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According to the hydraulic principle diagram of the subgrade test device, the dynamic pressure cylinder electrohydraulic servo
pressure system math model and AMESim simulation model are established. The system is divided into two parts of the dynamic
pressure cylinder displacement subsystem and the dynamic pressure cylinder output pressure subsystem. On this basis, a RBF
neural network backstepping sliding mode adaptive control algorithm is designed: using the double sliding mode structure, the
two RBF neural networks are used to approximate the uncertainties in the two subsystems, provide design methods of RBF sliding
mode adaptive controller of the dynamic pressure cylinder displacement subsystem and RBF backstepping sliding mode adaptive
controller of the dynamic pressure cylinder output pressure subsystem, and give the two RBF neural networkweight vector adaptive
laws, and the stability of the algorithm is proved. Finally, the algorithm is applied to the dynamic pressure cylinder electrohydraulic
servo pressure system AMESim model; simulation results show that this algorithm can not only effectively estimate the system
uncertainties, but also achieve accurate tracking of the target variables and have a simpler structure, better control performance,
and better robust performance than the backstepping sliding mode adaptive control (BSAC).

1. Introduction

The track subgrade dynamic response test device is mainly
used to simulate the comprehensive impact of high-speed
running trains on the subgrade. The constant pressure of
static pressure cylinder is set by the pilot type electrohydraulic
proportional pressure reducing valve to simulate the static
load generated by the train’s own weight on the subgrade;
the alternating hydraulic pressure is applied to the dynamic
pressure cylinder through the servo valve to simulate the
dynamic load on the subgrade during the train high-speed
running [1–3]. The hydraulic schematic diagram of the track
subgrade test device is shown in Figure 1. The dynamic
pressure cylinder piston rod outputs an alternating dynamic
load, obtaining the resultant load force by superimposing
the static load of the static pressure piston rod, and finally,
the loading force is loaded on the tested subgrade through
the sensor and the excitation block. Therefore, the dynamic

pressure cylinder system is a typical electrohydraulic servo
pressure system.

The control performance of the composite loading force
depends on the precise control of the dynamic pressure
cylinder electrohydraulic servo pressure system, because the
dynamic pressure cylinder electrohydraulic servo pressure
system has the parameter uncertainty and flow nonlinearity,
which increase the difficulty of the control system design.
The backstepping control constructs the Lyapunov function
at all levels, selects the intermediate virtual control quantity
at each level according to the design goals, and obtains the
control law of the system by step backward recursion; it is
a feedback control method based on the Lyapunov stability
theory [4, 5]. Sliding mode variable structure control has the
advantages of high control precision and simple structure,
can greatly reduce the influence of system nonlinearity, and
has strong robustness [6, 7]. Adaptive control is often used
to reduce the impact of parameter uncertainty on system
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Figure 1:Thehydraulic schematic diagramof the track subgrade test
device. (1) Oil tank. (2) Constant pressure variable pump. (3) Safety
valve. (4) Accumulator. (5) Inlet filter. (6) Hydraulic pressure sensor.
(7) Servo valve. (8) Displacement sensor. (9) Double-ring servo
cylinder. (10) Load sensor. (11) Three-way proportional pressure
reducing valve. (12) Electromagnetic overflow valve. (13) Cooler. (14)
Oil return filter.

performance [8–10]. Therefore, backstepping sliding mode
adaptive control has been widely used in electromechanical
servo control [11–13], electrohydraulic servo control [14–16],
flight navigation control [17, 18], and other fields, achieving
good control effects.

In the actual system, the external interference is
unknown, and the system still hasmodeling errors.Therefore,
the upper bounds of uncertainties in the system are often
difficult to determine. The uncertainty boundary problem
has become an important part of controller design, which
directly affects the performance of the whole control system.
In recent years, with the development of intelligent control
theory, neural networks with their good approximation
characteristics have been widely used in the estimation of
unknown parts of the system and have achieved good results.
Xu Chuanzhong [19] designed the RBF neural network
adaptive law to estimate the upper bound of uncertain
factors in the backstepping sliding mode control system,
thus improving the robustness of the system to factors such
as modeling errors and uncertain disturbances. Chen Ziyin
[20] compensated the model uncertainty in the pitch motion
of underwater vehicles through a neural network controller
and designed an adaptive robust controller to eliminate the
approximation error of the neural network.

In order to achieve rapid and accurate pressure tracking
control of dynamic pressure cylinder electrohydraulic servo
pressure system, this paper designed a RBF neural network
backstepping sliding mode adaptive control method, which
can effectively reduce the influence of system uncertainties

and nonlinearities, so that the system output pressure has
good tracking performance and robust performance.

2. Model of Dynamic Pressure Cylinder
Electrohydraulic Servo Pressure System

2.1. Mathematical Model. The dynamic pressure cylin-
der electrohydraulic servo pressure control system mainly
includes control signal, servo amplifier, servo valve, dynamic
pressure cylinder, sensor, and load.

The servo valve system includes the spool equation and
the flow equation:

𝑋𝑉 = 𝐾𝑆𝐺𝑆𝑉𝑈𝑒 (1)

𝑄𝐿 = 𝐶𝑑𝜔𝑋𝑉√ 1𝜌 (𝑃𝑆 − sign (𝑋𝑉) 𝑃𝐿) (2)

where XV is the servo valve spool displacement, KS is
the servo valve system overall gain, GSV is the servo valve
transfer function at unity gain,Ue is the servo amplifier input
voltage signal,QL is the servo valve output flow,Cd is the servo
valve port flow coefficient, 𝜔 is the servo valve main spool
area gradient, PS is the system supply pressure, PL is the load
pressure, and 𝜌 is the oil density.

Since the natural frequency of the servo valve is close to
the hydraulic frequency of the dynamic hydraulic cylinder,
this paper uses the second-order oscillation element to
describe the servo valve transfer function [21] and retain the
flow nonlinear part of the servo valve. The description of the
load flow is as follows:

𝑄𝐿 = 𝐺𝑆𝑉𝐾𝑈eg (𝑢) = 𝑎81𝑈eg (𝑢)𝑆2 + 𝑎6𝑆 + 𝑎7 (3)

where a6, a7, a81 are the servo coefficients and 𝑔(𝑢) =√𝑃𝑆 − sign(𝑢)𝑃𝐿 is the flow nonlinear part.
Dynamic pressure cylinder can be described as

𝑄𝐿 = 𝐴𝑃𝑆𝑋𝑚 + 𝐶𝑡𝑝𝑃𝐿 + 𝑉𝑚4𝛽𝑒 𝑆𝑃𝐿 (4)

𝐴𝑃𝑃𝐿 + 𝐹𝐿 = 𝑚𝑆2𝑋𝑚 + 𝐵𝑚𝑆𝑋𝑚 + 𝐾𝑋𝑚 (5)

where m is the mass of dynamic pressure cylinder
vibration system, Bm is the load damping coefficient, K is
the subgrade elastic stiffness, FL is the static load of static
pressure cylinder, Ap is the effective area of dynamic pressure
cylinder piston, Ctp is the dynamic pressure cylinder total
leakage coefficient, Vm is the system pipe total compression
volume, and 𝛽e is the effective volumetric elastic modulus of
hydraulic oil.

