
Evidence for mixed rationalities in preference formation
Supplementary Information: Fitting algorithm

Alexandru-Ionuţ Băbeanu and Diego Garlaschelli
Lorentz Institute for Theoretical Physics, Leiden University, The Netherlands

(Dated: October 19, 2017)

This document explains the procedure used for simul-
taneously tuning the α and β parameters of either of the
two stochastic models of culture, such that a match is
obtained between the model and the empirical data, in
terms of the averages of the AIVD and SIVD observables:

〈AIVD(α, β)〉 = AIVDemp, (1)
〈SIVD(α, β)〉 = SIVDemp,

for a fixed number of prototypes k, assuming that either
of the two equalities above is satisfied when there is an
overlap between the uncertainty range associated to the
quantity on the left side and that associated to the quan-
tity on the right side.

There are multiple reasons why this problem is chal-
lenging:

• an analytical formula for the 〈SIVD(α, β)〉 quantity
could not be found

• although an analytical formula for the
〈AIVD(α, β)〉 quantity was found1 (see main
text), this formula does not allow for inverting the
function and for analytically solving the system

• the 〈SIVD(α, β)〉, AIVDemp and SIVDemp quan-
tities have non-vanishing uncertainty ranges at-
tached to them

Assuming that there exists a unique solution to the
above system, a numerical approach for solving it is
in order. The method used here relies on a nested, 2-
level, adapted bisection method. The first (inner) level
of the method takes care of fitting, via bisection, the first
quantity for a fixed β – it finds the α value for which
〈AIVD(α, β)〉 = AIVDemp is satisfied for a given β. The
second (outer) level of the method takes care of fitting,
via bisection, the second quantity – it finds the β for
which 〈SIVD(α(β), β)〉 = SIVDemp is satisfied, where
α(β) is provided by the first level. This choice of as-
signing the AIVD and SIVD observables and the α and
β parameters to the two levels in this manner is numeri-
cally convenient for several reasons. First, the AIVD can
be much more easily computed via the analytical formula,
such that assigning it to the first level, which is repeated
multiple times (once for each value of β that the second
level samples) is more effective. Second, the model AIVD

1 Which implies that the specific uncertainty range of
〈AIVD(α, β)〉 has a null width.

turns out to be relatively insensitive to β for relatively
many combinations of values for the k and α parameters,
such that fitting AIVD in terms of α within the first level
makes more sense.

In addition to adaptations required by the 2-level
scheme, other adaptations with respect to the traditional
bisection method are needed for allowing it to work with
model and empirical uncertainties, as well as to enhance
the numerical precision for the 〈SIVD(α, β)〉 quantity
when needed, to the extent needed. Moreover, in addi-
tion to statistical errors originating directly in the empir-
ical uncertainties of the AIVDemp and SIVDemp quanti-
ties and in the numerical uncertainty of the model SIVD
quantity, the second level of the method is also affected
by “systematic errors” on 〈SIVD(α(β), β)〉, originating
in the fitting procedure at the first level, and indirectly
in the empirical uncertainty of AIVDemp – which for all
practical purposes can be assumed fixed, thus motivat-
ing using the term “systematic” for its propagation to
the model SIVD at the second level.

In order to address all these challenges in a self con-
sistent way, the method developed here turns out to be
quite sophisticated, which is why it is explained in de-
tail in the following four sections. Specifically, Sec. A
focuses on the first fitting level, Sec. B focuses on the
second fitting level, Sec. C describes how various sub-
problems invoked by the previous two sections are ad-
dressed, while Sec. D describes how the tools presented
in Sections A, B and C are used for producing some of
the results in the main text. The method is potentially
of use for addressing other problems that are formally
similar to the problem presented here, although certain
adaptations might be needed.

Since the method has mostly an algorithmic nature,
much of it is explained via pseudocode, such that a few
conventions that will be extensively used below and that
are not necessarily standard are worth mentioning. First,
the “=” symbol is used with double meaning: in a nor-
mal statement (such as “a = b”) it is to be interpreted
as an assignment (of the value of variable b to variable
a); in the header of an if or while statement (such as
“if a = b”) it is to be interpreted as a check (of whether
the values of a and b are equal). A variable is implicitly
declared when it first appears, either on the left side of
an assignment or in the header of a function definition
(in which case it is also called an argument or function
parameter); the scope of the variable is the part of the
function below and to the right of the place where it first
appears. Functions are distinguished from each other
through their names, their numbers of arguments and

2

the types of those arguments 2 On the other hand, the
arguments of a function are distinguished from each other
via their order. Some variables are actually ordered se-
quences of other variables, which in turn are denoted by
(x1, .., xn) notation. In the same spirit, an assignments
of the type X = (x1, .., xn) is referred to as a “variable
compression”, while one of the type (x1, .., xn) = X is
referred to as a “variable decompression”. These allow
for keeping the pseudocode compact, while still rigorous.
An uncertainty range refers to an interval [x−δx, x+δx],
where x is a mean and δx is an error relying (directly,
or indirectly) on a standard mean error calculation, the
uncertainty range being formally encoded by the sorted
(x, δx) sequence. Note that the square brackets “[,]” are
consistently used to denote an interval of real numbers,
while the round brackets “(,)” are used to denote an or-
dered sequence of two or more elements. Finally, it is
worth noting that the pseudocode relies heavily on func-
tion calls and on recursive definitions, and that there
is a certain parallelism between the functions defined in
Sec. A and those defined in Sec. B.

