreover,

μPFIPBMp,q
2 + νPFIPBMp,q

2

= 1 −
d

h=1
1 − 1 −

i∈Ph

1 − 1 − ν2i
p 1 − ξ + η

+ 1 − μ2i + ν2i
p
η

1/ Ph

+
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph
1/ p+q

+
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph
1/ p+q 1/d

+
d

h=1
1 − 1 −

i∈Ph

1 − 1 − ν2i
p 1 − ξ + η

+ 1 − μ2i + ν2i
p
η

1/ Ph

+
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph
1/ p+q

+
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph
1/ p+q 1/d

−
d

h=1 i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph
1/ p+q 1/d

= 1 −
d

h=1 i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph
1/ p+q 1/d

,

11

since

η =
j∈Ph ,j≠i

1 − μ2j + ν2j
q

1/ Ph −1

, 12

then 0 ≤ η ≤ 1 and

0 ≤ 1 −
d

h=1 i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph

1/ p+q 1/d

≤ 1

13

Hence, the aggregated result of the PFIPBMp,q operator is
still a PFN.

Theorem 2 (idempotency). Let αi = μi, νi i = 1, 2,… , n be
a collection of PFNs and p, q ≥ 0. If all αi i = 1, 2,… , n are
equal, that is, αi = α = μ, ν i = 1, 2,… , n , then

PFIPBMp,q α1, α2,… , αn = α 14
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Proof 2. Let PFIPBMp,q α1, α2,… , αn = σ, τ . Because μi =
μ and νi = ν, then we get

ξ =
j∈Ph ,j≠i

1 − 1 − ν2j
q
+ 1 − μ2j + ν2j

q 1/ Ph −1

=
j∈Ph ,j≠i

1 − 1 − ν2
q + 1 − μ2 + ν2

q 1/ Ph −1

= 1 − 1 − ν2
q + 1 − μ2 + ν2

q,

η =
j∈Ph ,j≠i

1 − μ2j + ν2j
q

1/ Ph −1

=
j∈Ph ,j≠i

1 − μ2 + ν2
q

1/ Ph −1

= 1 − μ2 + ν2
q

15

Therefore, we have

σ = 1 −
d

h=1
1 − 1 −

i∈Ph

1 − 1 − ν2
p 1 − ν2

q

+ 1 − μ2 + ν2
p 1 − μ2 + ν2

q 1/ Ph

+ 1 − μ2 + ν2
p 1 − μ2 + ν2

q
1/ p+q

+ 1 − μ2 + ν2
p

∗ 1 − μ2 + ν2
q 1/ p+q

1/d 1/2

= 1 −
d

h=1
1 − 1 − 1 − 1 − ν2

p+q

+ 1 − μ2 + ν2
p+q + 1 − μ2 + ν2

p+q 1/ p+q

+ 1 − μ2 + ν2
p+q 1/ p+q 1/d 1/2

= μ,

τ =
d

h=1
1 − 1 −

i∈Ph

1 − 1 − ν2
p 1 − ν2

q

+ 1 − μ2 + ν2
p 1 − μ2 + ν2

q 1/ Ph

+
i∈Ph

1 − μ2 + ν2
p 1 − μ2 + ν2

q 1/ Ph

1/ p+q

+
i∈Ph

1 − μ2 + ν2
p 1 − μ2 + ν2

q 1/ Ph
1/ p+q 1/d

−
d

h=1 i∈Ph

1 − μ2 + ν2
p

1 − μ2 + ν2
q 1/ Ph

1/ p+q 1/d 1/2

=
d

h=1
1 − 1 − 1 − 1 − ν2

p+q + 1 − μ2 + ν2
p+q

+ 1 − μ2 + ν2
p+q 1/ p+q

+ 1 − μ2 + ν2
p+q 1/ p+q 1/d

−
d

h=1
1 − μ2 + ν2

p+q 1/ p+q 1/d 1/2

= 1 − 1 − ν2 + 1 − μ2 + ν2 − 1 − μ2 + ν2
1/2 = ν

16

Hence, we get σ, τ = μ, ν and PFIPBMp,q α1, α2,… ,
αn = α.

Theorem 3 (commutativity). Let αi = μi, νi i = 1, 2,… , n
and α′i = μ′i, ν′i i = 1, 2,… , n be two collections of PFNs.
If α′i = μ′i, ν′i is any permutation of αi = μi, νi , then

PFIPBMp,q α1, α2,… , αn = PFIPBMp,q α′1, α′2,… , α′n
17

Proof 3. By using (8), we can get

PFIPBMp,q α1, α2,… , αn

= 1 −
d

h=1
1 − 1 −

i∈Ph

1 − 1 − ν2i
p 1 − ξ + η

+ 1 − μ2i + ν2i
p
η

1/ Ph

+
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph
1/ p+q

+
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph
1/ p+q 1/d 1/2

d

h=1
1 − 1 −

i∈Ph

1 − 1 − ν2i
p 1 − ξ + η

+ 1 − μ2i + ν2i
p
η

1/ Ph

+
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph
1/ p+q
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+
i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph
1/ p+q

1/d

−
d

h=1 i∈Ph

1 − μ2i + ν2i
p
η

1/ Ph
1/ p+q 1/d 1/2

,

18

where

ξ =
j∈Ph ,j≠i

1 − 1 − ν2j
q
+ 1 − μ2j + ν2j

q 1/ Ph −1 ,

η =
j∈Ph ,j≠i

1 − μ2j + ν2j
q

1/ Ph −1

PFIPBMp,q α′1, α′2,… , α′n

= 1 −
d

h=1
1 − 1 −

i∈Ph

1 − 1 − ν′2i
p
1 − ξ′ + η′

+ 1 − μ′2i + ν′2i
p
η

1/ Ph

+
i∈Ph

1 − μ′2i + ν′2i
p
η′

1/ Ph

1/ p+q

+
i∈Ph

1 − μ′2i + ν′2i
p
η′

1/ Ph
1/ p+q

1/d 1/2

,

d

h=1
1 − 1 −

i∈Ph

1 − 1 − ν′2i
p
1 − ξ′ + η′

+ 1 − μ′2i + ν′2i
p
η′

1/ Ph

+
i∈Ph

1 − μ′2i + ν′2i
p
η′

1/ Ph
1/ p+q

+
i∈Ph

1 − μ′2i + ν′2i
p
η′

1/ Ph
1/ p+q 1/d

−
d

h=1 i∈Ph

1 − μ′2i + ν′2i
p
η′

1/ Ph
1/ p+q 1/d 1/2

,

19

where

ξ′ =
j∈Ph ,j≠i

1 − 1 − ν′2j
q
+ 1 − μ′2j + ν′2j

q 1/ Ph −1 ,

η′ =
j∈Ph ,j≠i

1 − μ′2j + ν′2j
q

1/ Ph −1

20

Since α′i = μ′i, ν′i is any permutation of αi = μi, νi ,
then we can get

PFIPBMp,q α1, α2,… , αn
= PFIPBMp,q α1′, α2′,… , αn′

21

Theorem 4 (boundedness). Let α = 1, 0 and α̌ = 0, 1 , then

α̌ ≤ PFIPBMp,q α1, α2,… , αn ≤ α 22

Proof 4. The property of boundedness can be proved easily by
using Theorem 1.

Some of the special cases of the proposed PFIPBMp,q

operator regarding parameters p and q are as follows:

(i) When q→ 0, we can get

ξ =
j∈Ph ,j≠i

1 − 1 − ν2j
q
+ 1 − μ2j + ν2j

q 1/ Ph −1 = 1,

η =
j∈Ph ,j≠i

1 − μ2j + ν2j
q

1/ Ph −1

= 1

23

Thus, we can get

PFIPBMp,0 α1, α2,… , αn

= 1 −
d

h=1
1 − 1 −

i∈Ph

1 − 1 − ν2i
p

+ 1 − μ2i + ν2i
p 1/ Ph +

i∈Ph

1 − μ2i + ν2i
p 1/ Ph

1/p

+
i∈Ph

1 − μ2i + ν2i
p 1/ Ph

1/p 1/d 1/2

,

d

h=1
1 − 1 −

i∈Ph

1 − 1 − ν2i
p

+ 1 − μ2i + ν2i
p 1/ Ph +

i∈Ph

1 − μ2i + ν2i
p 1/ Ph

1/p

+
i∈Ph

1 − μ2i + ν2i
p 1/ Ph

1/p 1/d

−
d

h=1 i∈Ph

1 − μ2i + ν2i
p 1/ Ph

1/p 1/d 1/2

24
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(ii) When q→ 0 and p = 1, we can get