Combining (4) and (5), using static load FL and servo
valve output flowQL as input variables, and selecting dynamic
pressure cylinder displacement, speed, and output pressure
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PL as state variables, the state equation of the dynamic
pressure cylinder can be obtained as follows:

̇𝑥1 = 𝑥2
̇𝑥2 = −𝑎1𝑥1 − 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎𝑓𝐹𝐿
̇𝑥3 = −𝑎4𝑥2 − 𝑎5𝑥3 + 𝑏1𝑄𝐿

(6)

where X1 is the dynamic pressure cylinder displacement,
X2 is the dynamic pressure cylinder speed, X3 is the dynamic
pressure cylinder output pressure, a1 = K/m, a2 = B/m, a3 =
Ap/m, a4 = 4Ap𝛽e/Vm, a5 = 4Ctp𝛽e/Vm, af = 1/m, b1 = 4𝛽e/Vm.

Substituting (3) into the third item of (6), introducing the
target variable Pr into the state variable, and letting 𝜉1 = X1,𝜉2 = X2, 𝜉3 = Pr-X3, 𝜉4 = ̇𝜉3 = ̇𝑃𝑟 − 𝑥4, 𝜉5 = ̇𝜉4 = ̈𝑃𝑟 − 𝑥5, (6)
can be transformed tȯ𝜉1 = 𝜉2

̇𝜉2 = −𝑎1𝜉1 − 𝑎2𝜉2 − 𝑎3𝜉3 + 𝑎3𝑃𝑟 + 𝑎𝑓𝐹𝐿 + Δ 1
̇𝜉3 = 𝜉4
̇𝜉4 = 𝜉5
̇𝜉5 = −𝑎21𝜉1 + 𝑎20𝜉2 − 𝑎19𝜉3 − 𝑎18𝜉4 − 𝑎9𝜉5 + 𝑃𝑃𝑟 + 𝐹𝐹𝐿

+ Δ 2 − 𝑎8𝑔 (𝑢) 𝑢

(7)

where a8 = a81b1, a9 = a5+a6, a10 = a7+a5a6, a11 = a5a7,
a12 = a4a6, a13 = a4a7, a14 = a12-a2a4, a15 = a13-a1a4, a16 =
a3a4, a17 = afa4, a18 = a10-a16, a19 = a11 + a3a14, a21 = a1a14,
a22 = afa14, a20 = a15-a2a14, 𝐹𝐹𝐿 = 𝑎22𝐹𝐿+𝑎17 ̇𝐹𝐿, 𝑃𝑃𝑟 = 𝑎19𝑃𝑟 +𝑎18�̇�𝑟+𝑎9�̈�𝑟+ ...𝑃𝑟,Δ 1 = −𝑑𝑎1𝜉1−𝑑𝑎2𝜉2+𝑑𝑎3(𝑃𝑟−𝜉3)+𝑑1 Δ 2 =𝑑𝑎21𝜉1−𝑑𝑎20𝜉2+𝑑𝑎19(𝜉3−𝑃𝑟)+𝑑𝑎18(𝜉4−�̇�𝑟)+𝑑𝑎9(𝜉5−�̈�𝑟)+𝑑2.

The external disturbance is much smaller than the static
load FL(150KN).Therefore, ignoring the influence of external
interference, the static load FL is equivalent to an external
disturbance, being constant and bounded.

2.2. AMESim and Simulink Cosimulation Model. It can be
seen from the hydraulic schematic diagram Figure 1 of the
track subgrade test device that the dynamic pressure cylin-
der electrohydraulic servo pressure control system mainly
includes dynamic pressure cylinder, flow servo valve, and
sensor.The dynamic pressure cylinder electrohydraulic servo
pressure system AMESim and Simulink cosimulation model
is established as Figure 2.

3. Backstepping Sliding Mode
Controller Design

3.1. System Decomposition. The dynamic pressure cylinder
electrohydraulic servo pressure system described in (7) can
be divided into two parts: the dynamic pressure cylinder
displacement subsystem and the dynamic pressure cylinder
output pressure subsystem.
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Figure 2: Dynamic pressure cylinder electrohydraulic servo pres-
sure system AMESim and Simulink cosimulation model.

Dynamic pressure cylinder displacement subsystem:

̇𝜉1 = 𝜉2̇𝜉2 = −𝑎1𝜉1 − 𝑎2𝜉2 − 𝑎3𝜉3 + 𝑎3𝑃𝑟 + 𝑎𝑓𝐹𝐿 + Δ 1 (8)

Dynamic pressure cylinder output pressure subsystem:

̇𝜉3 = 𝜉4̇𝜉4 = 𝜉5̇𝜉5 = −𝑎21𝜉1 + 𝑎20𝜉2 − 𝑎19𝜉3 − 𝑎18𝜉4 − 𝑎9𝜉5 + 𝑃𝑃𝑟 + 𝐹𝐹𝐿
− 𝑎8g (𝑢) 𝑢 + Δ 2

(9)

3.2. Dynamic Pressure Cylinder Displacement Subsystem Slid-
ing Mode Control. According to (8) description, 𝜉𝑑1 is set as
the expected displacement of the dynamic pressure cylinder
displacement subsystem; define the displacement tracking
error as e1 = 𝜉1-𝜉d1, and construct the sliding mode switch
function of displacement subsystem as follows:

𝑆1 = 𝑐1𝑒1 + 𝑐2 ̇𝑒1 (10)

where c1, c2 are switching function coefficients, positive
real numbers.

Taking the derivative of sliding mode switching functions
S1 and substituting (8) into ̇𝑆1, we can get

̇𝑆1 = 𝐶1 ̇𝑒1 + 𝐶2 ̈𝑒1 = 𝐶1 ̇𝜉1 + 𝐶2 ̇𝜉2 − 𝐶1 ̇𝜉𝑑1 − 𝐶2 ̈𝜉𝑑1
= 𝐶1𝜉2

+ 𝐶2 (−𝑎1𝜉1 − 𝑎2𝜉2 − 𝑎3𝜉3 + 𝑎3 + 𝑎𝑓𝐹𝐿 + Δ 1)
− 𝜉𝑑𝑑

= −𝑎𝑎1𝜉1 − 𝑎𝑎2𝜉2 − 𝑎𝑎3𝜉3 + 𝑎𝑎3𝑃𝑟 + 𝑎𝑎4𝐹𝐿 + 𝐶2Δ 1
− 𝜉𝑑𝑑

(11)
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where aa1 = c2a1, aa2 = c2a2-c1, aa3 = c2a3, aa4 = c2af,𝜉𝑑𝑑 = 𝐶1 ̇𝜉𝑑1 + 𝐶2 ̈𝜉𝑑1.
Let 𝜉d3 be the expected variable of the displacement

subsystem variable 𝜉3, and then its tracking error e31 = 𝜉3-𝜉d3;
the expectation 𝜉d3 of this paper is 𝜉d3 = 0, so e31 = 𝜉3, and 𝜉3
is replaced by a virtual output control variable e31. Assuming
that the above parameters and uncertainties are known, we
can obtain the virtual controller as follows [22].