A. First level fitting

This section presents the algorithm part concerned
with the first fitting level. The algorithm is split in
three main functions: Fit-1, Bisect-1, Displace-1, all
of them returning the same type of information. Fit-1
always calls Bisect-1, while the latter may or may not
call Displace-1 at any stage, which in turn may or may
not call Bisect-1. The pseudocode also invokes two con-
stants, which are assumed to be known a-priori and avail-
able for use anywhere in these three functions. The first
constant is δα, which controls the desired resolution (δα
is essentially a grid-spacing) in the α parameter, which is
here set to the inverse of the number of features: δα = 1

F
3. The second constant is AIVDemp, which stands for the
AIVD uncertainty range for the empirical data.

Function Fit-1 acts as an interface for the first-level
fitting, which consists of tuning the α parameter, for
given values of β and k, such that the AIVD quantity
matches the empirical value. Here, β is a real number
belonging to [0, 1] while k is a strictly positive integer
number. The method returns the left (αL) and right
(αR) margins of the tightest α interval found, together
with the estimated α match within this interval assum-
ing linearity (αfit) and an associated error (αerr). It as-
sumes that the empirical AIVD can actually be uniquely
matched by varying α, for the given values of β and k.
The method essentially carries out some initializations
(Lines 2,3), before passing the task to Bisect-1.

1: function Fit-1(β, k)
2: (αL, αR) = Init-1(δα) . initializing the α-interval
3: AIVDL = 〈AIVD〉kαL,β

; AIVDR = 〈AIVD〉kαR,β
. analytic calculations (see main text)

4: return Bisect-1(αL, αR,AIVDL,AIVDR, β, k)
5: end function

Function Bisect-1 is mostly a typical, recur-
sive implementation of the bisection method. This
sequentially narrows down the [αL, αR] interval,
such that at each stage the empirical AIVD is
contained, namely that min(AIVDL,AIVDR) <
AIVDemp < max(AIVDL,AIVDR) is satisfied, where the
AIVDL,AIVDR values correspond to the left and right
margins of the α interval. Here, αL, αR,AIVDL,AIVDR

are real numbers belonging to [0, 1] while β and k are of
the same type as in Fit-1. It returns the same type of
information as Fit-1. The method converges, the fitting
being considered complete, when the interval has reached
the δα resolution limit, in which case estimations for an

“ideal” α inside this interval αfit and its error αerr are
made and returned together with the boundaries of the
interval (lines 3-6). Moreover, the method may also call
Displace-1 in case the AIVDM value corresponding to
the computed midpoint αM happens to fall within the
AIVDemp uncertainty range (lines 8-10) – this is needed
in order to keep the output format consistent and the
final α interval relatively narrow. Otherwise, the method
decides to zoom in (by calling itself) on either the left or
right halves of the interval, depending on the position of
AIVDemp with respect to AIVDL, AIVDM and AIVDR

(lines 11-16).

2 Sometimes this can be confusing, since the types of the argu-
ments are only mentioned in the text before the definition of
the function. In these cases however, the reader is guided by
the names of the arguments, which in the function definition are

kept as close as possible to those in the function call(s).
3 There is no clear lower bound on δα, regardless of which stochas-

tic model is used, but 1
F

is a lower bound on δβ when PG is used,

so for simplicity the choice δα = δβ = 1
F

is made.

3

1: function Bisect-1(αL, αR,AIVDL,AIVDR, β, k)
2: αM = Middle(αL, αR, δα) . computing midpoint on the α grid
3: if ¬Distinct(αM , αL, αR) then
4: (αfit, αerr) = InternFitLin-1(αL, αR,AIVDL,AIVDR,AIVDemp)
5: return (αL, αR, αfit, αerr) . fitting complete
6: end if
7: AIVDM = 〈AIVD〉kαM ,β . analytic calculations (see main text)
8: if Match-1(AIVDM ,AIVDemp) then
9: return Displace-1(αL, αR, αM ,AIVDL,AIVDR, β, k)

10: end if
11: if Ord-1(AIVDL,AIVDR) = Ord-1(AIVDM ,AIVDemp) then
12: αL = αM ; AIVDL = AIVDM . selecting right interval
13: else
14: αR = αM ; AIVDR = AIVDM . selecting left interval
15: end if
16: return Bisect-1(αL, αR,AIVDL,AIVDR, β, k) . zooming in on selected interval
17: end function