ξ =
j∈Ph ,j≠i

1 − 1 − ν2j
q
+ 1 − μ2j + ν2j

q 1/ Ph −1 = 1,

η =
j∈Ph ,j≠i

1 − μ2j + ν2j
q

1/ Ph −1

= 1

25

Thus, we can get

PFIPBM1,0 α1, α2,… , αn

= 1 −
d

h=1 i∈Ph

1 − μ2i
1/ Ph

1/d 1/2

,

d

h=1 i∈Ph

1 − μ2i
1/ Ph

1/d

−
d

h=1 i∈Ph

1 − μ2i + ν2i
1/ Ph

1/d 1/2

26

(iii) When p→ 0, we can get

PFIPBMp,q α1, α2,… , αn

= 1 −
d

h=1
1 − 1 −

j∈Ph,j≠i
1 − 1 − ν2j

q

+ 1 − μ2j + ν2j
q 1/ Ph −1

+
j∈Ph ,j≠i

1 − μ2j + ν2j
q

1/ Ph −1 1/q

+
j∈Ph ,j≠i

1 − μ2j + ν2j
q

1/ Ph −1 1/q 1/d 1/2

,

d

h=1
1 − 1 −

j∈Ph , j≠i
1 − 1 − ν2j

q

+ 1 − μ2j + ν2j
q 1/ Ph −1

+
j∈Ph ,j≠i

1 − μ2j + ν2j
q

1/ Ph −1 1/q

+
j∈Ph ,j≠i

1 − μ2j + ν2j
q

1/ Ph −1 1/q 1d

−
d

h=1 j∈Ph ,j≠i
1 − μ2j + ν2j

q
1/ Ph −1 1/q 1/d 1/2

27

(iv) When p→ 0 and , q = 1, we can get

PFIPBMp,q α1, α2,… , αn

= 1 −
d

h=1 j∈Ph ,j≠i
1 − μ2j

1/ Ph −1
1/d

1/2

,

d

h=1 j∈Ph ,j≠i
1 − μ2j

1/ Ph −1
1/d

−
d

h=1 j∈Ph ,j≠i
1 − μ2j + ν2j

1/ Ph −1 1/d 1/2

28

If all the PFNs are partitioned into one sort, then the
PFIPBM operator reduces to the Pythagorean fuzzy interac-
tion Bonferroni mean (PFIBM) operator as follows:

PFIBM α1, α2,… , αn

= 1
n n − 1 ⊕ n

i,j=1,i≠j αpi ⊗ αqj

1/ p+q

= 1 − 〠
n

i,j=1,i≠j
1 − 1 − ν2i

p 1 − ν2j
q

+ 1 − μ2i + ν2i
p 1 − μ2j + ν2j

q
1/ p+q

+ 〠
n

i,j=1,i≠j
1 − μ2i + ν2i

p

1 − μ2j + ν2j
q

1/ n n−1 1/ p+q

− 〠
n

i,j=1,i≠j
1 − μ2i + ν2i

p

∗ 1 − μ2j + ν2j
q

1/ n n−1 1/ p+q 1/2

,

1 − 1 − 〠
n

i,j=1,i≠j
1 − 1 − ν2i

p 1 − ν2j
q

+ 1 − μ2i + ν2i
p 1 − μ2j + ν2j

q
1/ n n−1
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+ 〠
n

i,j=1,i≠j
1 − μ2i + ν2i

p

∗ 1 − μ2j + ν2j
q

1/ n n−1 1/ p+q 1/2

29

Definition 9. Let T = α1, α2,… , αn be a collection of PFNs,
which is partitioned into d distinct sorts P1, P2,… , Pd , where
αi = μi, νi i = 1, 2,… , n and ⋃d

h=1Ph = T . The Pythago-
rean fuzzy weighted interaction partitioned Bonferroni mean
(PFWIPBM) operator is defined as follows:

PFWIPBMp,q α1, α2,… , αn

= 1
d

⊕ d
h=1

1
Ph Ph − 1

⊕ i,j∈Ph ,j≠i wiαi
p ⊗ wjαj

q 1/ p+q ,

30

where p, q ≥ 0, Ph denotes the cardinality of Ph, d is
the number of the partitioned sorts, and ∑d

h=1 Ph = n. W =
w1,w2,… ,wn is the weight vector of α1, α2,… , αn satis-
fying wj ∈ 0, 1 , j = 1, 2,… , n, and ∑n

j=1wj = 1.

Theorem 5. Let αi = μi, νi i = 1, 2,… , n be a collection of
PFNs and p, q ≥ 0. The aggregated result of PFWIPBM opera-
tor is still of a PFN, which has the following form:

PFWIPBMp,q α1, α2,… , αn

= 1
d

⊕ d
h=1

1
∣Ph ∣ ∣Ph ∣ −1

⊕ i,j∈Ph ,j≠i wiαi
p ⊗ wjαj

q
1/ p+q

= 1 −
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q

+
i,j∈Ph , j≠i

η1/ Ph Ph −1 p+q

1/d 1/2

,

d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/p+q

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q
1/d

−
d

h=1 i,j∈Ph ,j≠i
η1/ Ph Ph −1 p+q d

1/2

,

31

where ξ = 1 − 1 − μ2i
wi + 1 − μ2i + ν2i

wi p 1 − 1 − μ2j
wj

+ 1 − μ2j + ν2j
wj q and η = 1 − μ2i + ν2i

wip 1 − μ2j +
ν2j

wjq.

Proof 5.

wiαi = 1 − 1 − μ2i
wi ,

1 − μ2i
wi − 1 − μ2i + ν2i

wi ,

wjαj = 1 − 1 − μ2j
wj ,

1 − μ2j
wj
− 1 − μ2j + ν2j

wj 1/2
,

wiαi
p ⊗ wjαj

q 1 − 1 − μ2i
wi

+ 1 − μ2i + ν2i
wi

p
1 − 1 − μ2j

wj

+ 1 − μ2j + ν2j
wj q

− 1 − μ2i + ν2i
wip

1 − μ2j + ν2j
wjq 1/2

, 1 − 1 − 1 − μ2i
wi

+ 1 − μ2i + ν2i
wi

p
∗ 1 − 1 − μ2j

wj

+ 1 − μ2j + ν2j
wj q 1/2

32

Let

ξ = 1 − 1 − μ2i
wi + 1 − μ2i + ν2i

wi
p

1 − 1 − μ2j
wj + 1 − μ2j + ν2j

wj q
,

η = 1 − μ2i + ν2i
wip 1 − μ2j + ν2j

wjq,

⊕ i,j∈Ph ,j≠i wiαi
p ⊗ wjαj

q

= 1 −
i,j∈Ph ,j≠i

1 − ξ + η ,
i,j∈Ph ,j≠i

1 − ξ + η −
i,j∈Ph ,j≠i

η ,
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1
Ph Ph − 1 ⊕ i,j∈Ph ,j≠i wiαi

p ⊗ wjαj
q

1/ p+q

= 1 −
i,j∈Ph ,j≠i

1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q

−
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q

1/2

,

1 − 1 −
i,j∈Ph ,j≠i

1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q 1/2

,

1
d

⊕ d
h=1

1
Ph Ph − 1 ⊕ i, j∈Ph ,j≠i wiαi

p ⊗ wjαj
q

1/ p+q

= 1 −
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i, j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q

1/d 1/2

,

d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i, j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q

1/d

−
d

h=1 i,j∈Ph ,j≠i
η1/ Ph Ph −1 p+q d

1/2

33

Moreover,

μPFWIPBMp,q
2 + νPFWIPBMp,q

2

= 1 −
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q

1/d

+
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q

1/d

−
d

h=1 i,j∈Ph ,j≠i
η1/ Ph Ph −1 p+q d

= 1 −
d

h=1 i,j∈Ph ,j≠i
η1/ Ph Ph −1 p+q d ,

34

since η = 1 − μ2i + ν2i
wip 1 − μ2j + ν2j

wjq, then 0 ≤ η ≤ 1
and we can get 0 ≤ 1 − d

h=1 i,j∈Ph ,j≠iη
1/ Ph Ph −1 p+q d ≤ 1.

Hence, the aggregated result of the PFWIPBMp,q operator
is still a PFN.

