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In this paper, a data-driven superheating control strategy is developed for organic Rankine cycle (ORC) processes. Due to non-
Gaussian stochastic disturbances imposed on heat sources, the quantized minimum error entropy (QMEE) is adopted to
construct the performance index of superheating control systems. Furthermore, particle swarm optimization (PSO) algorithm is
applied to obtain optimal control law by minimizing the performance index. The implementation procedures of the presented
superheating control system in an ORC-based waste heat recovery process are presented. The simulation results testify the
effectiveness of the presented control algorithm.

1. Introduction

Organic Rankine cycle (ORC) processes have been widely
used to utilize low-grade thermal energy [1–4]. The energy
efficiency of an ORC system is closely related to the thermo-
dynamic states of working fluid at various components in
the cycle. The superheating is one of the key operating
parameters involved with safety and energy efficiency; hence,
superheating control plays an important role in organic
Rankine cycle (ORC) processes. However, it is not easy to
design a high-quality superheating control system for ORC
processes because ORC processes are complex in terms of
nonlinearities, coupling, and stochastic disturbances.

Some efforts have been made to develop superheating
control algorithms for ORC processes [5–15]. In [6], tradi-
tional PID controller was applied to control the superheating
of an ORC-based waste heat recovery process by manipulat-
ing pump flow rate. Combining PID controller with feedfor-
ward controller, a composite controller was developed for
superheating control systems [7–9]. Another compound
controller was proposed for designing ORC control system
by incorporating a linear quadratic regulator with a PI

controller [10]. A constrained model predictive controller
was applied into a controlled ORC system to deal with
constraints on inputs and outputs [11]. Later on, auto
disturbances rejection, gain scheduling, and robust control
strategies were applied to ORC processes in [13–15], respec-
tively. In practical ORC processes with stochastic distur-
bances, the abovementioned control methods may be a
little bit strict or conservative. In [12], generalized minimum
variance controller was employed to deal with stochastic
disturbances induced from heat sources, in which the key
goal is to minimize the uncertainties of the closed-loop sto-
chastic systems. However, stochastic disturbances that
existed in ORC processes are not necessarily Gaussian; the
spread area of the tracking error cannot be indicated pre-
cisely using variance or mean value.

With the rapid development of precision instrument,
communication network, statistical analysis, image process-
ing, and data processing technology, the probability density
function (PDF) can be measured directly in many actual
industrial processes. Recently, a series of control strategies
for the output PDF have been developed [16–18]. On the
other hand, the tracking error has played an important role

Hindawi
Complexity
Volume 2018, Article ID 4154019, 8 pages
https://doi.org/10.1155/2018/4154019

http://orcid.org/0000-0001-8828-3751
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/4154019


for assessing closed-loop control performance; some control
strategies have also been proposed for non-Gaussian systems
based on minimizing entropy of tracking error [19–23]. In
addition, entropy optimization principle has been utilized
to design filter [24] and machine learning as well [25].

The most summarized argument of entropy is h, φ
-entropy, which has been employed to form performance
index for control systems [26, 27]. Renyi entropy [28] is
the most significant and commonly applied. In order to
decrease the computational complexity of the entropy, a
quantized minimum error entropy (QMEE) criterion was
proposed in [29].

In this paper, following the recent developments on
shape control of the output PDF, tracking control, and infor-
mation theoretic learning using minimum error entropy
principle, we cast superheating control of ORC processes into
a stochastic control framework. Within this framework, a
data-driven tracking control strategy is further investigated
for ORC systems with non-Gaussian disturbances.

The remaining of this paper is organized as follows:
Section 2 describes the ORC-based waste heat recovery pro-
cess. Section 3 presents the proposed superheating controller
using a quantized minimum error entropy criterion and par-
ticle swarm optimization (PSO) technique. The simulation
results are then shown in Section 4. Finally, several conclu-
sions are given in Section 5.

2. ORC Process

An ORC-based waste heat recovery power plant shown in
Figure 1 converts waste heat into electrical power. The
organic working fluid in the evaporator is heated up into
a superheated vapour state. The heated vapour enters the
turbine expander and generates power energy. The work-
ing fluid after expansion is then cooled to liquid state in
the condenser.