𝑒31 = 1𝑎𝑎3 (−𝑎𝑎1𝜉1 − 𝑎𝑎2𝜉2 + 𝑎𝑎3𝑃r + 𝑎𝑎4𝐹𝐿 + 𝐶2Δ 1
− 𝜉𝑑𝑑 − 𝐾1𝑆1)

(12)

3.3. Dynamic Pressure Cylinder Output Pressure Subsystem
Backstepping Sliding Mode Control. Set 𝜉d3 as the expected
output pressure of the dynamic pressure cylinder output
pressure subsystem, and the tracking error of the output
pressure is e3 = 𝜉3-𝜉d3; use backstepping algorithm, combined
with (9), to gradually derive the virtual control variables at all
levels as follows.

Step 1. Construct Lyapunov function as 𝑉3 = (1/2)𝐾3𝐾4𝑒23
and derivative

�̇�3 = 𝐾3𝐾4𝑒3 ̇𝑒3 = 𝐾3𝐾4𝑒3 (𝜉4 − ̇𝜉𝑑3) (13)

Let the derivative of tracking error e3 be e4 = 𝜉4-𝜉4d, and
take the virtual control variable 𝜉4d as

𝜉4𝑑 = 𝑒3 − ̇𝜉𝑑3. (14)

Substituting (14) into (13), we can get

�̇�3 = −𝐾3𝐾4𝑒23 + 𝐾3𝐾4𝑒3𝑒4 (15)

Step 2. Construct the Lyapunov function as 𝑉4 = 𝑉3 +(1/2)𝐾3𝐾4𝐾5𝑒24 and derivative

�̇�4 = �̇�3 + 𝐾3𝐾4𝐾5𝑒4 ̇𝑒4
= −𝐾3𝐾4𝑒23 + 𝐾3𝐾4𝑒4 (𝜉5 − ̇𝜉4𝑑) (16)

Let the derivative of ̇𝑒3 be e5 = 𝜉5-𝜉5d, and take the virtual
control variable 𝜉5d as

𝜉5𝑑 = −𝑒4 + (−𝑒4 − 𝑒3)𝐾5 + ̇𝜉4𝑑 (17)

Substituting (17) into (16), we can get

�̇�4 = −𝐾3𝐾4𝑒23 − 𝐾3𝐾4𝐾5𝑒24 − 𝐾3𝐾4𝑒4 (𝑒4 − 𝐾5𝑒5) (18)

where K3, K4, K5 are Lyapunov function coefficients,
positive real numbers.

Step 3. Design the sliding mode switching function of the
dynamic pressure cylinder output pressure subsystem as

𝑆2 = 𝑐3𝑒3 + 𝑐4𝑒4 + 𝑐5𝑒5 (19)

where c3, c4, c5 are switching function coefficients, posi-
tive real numbers.

Substituting (9) into ̇𝑆2, we can get

̇𝑆2 = 𝐶3 ̇𝑒3 + 𝐶4 ̇𝑒4 + 𝐶5 ̇𝑒5
= 𝐶3 ( ̇𝜉3 − ̇𝜉3𝑑) + 𝐶4 ( ̇𝜉4 − ̇𝜉4𝑑) + 𝐶5 ( ̇𝜉5 − ̇𝜉5𝑑)
= 𝐶3𝜉4 + 𝐶4𝜉5 + 𝐶5 ̇𝜉5 − 𝜉𝑑𝑑1
= −𝑎𝑎5𝜉1 + 𝑎𝑎6𝜉2 − 𝑎𝑎7𝜉3 − 𝑎𝑎8𝜉4 − 𝑎𝑎9𝜉5

+ 𝑎𝑎10𝐹𝐿 − 𝑎𝑎11g (𝑢) 𝑢 + 𝐶5𝑃𝑃𝑟 + 𝜉𝑑𝑑1 + 𝐶5Δ 2

(20)

where aa5 = c5a21, aa6 = c5a20, aa7 = c5a19, aa8 = c5a18 −
c3, aa9 = c5a9− c4, aa10 = c5a22, aa11 = c5a8, 𝜉𝑑𝑑1 = 𝑐3 ̇𝜉𝑑3 +𝑐4 ̇𝜉4𝑑 + 𝑐5 ̇𝜉5𝑑.

Let ̇𝑆2 = 0; the expression of the backstepping sliding
mode controller of the dynamic pressure cylinder output
pressure subsystem can be obtained:

𝑢 = 1𝑎𝑎11𝑔 (𝑢) (−𝑎𝑎5𝜉1 + 𝑎𝑎6𝜉2 − 𝑎𝑎7 (𝜉3 − 𝑃𝑟)
− 𝑎𝑎8 (𝜉4 − �̇�𝑟) + 𝑃𝑃 − 𝑎𝑎9 (𝜉5 − �̈�𝑟) + 𝑎𝑎10𝐹𝐿
− 𝜉𝑑𝑑1 + 𝐶5Δ 2)

(21)

where 𝑃𝑃 = 𝑐3�̇�𝑟 + 𝑐4�̈�𝑟 + 𝑐5 ...𝑃𝑟.
3.4. The Selection of the Expected Displacement 𝜉𝑑1 of the Dis-
placement Subsystem. When the dynamic pressure cylinder
displacement subsystem is stable, the displacement tracking
error e1 is very small, at this time, 𝜉1 ≈ 𝜉d1. Since 𝑎𝑎1 >> 𝑎𝑎2,𝑎𝑎1 >> 𝑐1, and 𝑎𝑎1 >> 𝑐2, according to the virtual controller
(12), combined with the expected output pressure 𝜉d3, the
desired displacement 𝜉d1 of the dynamic pressure cylinder
can be expressed approximately as follows:

𝜉𝑑1 ≈ 1𝑎𝑎1 (𝑎𝑎3 (𝑃r − 𝜉𝑑3) + 𝑎𝑎4𝐹𝐿) (22)

The virtual control variable e31 is used to implement the
tracking control of (22); with the premise of good displace-
ment tracking performance, we expect e31 to be as small
as possible. However, e31 may be relatively large in actual
operation, resulting in a large difference in displacement𝜉1 between (8) and (7); thus it has some influence on
the dynamic pressure cylinder output pressure subsystem.
Because the two subsystems independently carry out the
stability design, the above mentioned differences between the
e31 and e3 will not affect the stability of the whole system,
and the final output pressure tracking performance is only
related to the design of the virtual controller (12) and the
backstepping sliding mode controller (21).
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4. RBF Neural Network Backstepping Sliding
Mode Adaptive Controller Design

4.1. Dynamic Pressure Cylinder Displacement Subsystem RBF
NN Sliding Mode Adaptive Control. The dynamic pressure
cylinder displacement subsystem described by (8) constructs
the displacement subsystem sliding mode switching function
such as (10); let f 1 = C2Δ 1, and (11) can be expressed as

̇𝑆1 = −𝑎𝑎1𝜉1 − 𝑎𝑎2𝜉2 − 𝑎𝑎3𝜉3 + 𝑎𝑎3𝑃𝑟 + 𝑎𝑎4𝐹𝐿 + 𝑓1
− 𝜉𝑑𝑑 (23)

4.1.1. RBF NN Approximation for Uncertainty of Dynamic
Pressure Cylinder Displacement Subsystem. Using the good
approximation performance of the RBF neural network,
estimate the uncertainty term f 1of the dynamic pressure
cylinder displacement subsystem, which can effectively solve
the problem that the upper bound of the uncertain term is
difficult to determine.