Some special cases of the PFWIPBM operator are dis-
cussed as follows:

(i) If q→ 0, we can get ξ = 1 − 1 − μ2i
wi +

1 − μ2i + ν2i
wi p and η = 1 − μ2i + ν2i

wip. Thus,
we can get

PFWIPBMp,0 α1, α2,… , αn

= 1 −
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/p

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p

1/d 1/2

,

d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/p

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p

1/d

−
d

h=1 i,j∈Ph ,j≠i
η1/ Ph Ph −1 pd

1/2

35
(ii) If q→ 0 and p = 1, we can get ξ = 1 − 1 − μ2i

wi +
1 − μ2i + ν2i

wi and η = 1 − μ2i + ν2i
wi . Thus,

we can get

PFWIPBM1,0 α1, α2,… , αn

= 1 −
d

h=1 i,j∈Ph ,j≠i
1 − μ2i

wi/ Ph Ph −1 d
1/d 1/2

,

d

h=1 i,j∈Ph ,j≠i
1 − μ2i

wi/ Ph Ph −1
1/d

−
d

h=1 i,j∈Ph ,j≠i
1 − μ2i + ν2i

wi/ Ph Ph −1 d

1/2

36
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(iii) If p→ 0, we can get ξ = 1 − 1 − μ2j
wj + 1 − μ2j +

ν2j
wj q and η = 1 − μ2j + ν2j

wjq. Thus, we can get

PFWIPBM0,q α1, α2,… , αn

= 1 −
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/q

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 q

1/d 1/2

,

d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/q

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 q

1/d

−
d

h=1 i,j∈Ph ,j≠i
η1/ Ph Ph −1 qd

1/2

37
(iv) If p→ 0 and q = 1, we can get ξ = 1 − 1 − μ2j

wj +
1 − μ2j + ν2j

wj and η = 1 − μ2j + ν2j
wj . Thus,

we can get

PFWIPBM0,1 α1, α2,… , αn

= 1 −
d

h=1 i,j∈Ph ,j≠i
1 − μ2j

wj/ Ph Ph −1
1/d

,

d

h=1 i,j∈Ph ,j≠i
1 − μ2j

wj/ Ph Ph −1
1/d

−
d

h=1 i,j∈Ph,j≠i
1 − μ2j + ν2j

wj/ Ph Ph −1 d

38

If all the PFNs are partitioned into one sort, the
PFWIPBM operator reduces to the Pythagorean fuzzy
weighted interaction Bonferroni mean (PFWIBM) operator
as follows:

1
∣Ph ∣ ∣Ph ∣ −1

⊕ i,j∈Ph,j≠i wiαi
p ⊗ wjαj

q
1/ p+q

= 1 −
i,j∈Ph ,j≠i

1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q

−
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q
1/2

,

1 − 1 −
i,j∈Ph ,j≠i

1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q 1/2

,

39

where ξ = 1 − 1 − μ2i
wi + 1 − μ2i + ν2i

wi p 1 − 1 − μ2j
wj

+ 1 − μ2j + ν2j
wj q; η = 1 − μ2i + ν2i

wip 1 − μ2j + ν2j
wjq;

p, q ≥ 0; and w1,w2,… ,wn is the weight vector of α1, α2,
… , αn satisfying wj ∈ 0, 1 , j = 1, 2,… , n, and ∑n

j=1wj = 1.

Definition 10. Let T = α1, α2,… , αn be a collection of PFNs,
which is partitioned into d distinct sorts P1, P2,… , Pd , where
αi = μi, νi i = 1, 2,… , n and ⋃d

h=1Ph = T . The Pythago-
rean fuzzy interaction partitioned geometric Bonferroni
mean (PFIPGBM) operator is defined as follows:

PFIPGBMp,q α1, α2,… , αn

= ⊗ d
h=1

1
p + q

⊗ i,j∈Ph ,j≠i pαi ⊕ qαj
1/ Ph Ph −1

1/d
,

40

where p, q ≥ 0, Ph denotes the cardinality of Ph, d is the
number of the partitioned sorts, and ∑d

h=1 Ph = n.

Theorem 6. Let αi = μi, νi i = 1, 2,… , n be a collection of
PFNs and p, q ≥ 0. The aggregated result of PFIPGBM opera-
tor is still of a PFN, which has the following form:

PFIPGBMp,q α1, α2,… , αn

= ⊗ d
h=1

1
p + q

⊗ i,j∈Ph ,j≠i pαi ⊕ qαj
1/ Ph Ph −1

1/d

=
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q
1/d

−
d

h=1 i, j∈Ph ,j≠i
η1/ Ph Ph −1 p+q

1/d
1/2

,

1 −
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q
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+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q
1/d 1/2

,

41

where ξ = 1 − μ2i
p 1 − μ2j

q and η = 1 − μ2i + ν2i
p

1 − μ2j + ν2j
q.

Proof 6.

pαi = 1 − 1 − μ2i
p, 1 − μ2i

p − 1 − μ2i + ν2i
p

qαj = 1 − 1 − μ2j
q
, 1 − μ2j

q
− 1 − μ2j + ν2j

q 1/2
,

pαi ⊕ qαj

= 1 − 1 − μ2i
p 1 − μ2j

q
, 1 − μ2i

p 1 − μ2j
q

− 1 − μ2i + ν2i
p 1 − μ2j + ν2j

q 1/2

42

Let = 1 − μ2i
p 1 − μ2j

q and η = 1 − μ2i + ν2i
p 1 −

μ2j + ν2j
q, then

⊗ i,j∈Ph,j≠i pαi ⊕ qαj

=
i,j∈Ph ,j≠i

1 − ξ + η −
i,j∈Ph ,j≠i

η,

1 −
i,j∈Ph ,j≠i

1 − ξ + η ,

1
p + q

⊗ i,j∈Ph,j≠i pαi ⊕ qαj
1/ Ph Ph −1

= 1 − 1 −
i,j∈Ph ,j≠i

1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q 1/2

1 −
i,j∈Ph ,j≠i

1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q

−
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q
1/2

,

⊗ d
h=1

1
p + q

⊗ i,j∈Ph ,j≠i pαi ⊕ qα j
1/ Ph Ph −1

1/d

=
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph , j≠i

η1/ Ph Ph −1
1/ p+q

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q
1/d

−
d

h=1 i,j∈Ph ,j≠i
η1/ Ph Ph −1 p+q

1/d
1/2

,

1 −
d

h=1
1 − 1 −

i,j∈Ph , j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph , j≠i

η1/ Ph Ph −1
1/ p+q

+
i,j∈Ph , j≠i

η1/ Ph Ph −1 p+q
1/d 1/2

43

Moreover,

μPFIPGBMp,q
2 + νPFIPGBMp,q

2

=
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q
1/d

−
d

h=1 i, j∈Ph ,j≠i
η1/ Ph Ph −1 p+q

1/d

+ 1 −
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q
1/d

= 1 −
d

h=1 i,j∈Ph ,j≠i
η1/ Ph Ph −1 p+q

1/d

,

44

since η = 1 − μ2i + ν2i
p 1 − μ2j + ν2j

q, then 0 ≤ η ≤ 1
and we can get

0 ≤ 1 −
d

h=1 i,j∈Ph,j≠i
η1/ Ph Ph −1 p+q

1/d

≤ 1 45
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Hence, the aggregated result of the PFIPGBMp,q

operator is still a PFN.

Theorem 7 (idempotency). Let T = α1, α2,… , αn be a col-
lection of PFNs. If all αk k = 1, 2,… , n are equal, that is,
αk = α = μ, ν k = 1, 2,… , n , then

PFIPGBMp,q α1, α2,… , αn = α 46

Theorem 8 (commutativity). Let αk = μk, νk k = 1, 2,… ,
n and α′k k = 1, 2,… , n be two collections of PFNs. If
α′k = μ′k, ν′k k = 1, 2,… , n is any permutation of αk =
μk, νk , then

PFIPGBMp,q α1, α2,… , αn = PFIPGBMp,q α1′, α2′,… , αn′

47

Theorem 9 (boundedness). Let α = 1, 0 and α = 0, 1 ,
then

α ≤ PFIPGBMp,q α1, α2,… , αn ≤ α 48

Some special cases of the PFIPGBM operator based
on the parameters p and q are discussed as follows:

(i) When q→ 0, we can get ξ = 1 − μ2i
p, η =

1 − μ2i + ν2i
p,

PFIPGBMp,0 α1, α2,… , αn

=
d

h=1
1 − 1 −

i, j∈Ph , j≠i
1 − 1 − μ2i

p

+ 1 − μ2i + ν2i
p 1/ Ph Ph −1

+
i, j∈Ph , j≠i

1 − μ2i + ν2i
p/ Ph Ph −1

1/p

+
i, j∈Ph , j≠i

1 − μ2i + ν2i
p1/ Ph Ph −1 p

1/d

−
i, j∈Ph , j≠i

1 − 1 − μ2i
p + 1 − μ2i + ν2i

p 1/ Ph Ph −1

+
i, j∈Ph , j≠i

1 −
d

h=1 i,j∈Ph ,j≠i

1 − μ2i + ν2i
p1/ Ph Ph −1 p

1/d 1/2

,

1 −
d

h=1
1 − 1 − μ2i + ν2i

p1/ Ph Ph −1 1/p

+
i, j∈Ph , j≠i

1 − μ2i + ν2i
p1/ Ph Ph −1 p

1/d 1/2

49

(ii) When q→ 0 and p = 1, we can get ξ = 1 − μ2i , η = 1
− μ2i + ν2i , and

PFIPGBMp,0 α1, α2,… , αn

=
d

h=1 i,j∈Ph , j≠i
1 − ν2i

1/ Ph Ph −1
1/d

−
d

h=1 i,j∈Ph ,j≠i
1 − μ2i + ν2i

1/ Ph Ph −1
1/d 1/2

,

1 −
d

h=1 i,j∈Ph ,j≠i
1 − ν2i

1/ Ph Ph −1
1/d 1/2

50
(iii) When p→ 0, we can get ξ = 1 − μ2j

q and η =
1 − μ2j + ν2j

q,

PFIPGBM0,q α1, α2,… , αn

=
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − 1 − μ2j

q

+ 1 − μ2j + ν2j
q 1/ Ph Ph −1

+
i,j∈Ph,j≠i

1 − μ2j + ν2j
q/ Ph Ph −1

1/q

+
i,j∈Ph,j≠i

1 − μ2j + ν2j
q/ Ph Ph −1 q

1/d

−
d

h=1 i,j∈Ph ,j≠i
η1/ Ph Ph −1 q

1/d 1/2

,

1 −
d

h=1
1 − 1 −

i,j∈Ph,j≠i
1 − 1 − μ2j

q

+ 1 − μ2j + ν2j
q 1/ Ph Ph −1

+
i,j∈Ph,j≠i

1 − μ2j + ν2j
q/ Ph Ph −1

1/q

+
i,j∈Ph,j≠i

1 − μ2j + ν2j
q/ Ph Ph −1

1/d 1/2

51
(iv) When p→ 0 and q = 1, we can get ξ = 1 − μ2j and

η = 1 − μ2j + ν2j ,

PFIPGBM0,1 α1, α2,… , αn

=
d

h=1 i,j∈Ph ,j≠i
1 − ν2j

1/ Ph Ph −1
1/d

13Complexity



−
d

h=1 i,j∈Ph ,j≠i
1 − μ2j + ν2j

1/ Ph Ph −1
1/d

1/2,

1 −
d

h=1 i,j∈Ph ,j≠i
1 − ν2j

1/ Ph Ph −1
1/d 1/2

52

If all PFNs are partitioned into one sort, the PFIPGBM
operator reduces to the Pythagorean fuzzy interaction geo-
metric Bonferroni mean (PFIGBM) operator as follows:

PFIGBMp,q α1, α2,… , αn
= 1
p + q

⊗ i,j∈Ph ,j≠i pαi ⊕ qαj
1/ m m−1

= 1 − 1 −
i,j∈Ph ,j≠i

1 − 1 − μ2i
p 1 − μ2j

q

+ 1 − μ2i + ν2i
p 1 − μ2j + ν2j

q 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

1 − μ2i + ν2i
p

1 − μ2j + ν2j
q 1/ Ph Ph −1

1/ p+q 1/2

,

1 −
i,j∈Ph ,j≠i

1 − 1 − μ2i
p 1 − μ2j

q

+ 1 − μ2i + ν2i
p 1 − μ2j + ν2j

q 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

1 − μ2i + ν2i
p

1 − μ2j + ν2j
q 1/ Ph Ph −1

1/ p+q

−
i,j∈Ph ,j≠i

1 − μ2i + ν2i
p

1 − μ2j + ν2j
q 1/ Ph Ph −1 p+q

1/2

,

53

where p, q ≥ 0.

Definition 11. Let T = α1, α2,… , αn be a collection of PFNs,
which is partitioned into d distinct sorts P1, P2,… , Pd and
⋃d

h=1Ph = T . The Pythagorean fuzzy weighted interaction
partitioned geometric Bonferroni mean (PFWIPGBM) oper-
ator is defined as follows:

PFWIPGBMp,q α1, α2,… , αn

= ⊗ d
h=1

1
p + q

⊗ i,j∈Ph ,j≠i p αi
wi

⊕ q αj
wj 1/ Ph Ph −1

1/d
,

54

where αi = μi, νi i = 1, 2,… , n ; p, q ≥ 0; Ph denotes the
cardinality of Ph; d is the number of the partitioned sorts;
and ∑d

h=1 Ph = n. w = w1,w2,… ,wn is the weight vector
of α1, α2,… , αn , wj ≥ 0, j = 1, 2,… , n, and ∑n

j=1wj = 1.

Theorem 10. Let αi = μi, νi i = 1, 2,… , n be a collection of
PFNs. For any p, q ≥ 0, the aggregated result of the
PFWIPGBM operator is still a PFN, which has the following
forms:

PFWIPGBMp,q α1, α2,… , αn

= ⊗ d
h=1

1
p + q

⊗ i,j∈Ph ,j≠i p αi
wi ⊕ q αj

wj 1/ Ph Ph −1
1/d

=
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q
1/d

−
d

h=1 i,j∈Ph , j≠i
η1/ Ph Ph −1 p+q

1/d
1/2

,

1 −
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1 Ph Ph −1
1/ p+q

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q
1/d 1/2

,

55

where ξ = 1 − 1 − ν2i
wi + 1 − μ2i + ν2i

wi p 1 − 1 − ν2j
wj

+ 1 − μ2j + ν2j
wj q and η = 1 − μ2i + ν2i

wip 1 − μ2j +
ν2j

wjq.

Proof 7.

αwi
i = 1 − ν2i

wi − 1 − μ2i + ν2i
wi

1/2
,

1 − 1 − ν2i
wi

1/2
,
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α
wj

j = 1 − ν2j
wj
− 1 − μ2j + ν2j

wj 1/2
,

1 − 1 − ν2j
wj 1/2

,

pαwi
i ⊕ qα

wj

j = 1 − 1 − 1 − ν2i
wi

+ 1 − μ2i + ν2i
wi

p
1 − 1 − ν2j

wj

+ 1 − μ2j + ν2j
wj q 1/2

, 1 − 1 − ν2i
wi

+ 1 − μ2i + ν2i
wi

p
1 − 1 − ν2j

wj

+ 1 − μ2j + ν2j
wj q

− 1 − μ2i + ν2i
wip

1 − μ2j + ν2j
wjq 1/2

56

Let

⊗ i,j∈Ph ,j≠i pαwi
i ⊕ qα

wj

j

= ξ = 1 − 1 − ν2i
wi + 1 − μ2i + ν2i

wi
p

1 − 1 − ν2j
wj + 1 − μ2j + ν2j

wj q
,

η = 1 − μ2i + ν2i
wip 1 − μ2j + ν2j

wjq,

i,j∈Ph ,j≠i
1 − ξ + η −

i,j∈Ph ,j≠i
η,

1 −
i,j∈Ph ,j≠i

1 − ξ + η ,

1
p + q

⊗ i,j∈Ph ,j≠i pαwi
i ⊕ qα

wj

j

1/ Ph Ph −1

= 1 − 1 −
i,j∈Ph ,j≠i

1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph,j≠i

η1/ Ph Ph −1
1/ p+q 1/2

,

1 −
i,j∈Ph,j≠i

1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph,j≠i

η1/ Ph Ph −1
1/ p+q

−
i,j∈Ph,j≠i

η1/ Ph Ph −1 p+q
1/2

⊗ d
h=1

1
p + q

⊗ i,j∈Ph ,j≠i pαwi
i ⊕ qα

wj

j

1/ Ph Ph −1 1/d

=
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q
1/d

−
d

h=1 i,j∈Ph ,j≠i
η1/ Ph Ph −1 p+q

1/d
1/2

,

1 −
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q
1/d 1/2

57

Moreover,

μPFWIPGBMp,q
2 + νPFWIPGBMp,q

2

=
d

h=1
1 − 1 −

i, j∈Ph ,j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q
1/d

−
d

h=1 i,j∈Ph ,j≠i
η1/ Ph Ph −1 p+q

1/d

+ 1

−
d

h=1
1 − 1 −

i, j∈Ph , j≠i
1 − ξ + η 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1
1/ p+q

+
i,j∈Ph ,j≠i

η1/ Ph Ph −1 p+q
1/d

= 1 −
d

h=1 i,j∈Ph ,j≠i
η1/ Ph Ph −1 p+q

1/d

58

Since η = 1 − μ2i + ν2i
wip 1 − μ2j + ν2j

wjq, then 0 ≤
η ≤ 1 and we can get

0 ≤ 1 −
d

h=1 i,j∈Ph ,j≠i
η1/ Ph Ph −1 p+q

1/d

≤ 1 59
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Hence, the aggregated result of the PFWIPGBMp,q is
still a PFN.

Some special cases of the PFWIPGBM operator are dis-
cussed as follows:

(i) If q = 0, we can get ξ = 1 − 1 − ν2i
wi + 1 − μ2i +

ν2i
wi p and η = 1 − μ2i + ν2i

wip.