In order to ensure the safety and energy conversion effi-
ciency of the ORC process, the temperature of working fluid
at the outlet of evaporator must be controlled within a proper
range; hence, superheating that is one of the most important
parameters in ORC processes is usually controlled by manip-
ulating the rotating speed of the pump.

The physical model of the evaporator was established
based on both mass balance and energy balance equations
in our previous work [10, 11], where both sides of working
fluid and waste heat were analyzed based on some proper
assumptions and necessary simplification. The model of the
pump was also built based on similarity principle in [10,
11]. The quality of waste heat characterized by the inlet tem-
perature and the mass flow rate of waste heat has influence
on the superheating. In practical ORC processes, the distur-
bances on the temperature and the mass flow rate of waste
heat are not necessarily Gaussian. Therefore, the dynamics
of an ORC process is nonlinear and non-Gaussian; the dis-
cretized model of controlled ORC superheating processes
can be formulated as follows:

yk = f yk−1,… , yk−n, uk, uk−1,… , uk−m,wk, vk , 1

where f ⋅ is a known nonlinear function that represents
the ORC superheating process dynamics. yk and uk are the
superheating and the rotating speed of the pump, respec-
tively. wk and vk are the mass flow rate and the tempera-
ture of waste heat source, respectively. In practice, the
stochastic disturbances on the mass flow rate and the
temperature of waste heat source are usually bounded,
generally non-Gaussian, and mutually independent. Hence,
the superheating yk and the tracking error ek are also
non-Gaussian stochastic variables. Denote the set point
of the superheating as rk, the tracking error ek can be
described by

ek = rk − yk
= rk − f yk−1,… , yk−n, uk, uk−1,… , uk−m,wk, vk
= g yk−1,… , yk−n, uk, uk−1,… , uk−m,wk, vk, rk
= g ηk, uk,wk, vk ,

2

where g ⋅ is a known nonlinear function; ηk = yk−1 ,
… , yk−n, uk−1,… , uk−m, rk T is a known term at instant k.
The PDF of the tracking error ek can then be formulated
using probability theory when the PDFs of both the mass
flow rate and the temperature of waste heat source are
known. In practical ORC processes, the PDFs of the track-
ing error, the mass flow rate, and the temperature of waste
heat source can be directly obtained by numerical estima-
tion methods. Likewise, the entropy can be estimated; for
example, the information potential that is the argument
of the logarithm in Renyi entropy can be computed by a
double summation over all samples. In this context, data-
driven superheating control strategy can be investigated
in this work.

Remark 1.When the PDFs of the mass flow rate and the tem-
perature of waste heat source are known, the evolution of the
PDF of the tracking error can be obtained based on (2) using
probability theory; the relationship between the PDF of the
tracking error and control input can be revealed. In addition,
(2) can be used to develop model-based control algorithms or
analyze stability of closed-loop control systems.
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Figure 1: Schematic diagram of ORC-based waste heat recovery.
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3. Superheating Control of ORC Process

3.1. Schematic Diagram. It has been demonstrated by exper-
imental studies and theoretical analysis that superheating
plays an important role in the safety and efficiency of ORC
processes. A data-driven stochastic control method is pro-
posed to ensure the superheating yk approach to its set point
rk. Figure 2 shows the control diagram, in which the con-
trolled variable and the manipulated variable are the super-
heating and the rotating speed of the pump, respectively.
The fluctuations of superheating can be represented by the
shape of its PDF. As a result, the entropy of the tracking error
can be used to represent the uncertainty of superheating or its
tracking error.