𝑓1 (𝜉V) = 𝑙∑
𝑗=1

𝑤𝑗ℎ𝑗 (𝜉V) = 𝑊𝑇ℎ (𝜉V) (24)

where 𝑊𝑇 is the weight vector of the RBF, 𝑊𝑇 =[𝑤1, 𝑤2, . . . , 𝑤𝑙]; ℎ(𝜉V) is the radial basis vector of the RBF,ℎ(𝜉V) = [ℎ1(𝜉V), ℎ2(𝜉V), . . . , ℎ𝑙(𝜉V)]𝑇, 𝑙 is the number of hidden
layer nodes.

And ℎ𝑗(𝜉V) is a Gaussian function with the following
expression:

ℎ𝑗 (𝜉V) = exp(𝑋 − 𝐶𝑗22𝑏2𝑗 ) , 𝑗 = 1, 2, . . . , 𝑙 (25)

where 𝐶𝑗 = [𝑐1𝑗, 𝑐2𝑗]T is the central vector of the jth
network node; bj is the base width parameter of the jth
network node.

Assumption 1. Using the RBF neural network to approximate
the uncertain term 𝑓1(𝜉V), there is an optimal weight 𝑊𝑏 =
argmin𝑊∈𝑅𝑙(sup|𝑊𝑇ℎ(𝜉V) − 𝑓1(𝜉V)|) to make the neural
network approximation error 𝜀(𝜉V) to satisfy𝑊𝑏𝑇ℎ(𝜉V)−𝑓1 =𝜀(𝜉V), and ‖𝜀(𝜉V)‖ ≤ 𝜀𝑏, where 𝑓1 is the upper bound of the
uncertainty of 𝑓1(𝜉V); i.e., 𝑓1 − ‖𝑓1(𝜉V)‖ > 𝜀1 > 𝜀𝑏.

The uncertain term 𝑓1 in (23) is estimated by the RBF
neural network of (24); the adaptive virtual controller of the
sliding mode RBF neural network of the dynamic cylinder
displacement subsystem can be obtained:

𝑒32 = 1𝑎𝑎3 (−𝑎𝑎1𝜉1 − 𝑎𝑎2𝜉2 + 𝑎𝑎3𝑃r + 𝑎𝑎4𝐹𝐿
+ 𝑊𝑇ℎ (𝜉V) − 𝜉𝑑𝑑)

(26)

4.1.2. Design of RBF NN Sliding Mode Adaptive Controller.
The boundary layer method is introduced to reduce chatter-
ing near the sliding surface [23, 24], and the adaptive virtual
controller is modified to

𝑒31 = 𝑒32 + 𝐾1𝑠𝑎𝑡 ( 𝑆1𝜑1) (27)

where K1 is the switching gain, and its adaptive law is
designed as ̇𝐾1 = 𝐾11|𝑆1|, K11 is a positive real number;

𝑠𝑎𝑡 ( 𝑆1𝜑1) = {{{
𝑆1𝜑1 , 𝑆1 ≤ 𝜑1
sgn (𝑆1) , 𝑆1 > 𝜑1 (28)

is the boundary function.
Furthermore, the weight vector adaptive law of the

displacement subsystem RBF neural network is

̇̂𝑊 = 𝜂1ℎ (𝜉V) 𝑆1 − 𝛿1�̂� (29)

where𝛿1 is theweight vector correction coefficient, which
can reduce the weight vector size and prevent the controller
gain saturation, thus improving the robustness of the neural
network approximation error [25] and satisfying 𝛿1 > 0.
4.2. Dynamic Pressure Cylinder Output Pressure Subsystem
RBF NN Backstepping Sliding Mode Adaptive Control. Let𝑓2 = 𝐶5Δ 2; (20) can be expressed as

̇𝑆2 = −𝑎𝑎5𝜉1 + 𝑎𝑎6𝜉2 − 𝑎𝑎7𝜉3 − 𝑎𝑎8𝜉4 − 𝑎𝑎9𝜉5
+ 𝑎𝑎10𝐹𝐿 − 𝑎𝑎11𝑔 (𝑢) 𝑢 + 𝐶5𝑃𝑃𝑟 + 𝜉𝑑𝑑 + 𝑓2 (30)

4.2.1. RBF NN Approximation for Uncertainty of Dynamic
Pressure Cylinder Output Pressure Subsystem. f 2is the uncer-
tainty term of the dynamic pressure cylinder output pressure
subsystem, and its RBF neural network approximator is as
follows:

𝑓2 (𝜉𝑝) = 𝑚∑
𝑛=1

𝑝𝑛𝜙𝑛 (𝜉𝑝) = 𝑃𝑇𝜙 (𝜉𝑝) (31)

where m is the number of hidden layer nodes; 𝜉𝑝 =[𝜉3, 𝜉4, 𝜉5]T is input vector of the RBF; 𝑃𝑇 is the weight vector
of the RBF, 𝑃𝑇 = [𝑝1, 𝑝2, . . . , 𝑝𝑚]; 𝜙(𝜉𝑝) is the radial basis
vector of the RBF, 𝜙(𝜉𝑝) = [𝜙1(𝜉𝑝), 𝜙2(𝜉𝑝), . . . , 𝜙𝑚(𝜉𝑝)]𝑇.

And B𝑛(𝜉𝑝) is a Gaussian function with the following
expression:

𝜙𝑛 (𝜉𝑝) = exp(𝑋 − 𝐶𝑃𝑛22𝑏𝑃2𝑛 ) , 𝑛 = 1, 2, . . . , 𝑚 (32)

where𝐶𝑃𝑛 = [𝑐𝑝1𝑛, 𝑐𝑝2𝑛, 𝑐𝑝3𝑛]T is the central vector of the
nth network node; bpn is the base width parameter of the nth
network node.

Assumption 2. Using the RBF neural network to approxi-
mate the uncertain term 𝑓2(𝜉𝑝), there is an optimal weight
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Figure 3: Dynamic pressure cylinder electrohydraulic servo pressure systemRBF neural network backstepping slidingmode adaptive control
block diagram.

𝑃𝑏 = argmin𝑊∈𝑅𝑚(sup|𝑃𝑇𝜙(𝜉𝑃) − 𝑓2(𝜉𝑃)|); make the neural
network approximation error𝛽(𝜉𝑃) to satisfy𝑃𝑏𝑇B(𝜉𝑃)−𝑓2 =𝛽(𝜉𝑃), and ‖𝛽(𝜉V)‖ ≤ 𝛽𝑏, where 𝑓2 is the upper bound of the
uncertainty of 𝑓2(𝜉𝑃); i.e., 𝑓2 − ‖𝑓2(𝜉𝑃)‖ > 𝛽1 > 𝛽𝑏.