PFWIPGBMp,0 α1, α2,… , αn

=
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − 1 − 1 − ν2i

wi

+ 1 − μ2i + ν2i
wi

p
+ 1 − μ2i + ν2i

wip
1/ Ph Ph −1

+
i,j∈Ph,j≠i

1 − μ2i + ν2i
wip/ Ph Ph −1

1/p

+
i,j∈Ph,j≠i

1 − μ2i + ν2i
wi/ Ph Ph −1

1/d

−
d

h=1 i,j∈Ph ,j≠i
1 − μ2i + ν2i

wi/ Ph Ph −1
1/d 1/2

,

1 −
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − 1 − 1 − ν2i

wi

+ 1 − μ2i + ν2i
wi

p
+ 1 − μ2i + ν2i

wip/ Ph Ph −1

+
i,j∈Ph,j≠i

1 − μ2i + ν2i
wip/ Ph Ph −1

1/p

+
i,j∈Ph,j≠i

1 − μ2i + ν2i
wi/ Ph Ph −1

1/d 1/2

60

(ii) If q = 0 and p = 1, we can get ξ = 1 − 1 − ν2i
wi +

1 − μ2i + ν2i
wi and η = 1 − μ2i + ν2i

wi .

PFWIPGBM1,0 α1, α2,… , αn
d

h=1 i,j∈Ph ,j≠i
1 − ν2i

wi/ Ph Ph −1
1/d

−
d

h=1 i,j∈Ph ,j≠i
1 − μ2i + ν2i

wi/ Ph Ph −1
1/d 1/2

,

1 −
d

h=1 i,j∈Ph ,j≠i
1 − ν2i

wi/ Ph Ph −1
1/d 1/2

61

(iii) If p = 0, we can get ξ = 1 − 1 − ν2j
wj + 1 − μ2j +

ν2j
wj q and η = 1 − μ2j + ν2j

wjq.

PFWIPGBM0,q α1, α2,… , αn

=
d

h=1
1 − 1 −

i,j∈Ph,j≠i
1 − 1 − 1 − ν2j

wj

+ 1 − μ2j + ν2j
wj q

+ 1 − μ2j + ν2j
wjq 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

1 − μ2j + ν2j
wjq/ Ph Ph −1

1/q

+
i,j∈Ph ,j≠i

1 − μ2j + ν2j
wj/ Ph Ph −1

1/d

−
d

h=1 i,j∈Ph ,j≠i
1 − μ2j + ν2j

wj/ Ph Ph −1
1/d 1/2

,

1 −
d

h=1
1 − 1 −

i,j∈Ph ,j≠i
1 − 1 − 1 − ν2j

wj

+ 1 − μ2j + ν2j
wj q

+ 1 − μ2j + ν2j
wjq 1/ Ph Ph −1

+
i,j∈Ph ,j≠i

1 − μ2j + ν2j
wiq/ Ph Ph −1

1/q

+
i,j∈Ph ,j≠i

1 − μ2j + ν2j
wj/ Ph Ph −1

1/d 1/2

62
(iv) If p = 0, q = 1, we can get ξ = 1 − 1 − ν2j

wj +
1 − μ2j + ν2j

wj and η = 1 − μ2j + ν2j
wj .

PFWIPGBM0,1 α1, α2,… , αn

=
d

h=1 i,j∈Ph,j≠i
1 − ν2j

wj/ Ph Ph −1
1/d

−
d

h=1 i,j∈Ph ,j≠i
1 − μ2j + ν2j

wj/ Ph Ph −1
1/d 1/2

,

1 −
d

h=1 i,j∈Ph ,j≠i
1 − ν2j

wj/ Ph Ph −1
1/d 1/2

63

If all PFNs are partitioned into one sort, the PFWIPGBM
operator reduces to the Pythagorean fuzzy weighted inter-
action geometric Bonferroni mean (PFWIGBM) operator
as follows:
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PFWIGBMp,q α1, α2,… , αn
= 1
p + q

⊗ i,j∈Ph ,j≠i pαwi
i ⊕ qα

wj

j

1/ m m−1

= 1 − 1 −
i,j∈Ph ,j≠i

1 − ξ + η 1/ m m−1

+
i,j∈Ph ,j≠i

η1/ m m−1
1/ p+q 1/2

,

1 −
i,j∈Ph ,j≠i

1 − ξ + η 1 m m−1

+
i,j∈Ph ,j≠i

η1/ m m−1
1/ p+q

−
i,j∈Ph ,j≠i

η1/ m m−1 p+q
1/2

64

4. A New Method for Multiple-Attribute
Decision-Making Based on the Proposed
PFWIPBM and PFWIPGBM Operator

For a MAGDM problem with PFNs, let E1, E2,… , Et be a
collection of decision-makers, let A1, A2,… , Am be a col-
lection of alternatives, and let C = C1, C2,… , Cn be a col-

lection of attributes. D k = d k
ij m×n is a decision matrix

given by decision-maker Ek, where d k
ij = μ k

ij , ν
k
ij is the

evaluation value of Ai with respect to attribute Cj given by
decision-maker Ek. λ1, λ2,… , λt is the weight vector of
decision-makers, where λk ≥ 0 and ∑t

k=1λk = 1. Let w1,w2,
… ,wn be the weight vector of attributes with wj ≥ 0 and
∑n

j=1wj = 1. The proposed method based on the new opera-
tors is presented as follows.

Step 1. Decision-maker Ek gives the evaluation value of alter-
native Ai with respect to attribute Cj using Pythagorean fuzzy

number d k
ij . Then, the decision matrix is formed as D k =

d k
ij m×n, k = 1, 2,… , t.

Step 2. Aggregate different decision matrices into a collec-
tive one by using the PFIPBM operator or the PFIPGBM
operator.

rij = μij, νij = PFIPBMp,q r 1
ij , r

2
ij ,… , r t

ij

= 1
d

⊕ d
h=1

1
Ph

⊕ l∈Ph α
l
i j

p

⊗
1

Ph − 1 ⊕ k∈Ph ,k≠l α
k
ij

q 1/ p+q
,

rij = μij, νij = PFIPGBMp,q r 1
ij , r

2
ij ,… , r t

ij

= ⊗ d
h=1

1
p + q

⊗ l,k∈Ph ,l≠k pα l
ij

⊕ qα k
ij

1/ Ph Ph −1 1/d
,

65

where p, q ≥ 0, Ph denotes the cardinality of Ph, d is the
number of the partitioned sorts and ∑d

h=1 Ph = t. By using
Eq.(8) and Eq. (41), rij = μij, νij can be calculated.

Step 3. Calculate the collective evaluation values of each alter-
natives by using the proposed PFWIPBM operator or
PFWIPGBM operator.

ri = μi, νi = PFWIPBMp,q ri1, ri2,… , rin

= 1
d

⊕ d
h=1

1
Ph Ph − 1

⊕ i,j∈Ph ,j≠i wiαi
p ⊗ wjαj

q
1/ p+q

,

ri = μi, νi = PFWIPGBMp,q ri1, ri2,… , rin

⊗ d
h=1

1
p + q

⊗ i,j∈Ph ,j≠i p αi
wi

⊕ q αj
wj 1/ Ph Ph −1

1/d
,

66

where p, q ≥ 0, Ph denotes the cardinality of Ph, d is the
number of the partitioned sorts, and ∑d

h=1 Ph = n. w1,
w2,… ,wn is the weight vector with wi ≥ 0 and ∑n

j=1wj = 1.
By using (31) and (55), the collective evaluation values ri =
μi, νi i = 1, 2,… ,m of alternatives can be calculated.

Step 4. Calculate the score value S ri and accuracy value
A ri of the collective evaluation value ri of alternative
Ai by using (2) and (3).

Step 5. Rank alternatives according the method introduced
in Definition 3 and select the optimal alternative.

The new method has some desirable advantages as
follows: (1) Pythagorean fuzzy numbers are used as the eval-
uation values, which are more powerful and flexible compar-
ing with other existing tools to model uncertain and fuzzy
information; (2) Bonferroni mean has been used to model
interrelationship of attributes; (3) partitioned Bonferroni
mean operator is used to depict the interrelationship among
different sorts, which can lead to more accurate decision
results; and (4) the interaction between membership and
nonmembership has been considered to avoid unreasonable
results caused by extremely small values of membership or
nonmembership.
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5. An Illustrative Example

An investment company wants to invest a large amount of
money to the following five possible areas: A1—real estate,
A2—energy industry, A3—gold, A4—stock market, and
A5—artificial intellectual company. The company’s board
has decided to appoint an expert panel consisting of three
decision-makers Ei i = 1, 2, 3 to evaluate the investment
opinions on the basis of following five interrelated attributes:
C1—market potential, C2—growth potential, C3—risk of los-
ing capital sum, C4—the amount of interests received, and
C5—inflation. Based on the interrelationship, the attributes
have been partitioned into the following two sets P1 = C1,
C2 and P2 = C3, C4, C5 . The proposed multiple-attribute

group decision-making method is applied for the selection
of the best investment option as follows.

5.1. Decision-Making Steps

Step 1. Decision matrices D k k = 1, 2, 3 are presented by
decision-makers when evaluating alternatives with respect
to attributes. The results are shown in Tables 1–3.