3.2. Performance Index. It is clear from (2) that the PDF of
the tracking error is controlled by manipulating the rotating
speed of the pump. Ideally, the goal of designing the super-
heating controller is that the shape of the PDF of the track-
ing error becomes as narrow as possible. It means that the
entropy of the tracking error H ek should be minimized.
In addition, the mean value of the squared tracking error
E e2k = τ2ρek ηk, uk, τ dτ should also be included to
drive the tracking error approach to zero. Moreover, the
control energy should be minimized as well. In this con-
text, the following performance index is employed:

J uk = R1H ek + R2E e2k + 1
2R3u

2
k, 3

where R1 and R2 are weights assigned for the entropy of
the tracking error and the mean value of the squared
tracking error function, respectively, and R3 is the weighting
factor for the control input. Consequently, the manipulated
variable can be solved by minimizing the performance index
at instant k.

The entropy of the tracking error H ek can be estimated
via estimating the information potential. Although it can be
realized with an affordable computational burden, it is neces-
sary to estimate the entropy as soon as possible for large-scale
datasets so that the real-time ability of the control system can
be improved.

The quadratic information potential IP2 ek = γ2ek ηk,
uk, τ dτ is an alternative way to characterize the quadratic
entropy of tracking error H2 ek . Further on, the quantized
quadratic information potential proposed in [29] can be
applied to deal with computational complexity of the

information potential by simplifying the inner summation.
Therefore, the performance index (3) can be reformulated by

J uk = R1
1

IPQ
2 ek

+ R2E e2k + 1
2R3u

2
k, 4

where IPQ
2 ek is the quantized quadratic information poten-

tial, which can be estimated as follows:

IPQ
2 ek = 1

N2 〠
k

i=k−N+1
〠
k

j=k−N+1
G 2σ ei − ej

≈
1
N2 〠

k

i=k−N+1
〠
k

j=k−N+1
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= 1
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k

i=k−N+1
〠
M

m=k−N+1
MmG 2σ ei − cm

= 1
N

〠
k

i=k−N+1

∑
M

m=k−N+1
MmG 2σ ei − cm

N
,

5

where N is the number of error samples. Q ⋅ stands for a
quantizer with a codebook containing M real valued code
words, which can map the error samples into the M code
words in the codebook. Gσ x = 1/ 2πσ exp − x2/2σ2
is the Gaussian kernel with bandwidth σ.

It can be observed that the quantizer plays a significant
role. A competent and simple quantizer was proposed in
[30]. Following [31], the detailed procedures to estimate the
quantized quadratic information potential of the tracking
error using N error samples within a sliding window at
instant k are summarized as Algorithm 1.

In addition, the mean value of the squared tracking error
E e2k can be estimated from the superheating measurement;
hence, the performance index (4) can be obtained.

Remark 2. Themain advantage ofQMEE is that it candecrease
the computational complexity compared with MEE. When
calculating IP2 ek in MEE based on sliding window, whose
width is N , the computational complexity is O N2 due to
the existence of inner summation; meanwhile, IPQ

2 ek can
be calculated according to (5) adopting the quantizing error
samples, which reduces the number of inner summations.
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Figure 2: Schematic diagram of the proposed control system.
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And its computational burden is O MN withM≪N , espe-
cially for large-scale datasets.

Remark 3. Tracking error samples should contain the
dynamic characteristics of the ORC process. N error samples
ek, ek−1,… , ek−N+1 , which are used to estimate IPQ

2 ek at
instant k, can be collected using a sliding window whose
width is N .

3.3. Optimal Controller via PSO. The optimal control input
u∗k can be obtained by minimizing the performance index
(4) using particle swarm optimization (PSO) algorithm.
PSO is a bio-inspired optimal algorithm, which adopts
global search strategy based on population and a simple
velocity-displacement model. The fundamental notion of
PSO can be represented by the following description.
Assuming that G is the maximum generation, in each
iteration, the particle updates itself by tracking two opti-
mal values: (1) Pbesti t symbolizes the individual optimal
value, which represents the optimal location of the cur-
rent particle; (2) another optimal value is the optimal
solution Gbest founded in the whole group. Then, the
particles pursue the current optimal particles and search
in the solution space.