Thenwe can obtain the RBFneural network backstepping
sliding mode adaptive controller of the dynamic pressure
cylinder output pressure subsystem:

𝑢1 = 1𝑎𝑎11𝑔 (𝑢) (−𝑎𝑎5𝜉1 + 𝑎𝑎6𝜉2 − 𝑎𝑎7 (𝜉3 − 𝑃𝑟)
− 𝑎𝑎8 (𝜉4 − �̇�𝑟) + 𝑃𝑃 − 𝑎𝑎9 (𝜉5 − �̈�𝑟) + 𝑎𝑎10𝐹𝐿
+ 𝑃𝑇𝜙 (𝜉𝑝) − 𝜉𝑑𝑑1)

(33)

4.2.2. Design of RBF NN Backstepping Sliding Mode Adaptive
Controller. Using the boundary layer method, the controller
is as follows:

𝑢 = 𝑢1 + 𝐾2𝑠𝑎𝑡 ( 𝑆2𝜑2) (34)

where K2 is the switching gain, and its adaptive law is
designed as ̇𝐾2 = 𝐾22|𝑆2|, K22 is a positive real number;

𝑠𝑎𝑡 ( 𝑆2𝜑2) = {{{
𝑆2𝜑2 , 𝑆2 ≤ 𝜑2
sgn (𝑆2) , 𝑆2 > 𝜑2 (35)

is the boundary function.
The weight vector adaptive law of the output pressure

subsystem RBF neural network is

̇̂𝑃 = 𝜂2𝜙 (𝜉𝑃) 𝑆2 − 𝛿2�̂� (36)

where 𝛿2 is the weight vector correction coefficient,
satisfying 𝛿2 > 0.
4.3. Design and Stability Analysis of RBF Neural

Network Backstepping Sliding Mode Adaptive Control for
the Dynamic Pressure Cylinder Electrohydraulic Servo
Pressure System

4.3.1. Design of RBF Neural Network Backstepping Sliding
Mode Adaptive Control. Figure 3 is the control structure



Complexity 7

block diagram of the dynamic pressure cylinder electrohy-
draulic servo pressure system RBF neural network back-
stepping sliding mode adaptive control. In Figure 3, the
dynamic pressure cylinder system consists of the displace-
ment subsystem described by (8) and the output pressure
subsystem described by (9); two RBF neural networks (𝑓1(𝜉V)
and 𝑓2(𝜉𝑝)) and their adaptive laws ( ̇̂𝑊 and ̇̂𝑃) are used to
approximate the subsystem uncertainties 𝑓1(𝜉V) and 𝑓2(𝜉𝑃)
and realize the tracking control of the output pressure of
the dynamic pressure cylinder by separately constructing the
virtual controller 𝑒31 and the pressure controller 𝑢.

Furthermore, the dynamic pressure cylinder RBF neural
network backstepping sliding mode adaptive control system
can be constructed byTheorem 3.

Theorem 3. The dynamic pressure cylinder electrohydraulic
servo pressure system described in (7) can be decomposed
into the dynamic pressure cylinder displacement subsystem
described in (8) and the dynamic pressure cylinder output
pressure subsystem described in (9); the dynamic pressure cylin-
der displacement subsystem adopts the sliding mode switching
function of (10), uses RBF neural network described by (24) to
approximate the uncertain term𝑓1(𝜉V), selects the adaptive law
of (29) used to update the RBF neural network weight vector�̂�, and constructs a slidingmode virtual controller of formulas
(26) and (27); the dynamic pressure cylinder output pressure
subsystem adopts the sliding mode switching function of (19),
uses RBF neural network described by (31) to approximate
the uncertain term 𝑓2(𝜉𝑝), selects the adaptive law of (36)
used to update the RBF neural network weight vector �̂�, and
constructs a backstepping sliding mode controller of formulas
(33) and (34); both of the above subsystems can be consistently
bounded at the end, so that the dynamic pressure cylinder
electrohydraulic servo pressure system is gradually stabilized,
and finally the output pressure tracking error of the system is
converged.

4.3.2. Stability Analysis. Discuss the stability of the dynamic
pressure cylinder displacement subsystem and the dynamic
pressure cylinder output pressure subsystem separately, and
then we can evaluate the stability of the entire dynamic
pressure cylinder electrohydraulic servo pressure system.

Proof. (1) Stability of the dynamic pressure cylinder displace-
ment subsystem

Substituting the sliding mode adaptive virtual controller
described in (27) for 𝜉3 in (23), we can get

̇𝑆1 = 𝑓1 (𝜉V) − 𝑊𝑇ℎ (𝜉V) − 𝑎𝑎3𝐾1𝑠𝑎𝑡 ( 𝑆1𝜑1) (37)

It can be known from Assumption 1 that

𝑓1 (𝜉V) = 𝑊𝑏𝑇ℎ (𝜉V) + 𝜀1 (38)

(37) can be simplified to

̇𝑆1 = 𝑊𝑇ℎ (𝜉V) + 𝜀1 − 𝑎𝑎3𝐾1𝑠𝑎𝑡 ( 𝑆1𝜑1) (39)

where �̃� = 𝑊𝑏 − �̂� is the RBF neural network weight
vector estimation error and 𝜀1 is the approximation error of
the RBF neural network for the uncertainty term 𝑓1(𝜉V).

Select the Lyapunov function:

𝑉1 = 12𝑆21 + 12𝜂−11 𝑊𝑇�̃� (40)

Taking the derivative of V1 and substituting (39) into �̇�1,
�̇�1 = 𝑆1 ̇𝑆1 − 𝜂−11 𝑊𝑇 ̇̂𝑊

= 𝑆1 (𝑊𝑇ℎ (𝜉V) + 𝜀1 − 𝑎𝑎3𝐾1𝑠𝑎𝑡 ( 𝑆1𝜑1))
− 𝜂−11 𝑊𝑇 ̇̂𝑊

(41)

Substituting the RBF neural network weight vector adap-
tive law (29) into (41),

�̇�1 = −𝑎𝑎3𝐾1𝑆1𝑠𝑎𝑡 ( 𝑆1𝜑1) + 𝛿1𝜂1𝑊𝑇�̂� + 𝑆1𝜀1 (42)

From the Young inequality 𝑎𝑇𝑏 ≤ (𝜆𝑎𝑏/2)𝑎𝑇𝑎 +(1/2𝜆𝑎𝑏)𝑏𝑇𝑏, 𝜆ab is the normal number, and we can derive

𝑆1𝜀1 ≤ 𝜆𝑤12 𝑆21 + 12𝜆𝑤1 𝜀21 (43)

𝛿1𝜂1𝑊𝑇�̂� = 𝛿1𝜂1𝑊𝑇 (𝑊𝑏 − �̃�)
= 𝛿1𝜂1𝑊𝑇𝑊𝑏 − 𝛿1𝜂1𝑊𝑇�̃�
≤ −𝛿1𝜂1 (1 − 𝜆𝑤22 )𝑊𝑇�̃� + 𝛿12𝜆𝑤2𝜂1 ‖𝑊𝑏‖2

(44)

Discuss with the boundary function:
The adaptive law of switching gain K1 is ̇𝐾1 = 𝐾11|𝑆1|,

and the coefficient K11 is a positive real number; we can knoẇ𝐾1 > 0, so that K1 ≥ 0 can be obtained. aa3 = c2a3 > 0; 𝜑1 is
positive real number.