Function Displace-1 attempts to displace the mid-
point αM previously calculated at some stage in Bisect-
1, in a way that its associated AIVD would fall outside
the empirical uncertainty range. This function has all the
arguments of Bisect-1 and αM as an additional one,
which is a real number belonging to [0, 1]. It returns
the same type of information as Fit-1. The method
first computes a “secondary” midpoint α′

M to the left
of αM and its corresponding AIVD′

M value. If the reso-

lution limit δα is not reached and AIVD′
M falls outside

the AIVDemp range, Bisect-1 is applied further to the
[α′
M , αR] interval (lines 2-11). Otherwise, the analogous

procedure is applied on the right side (12-21). If the pro-
cedure fails to provide a convenient, secondary midpoint
on either side, the fitting is considered complete with the
current [αL, αR] interval and the αfit, αerr estimates made
like in Bisect-1 (lines 22-23).

1: function Displace-1(αL, αR, αM ,AIVDL,AIVDR, β, k)
2: α′

M = Middle(αL, αM , δα) . trying displacement to the left on the α grid
3: if Distinct(α′

M , αL, αM) then
4: AIVD′

M = 〈AIVD〉kα′
M ,β . analytic calculations (see main text)

5: if ¬Match-1(AIVD′
M ,AIVDemp) then

6: if Ord-1(AIVDL,AIVDR) = Ord-1(AIVD′
M ,AIVDemp) then

7: αL = α′
M ; AIVDL = AIVD′

M

8: return Bisect-1(αL, αR,AIVDL,AIVDR, β, k) . zooming in on corrected interval
9: end if

10: end if
11: end if
12: α′

M = Middle(αM , αR, δα) . trying displacement to the right on the α grid
13: if Distinct(α′

M , αM , αR) then
14: AIVD′

M = 〈AIVD〉kα′
M ,β . analytic calculations (see main text)

15: if ¬Match-1(AIVD′
M ,AIVDemp) then

16: if Ord-1(AIVDL,AIVDR) 6= Ord-1(AIVD′
M ,AIVDemp) then

17: αR = α′
M ; AIVDR = AIVD′

M

18: return Bisect-1(αL, αR,AIVDL,AIVDR, β, k) . zooming in on corrected interval
19: end if
20: end if
21: end if
22: (αfit, αerr) = InternFitLin-1(αL, αR,AIVDL,AIVDR,AIVDemp)
23: return (αL, αR, αfit, αerr) . fitting complete
24: end function

B. Second level fitting

This section presents the algorithm part concerned
with the second fitting level. Each of the three functions

of the first fitting level (Sec. A) has a correspondent here:

4

Fit-2, Bisect-2, Displace-2, all of them returning the
same type of information 4, each of them having a similar,
structure, purpose and role to the correspondent within
the first fitting level. Additionally, this section presents
the pseudocode for a fourth function, NumSIVD, which
carries out the numerical SIVD calculations. In addition
to the two constants introduced at the first level, the sec-
ond level pseudocode invokes two other constants, which
are also assumed to be known a-priori and available for
use anywhere in these four functions. First, δβ is the de-
sired resolution in the β parameter, which is here set to
the inverse of the number of features: δβ = 1

F . Second,
SIVDemp is the SIVD uncertainty range for the empirical
data.

In relation to the first three functions, the descriptions
below attempt to mostly emphasize the elements that
come in addition with respect to their first-level corre-
spondents. Some of these elements have a repetitive na-
ture and are worth explaining before moving to the spe-
cific description of each function. First, the (generic) β̄X

notation (where “X” can stand for “L”, “R” or “M”) de-
notes the (generic) “composite fitting information” β̄X =
(β, αL, αR, αfit, αerr)X, which is a 5-tuple consisting of a β
value together with the associated four values returned by
a (generic) call Fit-1(β, k) for that specific β and some
arbitrary k. Second, whenever an “SIVDX” variable ap-
pears in the first three functions (where “X” is again a
generic label), except for SIVDemp, it actually denotes
the (generic) “composite SIVD information” SIVDX =
((SIVDfit

L ,SIVDerr
L), (SIVDfit

R ,SIVDerr
R))X, which is a pair

of pairs of real numbers, each inner pair corresponding to
a model SIVD uncertainty range associated to one mar-
gin of an α interval returned by a call to Fit-1, while
both inner pairs have the same β. This schematically
reads:

(β, αL)→ (SIVDfit
L ,SIVDerr

L),

(β, αR)→ (SIVDfit
R ,SIVDerr

R),

Third, any (generic) call NumSIVD(β̄, k) is necessar-
ily preceded by an associated (generic) call Fit-1(β, k)
and by an associated (generic) variable compression β̄ =
(β, αL, αR, αfit, αerr), the last two being needed for pro-
ducing the composite fitting information β̄. Fourth,
whenever a piece of composite SIVD information appears
in a call to Ord-2 or Match-2, it is accompanied by an
associated piece of composite fitting information, which
allows for the mean, statistical error and systematic error
of in the model SIVD to be all reconstructed within, for
a given combination of β and k.