Assuming a D dimension target search space, a group of
L particles, and the expressions of the position and velocity
of the ith particle are as follows:

ui tk = ui1 t
k , ui2 t

k , ui3 t
k ,… , uiD t

k ,

Vi t = vi1 t , vi2 t , vi3 t ,… , viD t ,

i = 1, 2, 3,… , L,
6

where t is the pointer of iterations. The updated position
and velocity of the particle in the t + 1 generation can then
be acquired with the following formulas:

Vi t+1 =w ⋅ Vi t + c1 ⋅ rand ⋅ Pbesti t − ui tk

+ c2 ⋅ rand ⋅ Gbestt − ui tk ,

ui t+1k = ui tk +Vi t+1 ,

i = 1, 2, 3,… , L,
7

where w is the inertia weight factor and satisfies 0 ≤w < 1. c1
and c2 are the acceleration factors.

In order to maintain the global searching ability of the
particle in the early stages and the local search ability in the
later period, the inertia weight reduction strategy is adopted,
that means using a larger inertia weight at the beginnings of
the algorithm to search the whole problem space effectively,
and using a smaller inertia weight in the later period ensure
the convergence of the algorithm. The basic idea can be
described by

w =wmax −
wmax −wmin

G
⋅ t 8

After G generations, the homologous Gbest can be
deemed as the optimal control law at instant k; it leads to

u∗k = Gbest 9

Instead of the traditional gradient descent method, PSO
is used to obtain the optimal control law at instant k, in which
the performance index (4) is used as the fitness function; the

Algorithm
Input error samples ei

k
i=k−N+1

Output quantized errors Q ei
k
i=k−N+1

Initialization Set the quantization threshold ε andC1 = ek−N+1 , where
Ci denotes the codebook at the iteration i
Compution
for i = k‐N + 1 k do
1 Calculate the distance between ei andCi−1 j∗ :

dis ei, Ci−1 j∗ = ei − Ci−1 j∗ , where j∗ = arg min
1≤j≤size Ci−1

ei − Ci−1 j∗ ,

Ci−1 j represents the jth element of Ci−1
2 if dis ei, Ci−1 j∗ ≤ ε

Ci = Ci−1 ;Q ei = Ci−1 j∗ ;
3 else

Update the codebook Ci = Ci−1, ei and quantize
ei to itself Q ei = ei ;
end if

end for

Algorithm 1: Pseudocode of estimating IPQ
2 ek .
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procedures to solve the optimal control input u∗k are summa-
rized in Algorithm 2.

Remark 4. The control signal generated by the PSO
method constructs an output feedback law for nonlinear
and non-Gaussian systems. Following the stability analysis
in [32], the stability of the closed-loop system can be
analyzed as well. The uniform boundedness of all the
variables inside the closed loop can be guaranteed if the
absolute value of the incremental control input is
bounded, i.e., Δuk ≤Umax −Umin, where Umax and Umin
stand for the maximum and minimum of rotor speed of
the pump.

The implementation procedures of the presented super-
heating control system are summarized as follows:

Step 1. Initialize the parameters of the proposed control
algorithm

Step 2. Calculate the performance index (4) by combing
the quantized quadratic information potential
of tracking error using samples within sliding
window, mean value of squared errors, and
constraints on control input

Step 3. Solve the optimal control law by minimizing the
performance index (4) using the PSO algorithm

Step 4. Apply the optimal control input to regulate
the superheating. Then, repeat the procedures

from step 2 to step 4 for the next instant,
k = k + 1

4. Simulation Results

The proposed control approach is applied to control the
superheating of an ORC process [11]. Simulation experi-
ments are carried out with MATLAB 2014b, running in
i7-4790, 3.6GHz CPU. The sampling period is T = 20s.
In this simulation, the rotating speed of the pump is lim-
ited in terms of 2810 rpm ≤uk ≤ 2855 rpm. The probabil-
ity distributions of the mass flow wk and temperature vk
of waste heat source are shown in Figure 3. It is clear
that the data of wk and vk cannot be fitted exactly to a
straight line in the normal probability plot. As a result,
it indicates that wk and vk are non-Gaussian. The param-
eters in the simulation are set as Table 1.