Step 2. The collective decision matrix is obtained by aggre-
gating different decision-makers’ evaluation values. The
decision-makers are partitioned into one sort, and (30) is
used to calculate the collective decision matrix, and the
results are shown in Table 4. Here, p = 1 and q = 2.

Table 1: Pythagorean fuzzy decision matrix D 1 .

C1 C2 C3 C4 C5
A1 (0.65, 0.30) (0.60, 0.10) (0.80, 0.30) (0.75, 0.40) (0.80, 0.10)

A2 (0.70, 0.20) (0.50, 0.30) (0.60, 0.40) (0.80, 0.10) (0.70, 0.30)

A3 (0.50, 0.40) (0.80, 0.20) (0.40, 0.30) (0.90, 0.20) (0.60, 0.30)

A4 (0.50, 0.60) (0.40, 0.20) (0.70, 0.20) (0.60, 0.40) (0.85, 0.15)

A5 (0.80, 0.30) (0.90, 0.00) (0.50, 0.10) (0.40, 0.20) (0.50, 0.30)

Table 2: Pythagorean fuzzy decision matrix D 2 .

C1 C2 C3 C4 C5
A 1 (0.50, 0.40) (0.60, 0.20) (0.85, 0.35) (0.70, 0.30) (0.80, 0.20)

A 2 (0.75, 0.25) (0.40, 0.50) (0.70, 0.30) (0.85, 0.20) (0.60, 0.20)

A 3 (0.60, 0.30) (0.85, 0.10) (0.50, 0.40) (0.90, 0.10) (0.75, 0.25)

A 4 (0.50, 0.65) (0.30, 0.40) (0.80, 0.15) (0.65, 0.30) (0.80, 0.20)

A5 (0.85, 0.20) (0.95, 0.05) (0.60, 0.20) (0.40, 0.30) (0.50, 0.40)

Table 3: Pythagorean fuzzy decision matrix D 3 .

C1 C2 C3 C4 C5
A1 (0.60, 0.35) (0.50, 0.30) (0.80, 0.40) (0.50, 0.25) (0.85, 0.25)

A2 (0.80, 0.20) (0.30, 0.40) (0.65, 0.20) (0.90, 0.20) (0.50, 0.40)

A3 (0.70, 0.30) (0.80, 0.25) (0.60, 0.30) (0.80, 0.30) (0.50, 0.30)

A4 (0.50, 0.50) (0.40, 0.20) (0.85, 0.10) (0.60, 0.20) (0.90, 0.10)

A5 (0.75, 0.35) (0.80, 0.05) (0.55, 0.25) (0.30, 0.40) (0.40, 0.50)

Table 4: Pythagorean fuzzy collective decision matrix D.

C1 C2 C3 C4 C5
A1 (0.5889, 0.3510) (0.5706, 0.2119) (0.8206, 0.3515) (0.6765, 0.3335) (0.8210, 0.1927)

A2 (0.7541, 0.2187) (0.4115, 0.4089) (0.6545, 0.3081) (0.8589, 0.1742) (0.6122, 0.3090)

A3 (0.6106, 0.3355) (0.8186, 0.1889) (0.5109, 0.3386) (0.8738, 0.2065) (0.6350, 0.2869)

A4 (0.5043, 0.5882) (0.3712, 0.2815) (0.7715, 0.1524) (0.6197, 0.3102) (0.8555, 0.1521)

A5 (0.8035, 0.2864) (0.9010, 0.0448) (0.5531, 0.1958) (0.3709, 0.3100) (0.4711, 0.4070)
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Step 3. The attribute weight vector is given as (0.10, 0.20, 0.25,
0.30, 0.15). The alternative’s collective evaluation values are
calculated by using the PFWIPBM operator and p = 1, q = 2.
The results are as follows

r1 = 0 3563, 0 3563 ,
r2 = 0 3514, 0 1674 ,
r3 = 0 3892, 0 1629 ,
r4 = 0 3222, 0 1721 ,
r5 = 0 3588, 0 1374

67

Step 4. The scores of ri can be calculated as follows:

S r1 = 0 0904,
S r2 = 0 0955,
S r3 = 0 1249,
S r4 = 0 0742,
S r5 = 0 1099

68

Step 5. The alternatives can be ranked according to the rank-
ing of scores S ri i = 1, 2,⋯, 5 to get

A3 > A5 > A2 > A1 > A4 69

The optimal alternative is A3.

5.2. Comparison Analysis and Discussions

5.2.1. Influence of the Parameters p and q. In order to illus-
trate influence of parameters p and q on the ranking results,
we consider different p and q in Steps 2 and 3. For simplicity,
the same p and q are used in Steps 2 and 3. For example, if
p = 1 and q = 2 are used in Step 2, then p = 1 and q = 2 are also
used in Step 3. The results are shown in Table 5; here, OA
means the optimal alternative. From the results, we can see
that A5 is the optimal alternative in the cases of p = 1
and q = 3 and p = 2 and q = 2 and A3 becomes the optimal
alternative in other cases. If p = 1 and q = 1 and p = 1 and
q = 2, the optimal alternative is A3 and the suboptimal

alternative is A5. With the increase of p and q, the suboptimal
becomes A2 and A5 is ranked last. A3 has relatively larger
memberships and relatively smaller nonmemberships com-
paring with other alternatives. Though A5 has the largest
membership and the smallest nonmembership among all
the evaluation values, it is still ranked last with increasing p
and q due to the intersection between membership and non-
membership that is considered. The rankings of alternatives
change with different p and q.

The larger the p and q, the more interaction can be
emphasized. But in special cases of p = 0 or q = 0, there
is no interaction between input arguments. From the view-
point of the risk attitudes, decision-makers are more risk-
seeking with the increase of p and q. By taking different p
and q in the PFIPBM operator, the PFIPGBM operator, the
PFWIPBM, or the PFWIPGBM operator, different risk atti-
tudes of decision-makers can be reflected and different
aspects of decision problem can also be reflected, since the
arithmetic aggregation operator stresses the impact of the
overall input arguments while the geometric aggregation
operator emphasizes the balance of the input arguments
[47]. In real decision-making, decision-makers can select
the corresponding aggregation operator and p and q accord-
ing to their preferences and real needs. For simplicity, the
decision-makers can select p = 1 and q = 1 if the decision-
maker is risk averse, which is simple and intuitive.

5.2.2. Comparison with OtherMethods. If interactions between
the memberships and nonmemberships are not considered,
the PFIPBM operator and the PFWIPBM operator reduce to
the Pythagorean fuzzy partitioned Bonferroni mean (PFPBM)
operator and the Pythagorean fuzzy weighted partitioned
Bonferroni mean (PFWPBM) operator as follows:

PFPBMp,q α1, α2,… , αn

= 1
d

⊕ d
h=1

1
Ph

⊕ i∈Ph
αpi ⊗

1
Ph − 1 ⊕ j∈Ph ,j≠iα

q
j

1/ p+q

= 1 −
d

h=1
1 − 1 −

i∈Ph

1 − μpi ξ
2 1/ Ph

1/ p+q 1/d 1/2

,

Table 5: Results of different p and q considering interaction.

S α1 S α2 S α3 S α4 S α5 Ranking of alternatives OA

p = 1, q = 1 0.0904 0.0950 0.1256 0.0734 0.1091 A3 > A5 > A2 > A1 > A4 A3

p = 1, q = 2 0.0904 0.0955 0.1249 0.0742 0.1099 A3 > A5 > A2 > A1 > A4 A3

p = 1, q = 3 0.0264 0.0958 0.1163 0.0754 0.2574 A5 > A3 > A2 > A4 > A1 A5

p = 2, q = 2 −0.0268 0.0891 0.0630 0.0743 0.2040 A5 > A2 > A4 > A3 > A1 A5

p = 1, q = 4 −0.1183 0.2049 0.5881 0.1483 −0.3674 A3 > A2 > A4 > A1 > A5 A3

p = 2, q = 3 −0.2481 0.1444 0.4812 0.0797 −0.4889 A3 > A2 > A4 > A1 > A5 A3

p = 1, q = 5 −0.0570 0.2625 0.6405 0.2327 −0.3190 A3 > A2 > A4 > A1 > A5 A3

p = 2, q = 4 −0.2037 0.1983 0.5309 0.1647 −0.4507 A3 > A2 > A4 > A1 > A5 A3

p = 3, q = 3 −0.2567 0.1791 0.4917 0.1474 −0.5051 A3 > A2 > A4 > A1 > A5 A3
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d

h=1
1 − 1 −

i∈Ph

1 − 1 − ν2i
p

1 − η2
1/ Ph

1/ p+q 1/d 1/2

,
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where

ξ = 1 −
j∈Ph ,j≠i

1 − μqj
2 1/ Ph −1

,

η =
j∈Ph ,j≠i

1 − 1 − ν2j
q 1/ Ph −1 ,

PFWPBMp,q α1, α2,… , αn

= 1
d

⊕ d
h=1

1
Ph Ph − 1 ⊕ i,j∈Ph ,j≠i wiα

p
i ⊗ wjα

q
j
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= 1 −
d
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2 wi

1 − 1 − μqj
2 wj 1/ d Ph Ph −1 1/2

,

d
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q wj 1/ d Ph Ph −1 1/2
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If the PFPBMp,q operator is used in Step 2 and the P
FWPBMp,q operator is used in Step 3; the interactions
between memberships and nonmemberships are not con-
sidered and the results are shown in Table 6. From the
results, we can see that the ranking of alternatives is different
from that of considered interaction between memberships

and nonmemberships. A5 becomes the optimal alternative
and A3 becomes the suboptimal alternative in all cases. In
fact, the rankings of alternatives are the same except for
the case of p = 1 and q = 1. If interactions are not considered,
the effect of memberships will reduce if one membership is
nearly approaching zero in multiply operation no matter what
about the other memberships and the effect of nonmember-
ships will be reduced if one nonmembership is nearly
approaching zero in sum operation no matter what about
the other nonmemberships. These shortcomings can be over-
come by considering interactions between memberships and
nonmemberships.