Function Fit-2 acts as an interface for the second-level
fitting, which consists of tuning the β parameter, for a
given value of k, such that the SIVD quantity matches
the empirical value, relying on an underlying tuning of
the α parameter in terms of the AIVD quantity (using
Fit-1). Here, k is a strictly positive, integer number.
The method returns the composite fitting information
associated to the left (β̄L) and right (β̄R) margins of the
tightest β interval found, together with the estimated β
match within this interval (βfit) and its associated error
(βerr). It assumes that the empirical SIVD can actually
be uniquely matched by varying β and α, for the given
value of k. After checking that there exists a meaningful
[βL, βR] interval for which the first-level fitting is possible
(lines 2,3), the method conducts the numeric SIVD cal-
culations on both sides of the interval (line 6), preceded,
on each side, by the first level fitting and the decompres-
sion (lines 4,5, as explained above), in order to finally
pass the task to Bisect-2.

1: function Fit-2(k)
2: (βL, βR) = Init-2(δβ, k,AIVDemp) . initializing the β-interval
3: if βL < βR then
4: (αLL, α

R
L , α

fit
L , α

err
L) = Fit-1(βL, k); (αLR, α

R
R, α

fit
R , α

err
R) = Fit-1(βR, k)

5: β̄L = (βL, αLL, α
R
L , α

fit
L , α

err
L); β̄R = (βR, αLR, α

R
R, α

fit
R , α

err
R)

6: SIVDL = NumSIVD(β̄L, k); SIVDR = NumSIVD(β̄R, k) . numeric calculations
7: return Bisect-2(β̄L, β̄R,SIVDL,SIVDR, k)
8: end if
9: return FittingImpossibleError

10: end function

4 The type of information returned by the three functions at a
second-level fitting is different than that of the three functions
at the first-level fitting, and actually more complex.

Function Bisect-2 is another recursive implementa-
tion of the bisection method, which sequentially narrows
down the [βL, βR] interval, such that at each stage the
empirical SIVD is contained. Here, β̄L, β̄R are 5-tuples of

5

real numbers encoding the left and right pieces of com-
posite fitting information, SIVDL,SIVDR are the pairs
of pairs of real numbers encoding the left-β and right-β
pieces of composite SIVD information, while k is of the
same type as in Fit-2. It returns the same type of infor-
mation as Fit-2. Like Bisect-1, the function consists of
a part concerned with convergence (lines 4-7), a part con-

cerned with the jump to Displace-2 (lines 11-13) and a
part concerned with choosing between the left and right β
subintervals and with zooming in on the chosen one (lines
14-19). Note the additional statements concerned with
decompressing the composite fitting information (line 2)
and with preparing the numeric SIVD calculations at the
midpoint (lines 8-9).

1: function Bisect-2(β̄L, β̄R,SIVDL,SIVDR, k)
2: (βL, αLL, α

R
L , α

fit
L , α

err
L) = β̄L; (βR, αLR, α

R
R, α

fit
R , α

err
R) = β̄R

3: βM = Middle(βL, βR, δβ)
4: if ¬Distinct(βM , βL, βR) then
5: (βfit, βerr) = InternFitLin-2(β̄L, β̄R,SIVDL,SIVDR,SIVDemp)
6: return (β̄L, β̄R, βfit, βerr)
7: end if
8: (αLM , α

R
M , α

fit
M , α

err
M) = Fit-1(βM , k)

9: β̄M = (βM , αLM , α
R
M , α

fit
M , α

err
M)

10: SIVDM = NumSIVD(β̄M , k) . numeric calculations
11: if Match-2(β̄M ,SIVDM ,SIVDemp) then
12: return Displace-2(β̄L, β̄R, β̄M ,SIVDL,SIVDR, k)
13: end if
14: if Ord-2(β̄L, β̄R,SIVDL,SIVDR) = Ord-2(β̄M ,SIVDM ,SIVDemp) then
15: β̄L = β̄M ; SIVDL = SIVDM . selecting right interval
16: else
17: β̄R = β̄M ; SIVDR = SIVDM . selecting left interval
18: end if
19: return Bisect-2(β̄L, β̄R,SIVDL,SIVDR, k) . zooming in on selected interval
20: end function

Function Displace-2 attempts to displace the mid-
point βM previously calculated at some stage in Bisect-
2, in a way that its associated SIVD uncertainty range
does not overlap with the empirical one. This function
has all the arguments of Bisect-1 and β̄M as an addi-
tional one, which is a 5-tuple of real numbers encoding
the midpoint composite fitting information. It returns
the same type of information as Fit-2. Like Displace-1,

the function consists of a part that attempts a displace-
ment to the left (lines 3-14), one that attempts a displace-
ment to the right (lines 15-26) and one that takes care of
the convergence (lines 27-28). Note the additional state-
ments concerned with decompressing the composite fit-
ting information (line 2) and with preparing the numeric
SIVD calculations for the left/right secondary midpoint
(lines 5-6/17-18).