In order to testify the effectiveness of the proposed con-
trol method, it is compared with an optimal control
method called PSO-MEE and optimal PID controller,
respectively. The PSO-MEE-based optimal control law
solves optimal control using performance index (3). The
proposed control law called PSO-QMEE is obtained by
minimizing performance index (4) which contains the
quantized entropy of (the tracking) error. The optimal
parameters of the PID controller whose transfer function
is GPID s = kp + ki/s + kds are tuned by MATLAB 2014b
software; it leads to kp = 10 315, ki = 8 022, and kd = 1.

Figure 4 shows the superheating response curves under
three kinds of controller, in which the black dash-dot line
shows the set point changes from 17°C to 19°C at 1500 s.

Algorithm PSO
Output u∗k
Calculation
1 t← 1 ;
2 for i = 1 Ldo

Initialize velocityVi t and position ui tk for particle i ;
Set Pbesti t = ui tk ;

end for
3 Gbestt =min f itness Pbestt

4 while t ≤ Gdo
for i = 1, 2,… L do
update theVi t and ui tk
if f itness ui tk < f itness Pbesti t

Pbesti t ← ui tk ;
if f itness Pbesti t < f itness Gbestt

Gbestt ← Pbesti t ;
end if

end if
end for

t← t + 1 ;
endwhile

5 return the best vector Gbest ;
6 u∗k ←Gbest ;

Algorithm 2: Pseudocode of solving optimal control input.
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The red solid line, blue solid line, and green solid line
represent superheating responses under PSO-QMEE,
PSO-MEE, and PID controller, respectively. Compared
with the PID controller, both the proposed control algo-
rithm and the conventional entropy-based control obtain
smaller overshoot and shorter settling time. Table 2 lists
detailed comparative results when using three controllers.

The proposed controller achieves the smallest mean
square error (MSE) and mean absolute error (MAE);
moreover, it consumes shorter time than the conventional
entropy-based controller due to using quantized entropy
estimation method. Figure 5 demonstrates variations of
the rotating speed of the pump under three control laws;

The mass flow of waste heat source The temperature of waste heat source

The value of w
k

0.999
0.997

0.99
0.98
0.95
0.90

0.75

0.50

0.25

0.10
0.05
0.02
0.01

0.003
0.001

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

7.44 7.46 7.48 7.5 7.52 7.54 7.56
The value of v

k

298.5 299 299.5 300 300.5 301 301.5

0.999
0.997

0.99
0.98
0.95
0.90

0.75

0.50

0.25

0.10
0.05
0.02
0.01

0.003
0.001

Figure 3: Probability of wk and vk.

Table 1: Parameters in the simulation.

Parameter Value Parameter Value

c1 1.49445 Vmin, Vmax [−5, 5]
c2 1.49445 wmin,wmax [0.1, 0.9]

ε 0.1 G 50

R1 0.1 L 5

R2 0.5 R3 0.01
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Figure 4: Response curves of superheating.

Table 2: Comparative results using three controllers.

Controllers MSE
Times for computing
control laws in overall
simulation process

MAE

Proposed control 0.0258 82.77661 s 0.0526

PID 0.0527 0 0.0826

Conventional
entropy-based control

0.0271 1213.08278 s 0.0709
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Figure 5: Variations of the rotating speed of the pump.
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it can be observed that the manipulated signals are all reason-
able and feasible.

5. Conclusions

In this paper, a data-driven superheating controller is pre-
sented to regulate the superheating in ORC processes. Since
the disturbances coming from the mass flow rate and the
temperature of waste heat are not necessarily Gaussian, the
performance index is constructed by combing the entropy
of the tracking error, the mean value of the squared tracking
error, and constraints on control input. The entropy of the
tracking error is replaced by quantized information potential
of the tracking error for decreasing computational burden.
Consequently, the superheating control problem is solved
using the PSO method. When applying the proposed
controller, conventional entropy-based controller, and a
PID controller to the ORC system, respectively, the proposed
controller can decrease dispersion of the tracking error distri-
bution and computational burden.

Data Availability

These data used in this research have been listed in Table 1,
Table 2, or described in Section 4. The simulation results
in Figures 4 and 5 should be made easily available if other
scientists are interested in reanalyzing the data.
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