(a) When |𝑆1| ≤ 𝜑1, 𝐾1𝑠𝑎𝑡(𝑆1/𝜑1)𝑆1 = (𝐾1/𝜑1)𝑆21
�̇�1 = −𝑎𝑎3𝐾1𝜑1 𝑆21 + 𝛿1𝜂1𝑊𝑇�̂� + 𝑆1𝜀1

≤ −(𝑎𝑎3𝐾1𝜑1 − 𝜆𝑤12 ) 𝑆21 − 𝛿1𝜂1 (1 − 𝜆𝑤22 )𝑊𝑇�̃�
+ 12𝜆𝑤1 𝜀21 + 𝛿1 ‖𝑊𝑏‖22𝜆𝑤2𝜂1

≤ −𝐾𝑟1𝑆21 − 𝐾𝑤1𝑊𝑇�̃� + 𝛾1 ≤ −𝐾𝜆1𝑉1 + 𝛾1

(45)

where 𝐾𝑟1 = (𝑎𝑎3𝐾1/𝜑1 − 𝜆𝑤1/2), 𝐾𝑤1 = (𝛿1/𝜂1)(1 −𝜆𝑤2/2), 𝐾𝜆1 = 2 ∗ min(𝐾𝑟1, 𝐾𝑤1), 𝛾1 = (1/2𝜆𝑤1)𝜀21 +𝛿1‖𝑊𝑏‖2/2𝜆𝑤2𝜂1.
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Select the parameters𝐾𝑟1 and𝐾𝑤1 being nonnegative real
numbers, multiply by 𝑒𝐾𝜆1𝑡 both sides of (45), and obtain the
definite integral over the interval [0, t]:

𝑉1 = (𝑉1 (0) − 𝛾1𝐾𝜆1) 𝑒−𝐾𝜆1 𝑡 + 𝛾1𝐾𝜆1 (46)

When 𝑡 → ∞, 𝑉1 converges to 𝛾1/𝐾𝜆1, all signals in the
closed-loop system are uniformly bounded, and the tracking
error is made as small as possible by selecting appropriate
design parameters [26, 27].

(b) When |𝑆1| > 𝜑1, 𝐾1𝑠𝑎𝑡(𝑆1/𝜑1)𝑆1 = 𝐾1sgn(𝑆1)𝑆1 =𝐾1|𝑆1| = (𝐾1/|𝑆1|)𝑆21
�̇�1 = −𝑎𝑎3𝐾1 𝑆1 + 𝛿1𝜂1𝑊𝑇�̂� + 𝑆1𝜀1

= −𝑎𝑎3 𝐾1𝑆1𝑆21 +
𝛿1𝜂1𝑊𝑇�̂� + 𝑆1𝜀1

≤ −(𝑎𝑎3𝐾1𝑆1 − 𝜆𝑤12 ) 𝑆21 − 𝛿1𝜂1 (1 − 𝜆𝑤22 )𝑊𝑇�̃�
+ 12𝜆𝑤1 𝜀21 + 𝛿1 ‖𝑊𝑏‖22𝜆𝑤2𝜂1

≤ −𝐾𝑟2𝑆21 − 𝐾𝑤1𝑊𝑇�̃� + 𝛾1 ≤ −𝐾𝜆2𝑉1 + 𝛾1

(47)

where 𝐾𝑟2 = (𝑎𝑎3𝐾1/|𝑆1| − 𝜆𝑤1/2) ≥ 0, 𝐾𝜆2 = 2 ∗
min(𝐾𝑟2, 𝐾𝑤1).

we can obtain

𝑉1 = (𝑉1 (0) − 𝛾1𝐾𝜆2) 𝑒−𝐾𝜆2 𝑡 + 𝛾1𝐾𝜆2 (48)

All signals in the closed-loop system are consistently
bounded.

To sum up,

𝑉1 = {{{{{{{
(𝑉1 (0) − 𝛾1𝐾𝜆1) 𝑒−𝐾𝜆1 𝑡 + 𝛾1𝐾𝜆1 , 𝑆1 ≤ 𝜑1
(𝑉1 (0) − 𝛾1𝐾𝜆2) 𝑒−𝐾𝜆2 𝑡 + 𝛾1𝐾𝜆2 , 𝑆1 > 𝜑1 (49)

The dynamic pressure cylinder displacement subsystem
uses the adaptive RBF neural network of (24) and (29) to
approximate the uncertain term𝑓1(𝜉V), constructs the sliding
mode virtual controller of (27), and selects the appropriate
parameters; the system tracking error and the parameter
approximation error can be ultimately bounded, and the
closed-loop system eventually converges to a small neighbor-
hood of zero.(2) Stability of the dynamic pressure cylinder output
pressure subsystem

Substituting the backstepping sliding mode adaptive con-
troller (34) into (30), we get

̇𝑆2 = 𝑓2 (𝜉𝑝) − 𝑃𝑇𝜙 (𝜉𝑝) − 𝐾2𝑎𝑎11𝑔 (𝑢) 𝑠𝑎𝑡 ( 𝑆2𝜑2) (50)

It is known by Assumption 2 that

𝑓2 (𝜉𝑝) = 𝑃𝑏𝑇B (𝜉𝑝) + 𝜀2 (51)

(50) can be simplified to

̇𝑆2 = 𝑃𝑇𝜙 (𝜉𝑝) + 𝜀2 − 𝐾2𝑎𝑎11𝑔 (𝑢) 𝑠𝑎𝑡 ( 𝑆2𝜑2) (52)

where �̃� = 𝑃𝑏−�̂� is the RBFneural network weight vector
estimation error and 𝜀2 is the approximation error of the RBF
neural network for the uncertainty term 𝑓2(𝜉𝑝).

Design the Lyapunov function by referring to (13) to (21):

𝑉51 = 𝑉4 + 12𝑆22 + 12𝜂−12 𝑃𝑇�̃� (53)

Taking the derivative ofV51 and substituting (53) into ̇𝑉51 ,
̇𝑉51 = �̇�4 + 𝑆2 ̇𝑆2 − 𝜂−12 𝑃𝑇 ̇̂𝑃
= −𝐾3𝐾4𝑒23 − 𝐾3𝐾4𝐾5𝑒24 − 𝐾3𝐾4𝑒4 (𝑒4 − 𝐾5𝑒5)

+ 𝑆2 (𝑃𝑇𝜙 (𝜉𝑝) + 𝜀2 − 𝐾2𝑎𝑎11𝑔 (𝑢) 𝑠𝑎𝑡 ( 𝑆2𝜑2))
− 𝜂−12 𝑃𝑇 ̇̂𝑃

(54)

Substituting the RBF neural network weight vector adap-
tive law (36) into (54),

̇𝑉51 = −𝐾3𝐾4𝑒23 − 𝐾3𝐾4𝐾5𝑒24 − 𝐾3𝐾4𝑒4 (𝑒4 − 𝐾5𝑒5)
− 𝐾2𝑎𝑎11𝑔 (𝑢) 𝑆2𝑠𝑎𝑡 ( 𝑆2𝜑2) + 𝛿2𝜂2𝑃𝑇�̂� + 𝑆2𝜀2 (55)

We can get by Young inequality that

𝑆2𝜀2 ≤ 𝜆𝑝12 𝑆22 + 12𝜆𝑝1 𝜀22 (56)

𝛿2𝜂2 𝑃𝑇�̂� = 𝛿2𝜂2𝑃𝑇 (𝑃𝑏 − �̃�) = 𝛿2𝜂2𝑃𝑇𝑃𝑏 − 𝛿2𝜂2𝑃𝑇�̃�
≤ −𝛿2𝜂2 (1 − 𝜆𝑝12 )𝑃𝑇�̃� + 𝛿22𝜆𝑝1𝜂2 ‖𝑃𝑏‖2 (57)
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Let 0 < 𝐾5 ≤ |𝑒4|/|𝑒5|; we can get −𝐾3𝐾4𝑒4(𝑒4−𝐾5𝑒5) ≤ 0,
combined with (18); we know

�̇�4 = −𝐾3𝐾4𝑒23 − 𝐾3𝐾4𝐾5𝑒24 − 𝐾3𝐾4𝑒4 (𝑒4 − 𝐾5𝑒5)
≤ −𝐾3𝐾4𝑒23 − 𝐾3𝐾4𝐾5𝑒24 (58)

Discuss the following according to the definition of
boundary function:̇𝐾2 = 𝐾22|𝑆2| is the adaptive law of switching gain K2, and
by the coefficient K22 being a positive real number, we knoẇ𝐾2 > 0, so that K2 ≥ 0 can be obtained. It is known by (3) that𝑔(𝑢) ≥ 0; 𝑎𝑎11 = 𝐶5𝑎8 > 0; 𝜑2 is positive real number.