1: function Displace-2(β̄L, β̄R, β̄M ,SIVDL,SIVDR, k)
2: (βL, αLL, α

R
L , α

fit
L , α

err
L) = β̄L; (βR, αLR, α

R
R, α

fit
R , α

err
R) = β̄R; (βM , αLM , α

R
M , α

fit
M , α

err
M) = β̄M

3: β′
M = Middle(βL, βM , δβ) . trying displacement to the left

4: if Distinct(β′
M , βL, βM) then

5: (α̇LM , α̇
R
M , α̇

fit
M , α̇

err
M) = Fit-1(β′

M , k)
6: β̄′

M = (β′
M , α̇

L
M , α̇

R
M , α̇

fit
M , α̇

err
M)

7: SIVD′
M = NumSIVD(β̄′

M , k) . numeric calculations
8: if ¬Match-2(β̄′

M ,SIVD′
M ,SIVDemp) then

9: if Ord-2(β̄L, β̄R,SIVDL,SIVDR) = Ord-2(β̄′
M ,SIVD′

M ,SIVDemp) then
10: β̄L = β̄′

M ; SIVDL = SIVD′
M

11: return Bisect-2(β̄L, β̄R,SIVDL,SIVDR, k) . zooming in on corrected interval
12: end if
13: end if
14: end if
15: β′

M = Middle(βM , βR, δβ) . trying displacement to the right
16: if Distinct(β′

M , βM , βR) then

6

17: (α̇LM , α̇
R
M , α̇

fit
M , α̇

err
M) = Fit-1(β′

M , k)
18: β̄′

M = (β′
M , α̇

L
M , α̇

R
M , α̇

fit
M , α̇

err
M)

19: SIVD′
M = NumSIVD(β̄′

M , k) . numeric calculations
20: if ¬Match-2(β̄′

M ,SIVD′
M ,SIVDemp) then

21: if Ord-2(β̄L, β̄R,SIVDL,SIVDR) 6= Ord-2(β̄′
M ,SIVD′

M ,SIVDemp) then
22: β̄R = β̄′

M ; SIVDR = SIVD′
M

23: return Bisect-2(β̄L, β̄R,SIVDL,SIVDR, k) . zooming in on corrected interval
24: end if
25: end if
26: end if
27: (βfit, βerr) = InternFitLin-2(β̄L, β̄R,SIVDL,SIVDR,SIVDemp)
28: return (β̄L, β̄R, βfit, βerr)
29: end function

Function NumSIVD numerically generates a piece of
composite SIVD information with a precision that is as
high as possible. Here, β̄ is a 5-tuple of real numbers
encoding a composite fitting information, while k is a
positive integer number. One sequence of SIVD values
is numerically generated (lines 4 and 11) for each of the
two margins of the α interval (contained in β̄), for the
given β (also contained in β̄) and the given k. An uncer-
tainty range is obtained from each of the two sequences
(lines 5 and 13). These two uncertainty ranges are used
together with the information in β̄ to produce estimates
for an average, a statistical error and a systematic error
that are β̄-specific rather than (α, β)-specific (lines 6,7
and 14,15). The number of SIVD values in the two se-

quences is increased and the calculations are repeated as
long as the condition in line 9 remains true, namely as
long as: the statistical error is higher than the system-
atic error, the desired separation between the model and
empirical (statistical) uncertainty ranges is not reached
and the maximal SIVD sequence length is not reached.
The desired separation and the SIVD sequence length
are controlled via variables s and n, initialized in line 2
– the initial values of these variables, as well as the up-
per bound on the latter are hard-coded, as visible in the
pseudocode, and have been decided after some experi-
mentation with NumSIVD, but they are not essential
for the actual outcome. Also note the decompression of
the composite fitting information (line 3) and the decom-
pression of SIVD uncertainty ranges (lines 8 and 16).