If the TOPSIS method has been used, the Pythagorean
fuzzy interaction averaging (PFIA) operator is used to aggre-
gate different evaluation values given by different decision-
makers into collective ones. Then, calculate the weighted
decision matrix D′ as in Table 7. The Pythagorean fuzzy
positive ideal solution (PFPIS) can be determined as r+ =
r+1 , r+2 ,… , r+5 = maxjr1j, maxjr2j,… , maxjr5j = 0 3148,
0 1513 , 0 5329, 0 0396 , 0 7021, 0 1073 , 0 5935, 0 1907
, 0 4240, 0 1022 . The Pythagorean fuzzy negative ideal
solution (PFNIS) can be determined as r− = r−1 , r−2 ,… , r−5 =
minjr1j, minjr2j,… , minjr5j = 0 1684, 0 2434 , 0 1908,
0 2058 , 0 2700, 0 1954 , 0 2082, 0 1828 , 0 1918, 0 1847 .
The distances of each alternative evaluation values to the
PFPIS and the PFNIS can be calculated by using the fol-
lowing equations, respectively, d+i =∑5

j=1d rij, r+j , d−i =∑5
j=1

d rij, r−j i = 1, 2,… , 5 . We can get d+1 = 0 3196, d+2 =
0 2887, d+3 = 0 2150, d+4 = 0 3023, d+5 = 0 2978, d−1 = 0 3098,
d−2 = 0 2454, d−3 = 0 3047, d−4 = 0 2278, and d−5 = 0 2175. The
closeness coefficients can be calculated by the equation
CCi = d−i / d−i + d+i , and we can get CC1 = 0 4923, CC2 =
0 4594, CC3 = 0 5863, CC4 = 0 4297 and CC5 = 0 4221. The
alternatives can be ranked according to the ranking of CCi
to get A3 > A2 > A1 > A4 > A5. The optimal alternative is
A3. The optimal alternative is the same as the most case
of the proposed method, but the rankings of alternatives
are slightly different.

αij = PFIA α
1
ij , α

2
ij ,… , α t

ij = 1
t

⊕ t
k=1α

k
ij

Table 6: Results of different p and q without considering interaction.

S α1 S α2 S α3 S α4 S α5 Ranking of alternatives OA

p = 1, q = 1 −0.5132 −0.5198 −0.5082 −0.5213 −0.4771 A5 > A3 > A1 > A2 > A4 A5

p = 1, q = 2 −0.5041 −0.5030 −0.4830 −0.5110 −0.4519 A5 > A3 > A2 > A1 > A4 A5

p = 1, q = 3 −0.4892 −0.4790 −0.4437 −0.4946 −0.4128 A5 > A3 > A2 > A1 > A4 A5

p = 2, q = 2 −0.5103 −0.5073 −0.4989 −0.5185 −0.4678 A5 > A3 > A2 > A1 > A4 A5

p = 1, q = 4 −0.4738 −0.4557 −0.4063 −0.4791 −0.3758 A5 > A3 > A2 > A1 > A4 A5

p = 2, q = 3 −0.5046 −0.4962 −0.4833 −0.5121 −0.4522 A5 > A3 > A2 > A1 > A4 A5

p = 1, q = 5 −0.4599 −0.4349 −0.3743 −0.4656 −0.3444 A5 > A3 > A2 > A1 > A4 A5

p = 2, q = 4 −0.4943 −0.4798 −0.4563 −0.5009 −0.4260 A5 > A3 > A2 > A1 > A4 A5

p = 3, q = 3 −0.5073 −0.4965 −0.4914 −0.5155 −0.4585 A5 > A3 > A2 > A1 > A4 A5
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If interaction is not considered in TOPSIS as the
method in [48], the Pythagorean fuzzy averaging (PFA)
operator is first used to aggregate evaluation values given by
different decision-makers into collective ones. The PFA oper-
ator is defined as

αij = PFA α
1
ij , α

2
ij ,… , α t

ij = 1
t
⊕ t

k=1α
k
ij

= 1 −
t

k=1
1 − μ

k
ij

2 1/t
,

t

k=1
ν

k
ij

1/t 73

The weighted collective decision matrix D′′ is calcu-
lated as in Table 8, where the weight vector is also taken
as 0 10, 0 20, 0 25, 0 30, 0 15 . The PFPIS can be deter-
mined as r+ = 0 2893, 0 8577 , 0 5329, 0 0000 , 0 4501,
0 6163 , 0 5721, 0 5757 , 0 4240, 0 7479 . The PFNIS can
be determined as r− = 0 1684, 0 9470 , 0 1908, 0 8290 ,
0 2700, 0 7580 , 0 2082, 0 6887 , 0 1918, 0 8688 . The
distances of alternative’s weighted evaluation values to
the PFPIS and the PFNIS can be calculated as d+1 =
0 7299, d+2 = 0 7030, d+3 = 0 6430, d+4 = 0 6901, d+5 = 0 4851,
d−1 = 0 4651, d−2 = 0 4159, d−3 = 0 5009, d−4 = 0 4361, d−5 =
0 6523. The closeness coefficients can be calculated as
CC1 = 0 3892, CC2 = 0 3717, CC3 = 0 4379, CC4 = 0 3872,
and CC5 = 0 5735. The alternatives can be ranked as
A5 > A3 > A1 > A4 > A2 and the optimal alternative is A5.

If attributes are all are partitioned into one sort, (37) is
used to aggregate alternative evaluation values into collective
ones in Step 3 and other steps are the same. Then, the results
are shown in Table 9. From the results, we can see that A3
becomes the optimal alternative in the cases of p = 1, q = 1,
p = 1, and q = 2 and A5 becomes the optimal alternative in

Table 7: Pythagorean fuzzy weighted decision matrix D′.

C1 C2 C3 C4 C5
A1 (0.2046,0.1402) (0.2751,0.1129) (0.4920,0.2945) (0.4046,0.2437) (0.3914,0.1297)

A2 (0.2839,0.1038) (0.1908,0.2058) (0.5840,0.1981) (0.5721,0.1664) (0.2607,0.1515)

A3 (0.2141,0.1358) (0.4459,0.1350) (0.4507,0.1954) (0.5935,0.1907) (0.2740,0.1408)

A4 (0.1684,0.2434) (0.1706,0.1366) (0.7021,0.1073) (0.3664,0.2098) (0.4240,0.1022)

A5 (0.3148,0.1513) (0.5329,0.0396) (0.4892,0.1139) (0.2082,0.1828) (0.1918,0.1847)

Table 8: Pythagorean fuzzy weighted decision matrix D″.

C1 C2 C3 C4 C5
A1 (0.2046,0.8997) (0.2751,0.7110) (0.4920,0.7678) (0.4046,0.7042) (0.3914,0.7673)

A2 (0.2839,0.8577) (0.3245,0.8290) (0.3603,0.7329) (0.5721,0.5757) (0.2607,0.8299)

A3 (0.2141,0.8951) (0.6970,0.7024) (0.2700,0.7580) (0.5935,0.5995) (0.2740,0.8272)

A4 (0.1684,0.9470) (0.2912,0.7591) (0.4501,0.6163) (0.3664,0.6887) (0.4240,0.7479)

A5 (0.3148,0.8792) (0.7955,0.0000) (0.2952,0.6431) (0.2082,0.6887) (0.1918,0.8688)

Table 9: Results of different p and q considering interaction with one sort.