(a) When |𝑆2| ≤ 𝜑2, 𝐾2𝑠𝑎𝑡(𝑆2/𝜑2)𝑆2 = (𝐾2/𝜑2)𝑆22
̇𝑉51 ≤ −𝐾3𝐾4𝑒23 − 𝐾3𝐾4𝐾5𝑒24 − 𝐾2𝑎𝑎11𝑔 (𝑢)𝜑2 𝑆22

+ 𝛿2𝜂2𝑃𝑇�̂� + 𝑆2𝜀2
≤ −𝐾3𝐾4𝑒23 − 𝐾3𝐾4𝐾5𝑒24 − 𝐾2𝑎𝑎11𝑔 (𝑢)𝜑2 𝑆22

− 𝛿2𝜂2 (1 − 𝜆𝑝12 )𝑃𝑇�̃� + 𝛿22𝜆𝑝1𝜂2 ‖𝑃𝑏‖2
+ 𝜆𝑝12 𝑆22 + 12𝜆𝑝1 𝜀22

≤ −𝐾3𝐾4𝑒23 − 𝐾3𝐾4𝐾5𝑒24
− (𝐾2𝑎𝑎11𝑔 (𝑢)𝜑2 − 𝜆𝑝12 ) 𝑆22 + 12𝜆𝑝1 𝜀22
− 𝛿2𝜂2 (1 − 𝜆𝑝12 )𝑃𝑇�̃� + 𝛿22𝜆𝑝1𝜂2 ‖𝑃𝑏‖2

≤ 𝑉4 − 𝐾𝑟3𝑆21 − 𝐾𝑝1𝑃𝑇�̃� + 𝛾2 ≤ −𝐾𝜆3𝑉51 + 𝛾2

(59)

where 𝐾𝑟3 = 𝐾2𝑎𝑎11𝑔(𝑢)/𝜑2 − 𝜆𝑝1/2, 𝐾𝜆3 = 2 ∗
min(𝐾𝑟3, 𝐾𝑝1), 𝛾2 = (1/2𝜆𝑝1)𝜀22 + (𝛿2/2𝜆𝑝1𝜂2)‖𝑃𝑏‖2, 𝐾𝑝1 =(𝛿2/𝜂2)(1 − 𝜆𝑝1/2).

Select the parameters Kr3 and Kp1 being nonnegative real
numbers, multiply by 𝑒𝐾𝜆3𝑡 both sides of (59), and obtain the
definite integral over the interval [0, t]:

𝑉51 = (𝑉51 (0) − 𝛾2𝐾𝜆3) 𝑒−𝐾𝜆3 𝑡 + 𝛾2𝐾𝜆3 (60)

When 𝑡 → ∞,V51 converges to 𝛾2/𝐾𝜆3, all signals in the
closed-loop system are uniformly bounded, and designing𝐾𝜆3 ≫ 𝛾2 ensures that the closed-loop system eventually
converges to a small neighborhood of zero.

(b) When |𝑆2| > 𝜑2, 𝐾2𝑠𝑎𝑡(𝑆2/𝜑2)𝑆2 = 𝐾2|𝑆2| =(𝐾2/|𝑆2|)𝑆22
̇𝑉51 ≤ −𝐾3𝐾4𝑒23 − 𝐾3𝐾4𝐾5𝑒24 − 𝐾2𝑎𝑎11𝑔 (𝑢)𝑆2 𝑆22

+ 𝛿2𝜂2 𝑃𝑇�̂� + 𝑆2𝜀2
≤ −𝐾3𝐾4𝑒23 − 𝐾3𝐾4𝐾5𝑒24 − 𝐾2𝑎𝑎11𝑔 (𝑢)𝑆2 𝑆22

− 𝛿2𝜂2 (1 − 𝜆𝑝12 )𝑃𝑇�̃� + 𝛿22𝜆𝑝1𝜂2 ‖𝑃𝑏‖2
+ 𝜆𝑝12 𝑆22 + 12𝜆𝑝1 𝜀22

≤ −𝐾3𝐾4𝑒23 − 𝐾3𝐾4𝐾5𝑒24
− (𝐾2𝑎𝑎11𝑔 (𝑢)𝑆2 − 𝜆𝑝12 ) 𝑆22 + 12𝜆𝑝1 𝜀22
− 𝛿2𝜂2 (1 − 𝜆𝑝12 )𝑃𝑇�̃� + 𝛿22𝜆𝑝1𝜂2 ‖𝑃𝑏‖2

≤ 𝑉4 − 𝐾𝑟4𝑆21 − 𝐾𝑝1𝑃𝑇�̃� + 𝛾2 ≤ −𝐾𝜆4𝑉51 + 𝛾2

(61)

where 𝐾𝑟4 = 𝐾2𝑎𝑎11𝑔(𝑢)/|𝑆2| − 𝜆𝑝1/2, 𝐾𝜆4 = 2 ∗
min(𝐾𝑟4, 𝐾𝑝1).

we can get

𝑉51 = (𝑉51 (0) − 𝛾2𝐾𝜆4) 𝑒−𝐾𝜆4 𝑡 + 𝛾2𝐾𝜆4 (62)

All signals in a closed-loop system are consistently
bounded.

To sum up,

𝑉51 = {{{{{{{
(𝑉51 (0) − 𝛾2𝐾𝜆3) 𝑒−𝐾𝜆3𝑡 + 𝛾2𝐾𝜆3 , 𝑆2 ≤ 𝜑2
(𝑉51 (0) − 𝛾2𝐾𝜆4) 𝑒−𝐾𝜆4𝑡 + 𝛾2𝐾𝜆4 , 𝑆2 > 𝜑2 (63)

The dynamic pressure cylinder output pressure subsys-
tem uses the adaptive RBF neural network of (31) and
(36) to approximate the uncertain term 𝑓2(𝜉𝑝) and, through
constructing the backstepping sliding mode controller of
(34), selects the appropriate parameters to make the system
tracking error and the parameter approximation error ulti-
mately bounded, thus ensuring that the closed-loop system
eventually converges to a small neighborhood of zero.(3) Stability of the dynamic pressure cylinder electrohy-
draulic servo pressure system

Based on the discussion of the stability of the above two
subsystems, the final Lyapunov function of the design system
is expressed as

𝑉6 = 𝑉1 + 𝑉51 (64)
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Table 1: Parameters of AMESim model for dynamic pressure cylinder electro-hydraulic servo pressure system.