1: function NumSIVD(β̄, k)
2: n = 20; s = 5 . initial number of realizations and desired separation
3: (β, αL, αR, αfit, αerr) = β̄
4: SIVDseq

L = GenSeqSIVD(αL, β, k, n); SIVDseq
R = GenSeqSIVD(αR, β, k, n)

5: SIVDL = CompAvgErr(SIVDseq
L); SIVDR = CompAvgErr(SIVDseq

R)
6: SIVD = Interpol(αL, αR, αfit,SIVDL,SIVDR)
7: SIVDsyst = CompSystErr(αL, αR, αerr,SIVDL,SIVDR)
8: (SIVDavg,SIVDstat) = SIVD; (SIVDavg

emp,SIVDstat
emp) = SIVDemp

9: while SIVDstat > SIVDsyst ∧ (SIVDstat + SIVDstat
emp > |SIVDavg

emp − SIVDavg|/s) ∧ n < 350 do
10: n = 2 · n
11: SIVDtmpSeq

L = GenSeqSIVD(αL, β, k, n); SIVDtmpSeq
R = GenSeqSIVD(αR, β, k, n)

12: SIVDseq
L = Merge(SIVDseq

L ,SIVDtmpSeq
L); SIVDseq

R = Merge(SIVDseq
R ,SIVDtmpSeq

R)
13: SIVDL = CompAvgErr(SIVDseq

L); SIVDR = CompAvgErr(SIVDseq
R)

14: SIVD = Interpol(αL, αR, αfit,SIVDL,SIVDR)
15: SIVDsyst = CompSystErr(αL, αR, αerr,SIVDL,SIVDR)
16: (SIVDavg,SIVDstat) = SIVD
17: end while
18: return (SIVDL,SIVDR)
19: end function

C. Used functions

This section describes functions that are used by the
pseudocode in sections A or B but are not described

there. The following is a list of functions for which the
pseudocode is also provided, following each text descrip-
tion.

Function InterfitLin-1 fine-tunes the α parameter

7

such that AIVDemp is matched, relying on a linear ap-
proximation of the model AIVD as a function of α within
the (αL, αR) interval, using the boundary values AIVDL

and AIVDR. Its arguments are of the same type as those
of InterFitLin (described below), except that AIVDL

and AIVDR are real numbers rather than uncertainty
ranges. The output structure is entirely the same as that
of InterFitLin. It is essentially a first-level fitting in-
terface for InternFitLin, which is called after specify-
ing that the errors associated to AIVDL and AIVDR are
zero.

1: function InternFitLin-1(αL, αR,AIVDL,AIVDR,AIVDemp)
2: AIVD′

L = (AIVDL, 0); AIVD′
R = (AIVDR, 0)

3: return InternFitLin(αL, αR,AIVD′
L,AIVD′

R,AIVDemp)
4: end function

Function InterfitLin-2 fine-tunes the β parameter
such that SIVDemp is matched, relying on a linear ap-
proximation of the model SIVD as a function of β within
the [βL, βR] interval, using the boundary information
stored in SIVDL and SIVDR. Its arguments are of the
same type as those of InterFitLin (described below),
except that β̄L and β̄R are 5-tuples or real numbers
rather than real numbers and SIVDL and SIVDR are
pieces composite SIVD information rather than uncer-
tainty ranges. The output structure is entirely the same

as that of InterFitLin. It is essentially a second-level
fitting interface for InternFitLin, which is called af-
ter carrying out the following two operations: computing
the mean, statistical error and systematic error on each
of the two margins of the β interval, using the right com-
bination of composite fitting information and composite
SIVD information (lines 2,3); compressing information
into an SIVD uncertainty range for each of the two mar-
gins, after choosing the highest among the two errors for
each margin.

1: function InternFitLin-2(β̄L, β̄R,SIVDL,SIVDR,SIVDemp)
2: (SIVDavg

L ,SIVDstat
L ,SIVDsyst

L) = MeanStatSyst(β̄L,SIVDL)
3: (SIVDavg

R ,SIVDstat
R ,SIVDsyst

R) = MeanStatSyst(β̄R,SIVDR)
4: SIVD′

L = (SIVDavg
L ,max(SIVDstat

L ,SIVDsyst
L))

5: SIVD′
R = (SIVDavg

R ,max(SIVDstat
R ,SIVDsyst

R))
6: return InternFitLin(βL, βR,SIVD′

L,SIVD′
R,SIVDemp)

7: end function

Function Match-1 checks whether AIVD (real value)
falls within the uncertainty range specified by AIVDemp.

It acts as an interface for Match (described below)
within the first-level fitting scheme.

1: function Match-1(AIVD,AIVDemp)
2: AIVD′ = (AIVD, 0)
3: return Match(AIVD′,AIVDemp)
4: end function

Function Match-2 checks whether there is an over-
lap between the model SIVD uncertainty range obtained
from β̄ (composite fitting information) and SIVD (com-

posite SIVD information) and the empirical one encoded
by SIVDemp. It acts as an interface for Match (de-
scribed below) within the second-level fitting scheme.

1: function Match-2(β̄,SIVD,SIVDemp)
2: (SIVDavg,SIVDstat,SIVDsyst) = MeanStatSyst(β̄,SIVD)
3: SIVD′ = (SIVDavg,max(SIVDstat,SIVDsyst))
4: return Match(SIVD′,SIVDemp)

8

5: end function

Function Ord-1 (first version) checks whether AIVDL (real value) is smaller than AIVDR (real value), acting as
an interface for Ord within the first-level fitting scheme.