S α1 S α2 S α3 S α4 S α5 Ranking of alternatives OA

p = 1, q = 1 0.1709 0.1893 0.2253 0.1583 0.1706 A3 > A2 > A1 > A5 > A4 A3

p = 1, q = 2 0.0979 0.1073 0.1274 0.0903 0.0953 A3 > A2 > A1 > A5 > A4 A3

p = 1, q = 3 0.4854 0.1068 0.5529 0.0920 0.5541 A5 > A3 > A1 > A2 > A4 A5

p = 2, q = 2 0.4507 0.5012 0.5184 0.0904 0.5241 A5 > A2 > A3 > A1 > A4 A5

p = 1, q = 4 0.4996 0.6237 0.5562 0.5878 0.5462 A2 > A4 > A3 > A5 > A1 A2

p = 2, q = 3 0.4183 0.5855 0.4759 0.5463 0.4801 A2 > A4 > A5 > A3 > A1 A2

p = 1, q = 5 0.5807 0.6883 0.6175 0.6697 0.6104 A2 > A4 > A3 > A5 > A1 A2

p = 2, q = 4 0.5076 0.6526 0.5392 0.6334 0.5463 A2 > A4 > A5 > A3 > A1 A2

p = 3, q = 3 0.4883 0.6419 0.5146 0.6245 0.5285 A2 > A4 > A5 > A3 > A1 A2
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the cases of p = 1 and q = 3 and p = 2 and q = 2. A2 becomes
the optimal alternative in the other cases. The results are
different from those of the partitioned one. If attributes can
be divided into several classes and there is interaction rela-
tionships among the same class and there is no interaction
between classes, the PFWIPBM operator can be used to
assure accuracy and reasonableness of decision results.

If attributes have been partitioned into one sort and
interaction between membership and nonmembership is
not considered, the Pythagorean fuzzy Bonferroni mean
PFBMp,q operator [43] is used in Step 2 and Pythagorean
fuzzy weighted Bonferroni mean PFWBMp,q operator is
used in Step 3; the results are shown in Table 10. A5 becomes
the optimal alternative and A3 becomes the suboptimal
alternative. Though the optimal and suboptimal alternatives
are the same as those of partitioned cases, the ranking of
alternatives is different.

PFBMp,q α1, α2,… , αn
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If the PFIA operator is used in aggregating different
decision-makers’ evaluation values into collective ones in
Step 2 and the Pythagorean fuzzy weighted interaction aver-
aging (PFIWA) operator is used in aggregating alternatives’
evaluation values into collective ones in Step 3, the collective
evaluation values of alternatives are as r1 = 0 7243, 0 3242 ,
r2 = 0 7188, 0 2748 , r3 = 0 7586, 0 2535 , r4 = 0 6825,
0 2825 , and r5 = 0 6367, 0 2416 . The scores of alternatives
can be calculated as S r1 = 0 4195, S r2 = 0 4411, S r3 =
0 5112, S r4 = 0 3860, and S r5 = 0 3990, then S r3 >
S r2 > S r1 > S r5 > S r4 . The alternatives can be ranked
accordingly as A3 > A2 > A1 > A5 > A4. The optimal alter-
native is A3.

αi = PFIWA αi1, αi2,… , αin = ⊕ n
j=1wjαij

= 1 −
n

j=1
1 − μ2ij

wj ,

n

j=1
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−

n
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1 − μ2ij + ν2ij
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If the PFA operator is used in Step 2 and the PFWA
operator is used in the second phase [38], the results are

Table 10: Results of different p and q without considering interaction with one sort.

S α1 S α2 S α3 S α4 S α5 Ranking of alternatives OA

p = 1, q = 1 −0.4835 −0.4958 −0.4628 −0.4836 −0.4528 A5 > A3 > A1 > A4 > A2 A5

p = 1, q = 2 −0.4628 −0.4627 −0.4270 −0.4496 −0.4147 A5 > A3 > A4 > A2 > A1 A5

p = 1, q = 3 −0.4399 −0.4171 −0.3838 −0.4183 −0.3669 A5 > A3 > A2 > A4 > A1 A5

p = 2, q = 2 −0.4567 −0.4625 −0.4195 −0.4358 −0.4100 A5 > A3 > A4 > A1 > A2 A5

p = 1, q = 4 −0.4199 −0.3720 −0.3441 −0.3920 −0.3225 A5 > A3 > A2 > A4 > A1 A5

p = 2, q = 3 −0.4424 −0.4384 −0.3939 −0.4156 −0.3830 A5 > A3 > A4 > A2 > A1 A5

p = 1, q = 5 −0.4029 −0.3317 −0.3094 −0.3726 −0.2843 A5 > A3 > A2 > A4 > A1 A5

p = 2, q = 4 −0.4272 −0.4057 −0.3649 −0.3968 −0.3507 A5 > A3 > A2 > A4 > A1 A5

p = 3, q = 3 −0.4347 −0.4335 −0.3821 −0.4036 −0.3734 A5 > A3 > A4 > A2 > A1 A5
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as r1 = 0 7243, 0 2654 , r2 = 0 7188, 0 2489 , r3 = 0 7586,
0 2364 , r4 = 0 6825, 0 2282 , and r5 = 0 6367, 0 0000 ,
where

αi = PFWA αi1, αi2,… , αin = ⊕ n
j=1wjαij

= 1 −
n

j=1
1 − μ2ij

wj ,
n

j=1
ν
wj

ij
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The scores can be calculated as S r1 = 0 4542, S r2 =
0 4547, S r3 = 0 5195, S r4 = 0 4138, and S r5 = 0 4574.
The alternatives can be ranked accordingly to the ranking
of scores to get A3 > A5 > A2 > A1 > A4. The optimal alter-
native is A3.

As discussed above, we summarize differences
between our proposed method with the existing methods in
Table 11. In a word, we can know from Table 11 that
our proposed method is based on the Pythagorean fuzzy
numbers and partitioned Bonferroni mean operator with
parameters p and q. Moreover, interaction between mem-
bership and nonmembership has been considered by using
the Pythagorean fuzzy interaction operation laws and inter-
action between attributes have been considered by using the
Bonferroni mean. Hence the new method is more general
and flexible than the existing methods. Partitioned the input
arguments into several sorts can accurately model the inter-
relationship between attributes.

6. Conclusions

Some Pythagorean fuzzy interaction partitioned Bonferroni
mean operators have been developed in this paper including
the Pythagorean fuzzy interaction partitioned Bonferroni
mean operator, the Pythagorean fuzzy weighted interaction
partitioned Bonferroni mean operator, the Pythagorean
fuzzy interaction partitioned geometric Bonferroni mean
operator, and the Pythagorean fuzzy weighted interaction
partitioned geometric Bonferroni mean operator. The Bon-
ferroni mean has been used to model interaction between
attributes. The attributes have been partitioned into several
classes and the attributes in the same class are interrelated,
which have been modeled by using Bonferroni mean, while
there is no interrelationship between attributes between
different classes. Some properties and some special cases
of the new aggregation operators have been studied. We have
developed new multiple-attribute group decision-making
method based on the new aggregation operators. We applied
the new method to solve the problem of selecting an invest-
ment company. Some comparisons with other existing
methods have been made to show its effectiveness and
practical advantages.

The proposed method has some desirable advantages: (1)
the evaluation values are given as Pythagorean fuzzy
numbers, which are more flexible than other tools to model
fuzzy and uncertain information; (2) interaction operations
between Pythagorean fuzzy numbers can overcome the
drawback of the existing methods; (3) interrelationship of
attributes have been modeled by using the Bonferroni mean.

By using the partitioned structure of attributes considering
relationship among attributes, the proposed method can
model interrelationship among attributes more meaning-
fully and accurately; and (4) since attributes in different
sorts are not related, the new aggregation operators can
avoid the conjunction effect of unrelated attributes during
aggregation. The disadvantage of the new method is that
the computation amount has increased comparing with
the existing methods. But it is still a polynomial time
algorithm and can be calculated easily by using software
such as MATLAB and Excel.

The proposed method can be used to handle real-
life problems involving fuzziness and uncertainty in the
decision-making process. In the future, we will apply it in a
wide range of practical problems such as supplier selection
problems and site selection problems. Although the proposed
operators have been developed in the context of decision-
making, they can also be applied in the fields of fuzzy cluster-
ing, pattern recognition, and so on. It is also meaningful to
investigate other characteristics of the proposed operators,
such as combing with Choquet integral and Dempster-
Shafer belief structure. We will also extend the partitioned
Bonferroni mean operators to other uncertain environments
[49–54], such as interval neutrosophic sets, linguistic hesitant
intuitionistic fuzzy sets, hesitant Pythagorean fuzzy sets, and
q-rung fuzzy sets.
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Table 11: The characteristic comparisons of different methods.

Methods
Information by
Pythagorean
fuzzy number

Whether to consider
the interrelationships
between aggregating

arguments

Liang et al. [43] Yes Yes

Xu and Yager [38] No Yes

Zhang and Xu [26] Yes No

Our proposed method Yes Yes

Methods

Whether to
consider the

partition of the
input arguments

Whether to consider
the interactions

between membership
and nonmembership

Liang et al. [43] No No

Xu and Yager [38] No No

Zhang and Xu [26] No No

Our proposed method Yes Yes
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