1: function Ord-1(AIVDL,AIVDR)
2: return Ord(AIVDL,AIVDR)
3: end function

Function Ord-1 (second version) checks whether
AIVD (real value) is smaller than the average stored in

AIVDemp (uncertainty range), acting as an interface for
Ord within the first-level fitting scheme.

1: function Ord-1(AIVD,AIVDemp)
2: (AIVDavg

emp,AIVDerr
emp) = AIVDemp

3: return Ord(AIVD,AIVDavg
emp)

4: end function

Function Ord-2 (first version) checks whether the av-
erage stored in the SIVD uncertainty range obtained from
β̄L (composite fitting information) and SIVDL (compos-
ite SIVD information) is smaller than the average stored

in that obtained from β̄R (composite fitting information)
and SIVDR (composite SIVD information), acting as an
interface for Ord within the second-level fitting scheme.

1: function Ord-2(β̄L, β̄R,SIVDL,SIVDR)
2: (SIVDavg

L ,SIVDstat
L ,SIVDsyst

L) = MeanStatSyst(β̄L,SIVDL)
3: (SIVDavg

R ,SIVDstat
R ,SIVDsyst

R) = MeanStatSyst(β̄R,SIVDR)
4: return Ord(SIVDavg

L ,SIVDavg
R)

5: end function

Function Ord-2 (second version) checks whether the
average stored in the SIVD uncertainty range obtained
from β̄ (composite fitting information) and SIVD (com-

posite SIVD information) is smaller than the average
stored SIVDemp, acting as an interface for Ord within
the second-level fitting scheme.

1: function Ord-2(β̄,SIVD,SIVDemp)
2: (SIVDavg,SIVDstat,SIVDsyst) = MeanStatSyst(β̄,SIVD)
3: (AIVDavg

emp,AIVDerr
emp) = AIVDemp

4: return Ord(SIVDavg,AIVDavg
emp)

5: end function

Function MeanStatSyst estimates a mean, a statisti-
cal error and a systematic error from a piece of composite
fitting information and an associated piece of composite
SIVD information, which are the two arguments of the

function. It returns the 3-tuple comprising of the three
computed real numbers. Note the decompression of com-
posite fitting information (line 2) and the decompression
of composite SIVD information (line 3).

1: function MeanStatSyst(β̄,SIVD)

9

2: (β, αL, αR, αfit, αerr) = β̄
3: (SIVDL,SIVDR) = SIVD
4: SIVD′ = Interpol(αL, αR, αfit,SIVDL,SIVDR)
5: SIVDsyst = CompSystErr(αL, αR, αerr,SIVDL,SIVDR)
6: (SIVDavg,SIVDstat) = SIVD′

7: return (SIVDavg,SIVDstat,SIVDsyst)
8: end function

The following is a list of functions for which only text explanations are provided in schematic way, sometimes
accompanied by figures.

• Init-1(δα):

– gives the left and right boundaries of the largest possible interval for which the α parameter is compatible
with the stochastic model in use, given the grid spacing δα

– input: δ is a real number

– in practice it returns (δα, 1− δα) regardless of whether PG or MPG is used

• Init-2(δβ, k,AIVDemp):

– gives the left and right boundaries of the largest possible interval, if any, for which the β parameter allows
for the (first level) fitting of AIVD(α) to successfully take place, given the grid spacing δβ

– input: δβ is a real number, k is a positive integer and AIVDemp is an uncertainty range

– assumes that there exists at most one β interval [βL, βR] for which there exists an α such that 〈AIVD〉kα,β =
AIVDemp is satisfied

– starts from the largest interval allowed by the model and independently adjusts each of the two boundaries
via a branching algorithm, until the desired interval is reached

– returns two (incompatible) boundaries βL > βR if such an interval does not exist

• Middle(l, r, δ):

– computes the value closest to the average between l and r, on a grid of spacing δ

– input: l, r, δ are all real numbers

– assumes that the interval length l − r is equal to an integer times δ

• Distinct(m, l, r):

– checks whether m is different than both l and r

– input: m, l, r are all real numbers constrained constrained to a grid of constant spacing

• InternFitLin(pL, pR, OL, OR, Oemp):

– adjusts a parameter p such that an observable O attains a value compatible with the empirical in Oemp

interval, assuming that O is a linear function of p within the [pL, pR] interval

– input: pL, pR are real numbers, encoding the left and right boundaries of the interval; OL, OR are mean-
error pairs of real numbers encoding the theoretical uncertainty ranges of the observable for the left and for
the right boundaries; Oemp is a mean-error pair of real numbers encoding the empirical uncertainty range

– returns the value and associated error of the p parameter resulting from this fitting process (pfit, perr),
computed based on geometrical considerations, in the manner illustrated in Fig. 1(a)

– pfit is calculated first by intersecting the theoretical line with the empirical one, disregarding all errors;
then, perr is calculated by assuming that the theoretical error is constant within the [pL, pR] interval, with
value given by interpolating the errors contained by OL and OR at pfit

– perr takes its origin both in the the empirical error as well as in the theoretical error, but also depends on
the slope resulting from the linear approximation

10

• Match(r1, r2):

– checks whether there is an overlap between the uncertainty ranges encoded by r1 and r2

– input: r1, r2 are mean-error pairs of real numbers

• Ord(vL, vR):

– checks whether the condition vL < vR is satisfied
– input: vL, vR are real numbers
– assumes that vL 6= vR

• GenSeqSIVD(α, β, k, n)

– numerically generates a sequence of n SIVD values according to the respective stochastic model, subject
to parameter values indicated by k, α, β

– input: α, β are real numbers, while k, n are positive integers

• Merge(SIVDseq
1 ,SIVDseq

2)

– merges two sequences of (real) SIVD values
– input: SIVDseq

1 ,SIVDseq
2 are both sequences of (real) SIVD values

• CompAvgErr(SIVDseq)

– computes the mean and standard error of the mean from SIVDseq

– input: SIVDseq is a sequence of real SIVD values

• Interpol(αL, αR, αfit,SIVDL,SIVDR)

– estimates the mean and error in SIVD corresponding to αfit based on the values attained for αL
– input: αL, αR, αfit are real numbers, while SIVDL,SIVDR are mean-error pairs of real numbers
– uses on a linear interpolation within the [αL, αR] interval, separately for the mean and for the error

• CompSystErr(αL, αR, αerr,SIVDL,SIVDR)

– estimates the systematic error SIVDsyst of the SIVD quantity induced by the error αerr (associated to
fitting the α parameter in terms of the AIVD quantity), assuming that SIVD is a linear function of α
within the [αL, αR] interval

– input: αL, αR, αerr are real numbers while while SIVDL,SIVDR are mean-error pairs of real numbers
encoding the theoretical uncertainty ranges on the left and right boundaries

– SIVDsyst is computed based on geometrical considerations, in the manner illustrated in Fig. 1(b)

D. Algorithm usage

This section explain how the formalism presented
throughout this document is effectively used for produc-
ing the results shown in the “Model fitting” and “Model

outcomes” sections of the main text.
First, the formalism is used for producing the plots

showing the SIVD(β) dependence (“Model fitting” sec-
tion). For either PG or MPG, for a specific k value and
a specific β on-grid value, the drawn model SIVD uncer-
tainty range is obtained after the following computational
steps:

1: (αL, αR, αfit, αerr) = Fit-1(β, k) . executing 1st-level fitting
2: β̄ = (β, αL, αR, αfit, αerr) . creating composite fitting information
3: SIVD = NumSIVD(β̄, k) . numeric SIVD calculations
4: (SIVDavg,SIVDstat,SIVDsyst) = MeanStatSyst(β̄,SIVD)

which provides the values of the SIVD average SIVDavg, the SIVD statistical error SIVDstat and the SIVD system-

11

(a) (b)

FIG. 1. Illustration of computation carried out by InterFitLin (a) and by CompSystErr (b), with the output quantities
highlighted in red.

atic error SIVDsyst. One can then place a point at coor-
dinates (β,SIVDavg), within the respective k curve, with
an error bar given by the maximum between SIVDstat

and SIVDsyst.
Second, the formalism is used for providing the best-

fitting, on-grid values for the α and β model parameters,
which are used for generating sets of cultural vectors on
which the LTCD-STCB analysis is applied (“Model out-
comes” section). For either PG or MPG and for a specific
k value, the following procedure is followed:

1: (β̄L, β̄R, βfit, βerr) = Fit-2(k) . Executing 2nd-level fitting
2: (βL, αLL, α

R
L , α

fit
L , α

err
L) = β̄L . Decompressing left-β composite fitting information

3: (βR, αLR, α
R
R, α

fit
R , α

err
R) = β̄R . Decompressing right-β composite fitting information

4: if βfit − βL < βR − βfit then
5: β = βL . choosing βL, since it is closer to β
6: if αfit

L − αLL < αRL − αfit
L then

7: α = αLL . choosing αLL, since it is closer to αfit
L

8: else
9: α = αRL . choosing αRL , since it is closer to αfit

L
10: end if
11: else
12: β = βR . choosing βR, since it is closer to β
13: if αfit

R − αLR < αRR − αfit
R then

14: α = αLR . choosing αLR, since it is closer to αfit
R

15: else
16: α = αRR . choosing αRR, since it is closer to αfit

R
17: end if
18: end if

which provides the best on-grid values for the (α, β) pair.

	Evidence for mixed rationalities in preference formation Supplementary Information: Fitting algorithm
	First level fitting
	Second level fitting
	Used functions
	Algorithm usage