Component Parameter value

Hydraulic oil
Density/Kg⋅m−3 850

absolute viscosity/Pa⋅s 0.028
Bulk modulus /MPa 900

Hydraulic source Pressure source /MPa 20.6
Flow source /L⋅min−1 200

Servo valve
Rated current /mA 40

Natural frequency/Hz 80
Maximum flow /L⋅min−1 120

Dynamic pressure cylinder
Piston diameter/mm 125
Rod diameter/mm 90
Cylinder stroke/mm 50

Load Elastic stiffness /N⋅m−1 1.53×108
Mass /Kg 200

The derivative of V6 is

�̇�6 = �̇�1 + ̇𝑉51 ≤ −𝐾𝜆𝑉6 + 𝛾 (65)

where𝐾𝜆 = min(𝐾𝜆1, 𝐾𝜆2, 𝐾𝜆3, 𝐾𝜆4), 𝛾 = 𝛾1 + 𝛾2.
Further, we can get

𝑉6 = (𝑉6 (0) − 𝛾𝐾𝜆) 𝑒−𝐾𝜆 𝑡 + 𝛾𝐾𝜆 (66)

It can be seen that Theorem 3 can make the tracking
error and parameter approximation error of the dynamic
pressure cylinder electrohydraulic pressure system bounded,
thus ensuring the stable convergence of the closed-loop
system.

Proof completed.

5. Simulation Research

Based on the dynamic pressure cylinder servo pressure sys-
tem described in (7), according to Theorem 3, the AMESim
and Simulink cosimulation block diagram of RBF neural
network backstepping sliding mode adaptive control is con-
structed as in Figure 4.

In Figure 4, AS1 is the AMESim model of the dynamic
pressure cylinder electrohydraulic servo pressure system,
and its parameters settings are shown in Table 1. C1 is the
sliding mode adaptive controller of the dynamic pressure
cylinder displacement subsystem, and S3 is the RBF neu-
ral network approximator of the displacement subsystem
uncertainty term. C1 and S3 constitute the dynamic pressure
cylinder displacement subsystem RBF neural network slid-
ing mode adaptive control. C2 is the backstepping sliding
mode adaptive controller of the dynamic pressure cylinder
output pressure subsystem, S4 is the RBF neural network
approximator of the output pressure subsystem uncertainty
item. C2 and S4 constitute the dynamic pressure cylinder
output pressure subsystem RBF neural network backstepping
sliding mode adaptive control. Finally, through the virtual
controller e31 and the dynamic pressure cylinder output

AS1

1 2 gf
1

e3
1 S1

C1
3 4 5 gf
2

u St
2

C2

S3

S4

Figure 4: Dynamic pressure cylinder electrohydraulic servo pres-
sure system RBF neural network backstepping sliding mode adap-
tive control AMESim and Simulink cosimulation block diagram.

pressure controller u, realize the dynamic pressure cylinder
electrohydraulic servo pressure system RBF neural network
backstepping sliding mode adaptive control.

Select the target variable 𝑃𝑟 = 1.7e7 sin(20𝜋t)Pa, and
the expected deviation of the output pressure deviation 𝜉3
is 𝜉d3 = 0; we can refer to (22) to derive the approximate
dynamic pressure cylinder expected displacement 𝜉d1, and
set the parameters of the backstepping sliding mode adaptive
controller according to Table 2.

The dynamic pressure cylinder displacement subsystem
RBF neural network is designed as a 2-11-1 structure, contain-
ing 11 neurons; i.e., 𝑙 = 11. The first set of 11 network node
center vectors [𝐶11, 𝐶12, . . . , 𝐶11l] of the input variable 𝜉1 are
evenly distributed in the 0.15 ∗ [−2, 2] region, and the other
set of 11 network node center vectors [𝐶21, 𝐶22, . . . , 𝐶21l] of
the input variable 𝜉2 are evenly distributed in the 4 ∗ [−2, 2]
region. The network node base width parameter is 𝑏 = 0.5 ∗
ones(11, 1).

The dynamic pressure cylinder output pressure subsys-
tem RBF neural network is designed as a 3-16-1 structure,
containing 16 neurons; i.e., m=16. The first set of 16 net-
work node center vectors [𝐶𝑃11, 𝐶𝑃12, . . . , 𝐶𝑃116] of the input
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Table 2: Backstepping sliding mode adaptive controller parameters.

Parameter value Parameter value𝑐1 1e-1 𝑐2 1e-2𝑐3 1e-2 𝑐4 1e-6𝑐5 6.8e-9 𝐾11 5.1e1𝐾22 1.8 𝐾3 1e-4𝐾4 1e-5 𝐾5 1e-6𝜑1 2e-1 𝜑2 3e2𝜂1 5e3 𝜂2 3.5e5

variable 𝜉3 are evenly distributed in the 1.7e7 ∗ [−2, 2]
region, the second set of 16 network node center vectors[𝐶𝑃21, 𝐶𝑃22, . . . , 𝐶𝑃216] of the input variable 𝜉4 are evenly
distributed in the 1e9 ∗ [−2, 2] region, and the third set of
16 network node center vectors [𝐶𝑃31, 𝐶𝑃32, . . . , 𝐶𝑃316] of the
input variable 𝜉5 are evenly distributed in the 1.1e11∗ [−2, 2]
region. Network node base width parameters are 𝑏𝑝(1) =2e7 ∗ ones(16, 1), 𝑏𝑝(2) = 1e9 ∗ ones(16, 1), 𝑏𝑝(3) = 1e11 ∗
ones(16, 1).

Carry out the AMESim and Simulink cosimulation of the
dynamic pressure cylinder electrohydraulic servo pressure
systemRBF neural network backstepping sliding mode adap-
tive control. The performance simulation curves are shown in
Figure 5.

Figures 5(a) and 5(b) are, respectively, the contrast
curves of the dynamic pressure cylinder AMESim model
RBF neural network backstepping sliding mode adaptive
control (RBFNNBSAC) and backstepping slidingmode adap-
tive control (BSAC) output pressure and their deviations.
Compared with the backstepping sliding mode adaptive
control (BSAC), theRBFneural network backstepping sliding
mode adaptive control (RBFNNBSAC) has a short dynamic
response time and no overshoot, and the output pressure
deviation amplitude is only 3.1e-3 (about 5.3e4Pa) of the set
pressure amplitude, about 70% of the BSAC output pressure
deviation amplitude (about 7.4e4Pa), showing that the RBF
neural network backstepping sliding mode adaptive control
has better dynamic and static performance.

The comparison curves of the outputs of RBFNNBSAC
and BSAC controller are shown in Figure 5(c). Compared
with the output u of the BSAC controller, the output of
the RBFNNBSAC controller u1 has a short adjustment time,
fast convergence, and smooth curve, so that better control
performance can be achieved.

In Figure 5(d), the virtual control variable e31 is much
larger than the output pressure e3, although there is a large
deviation, because the stabilities of the two subsystems are
independent of each other, and therefore the whole system
is still stable.

Figures 5(e) and 5(f) are, respectively, the RBF neural
network adaptive estimation curves for the dynamic pressure
cylinder displacement subsystem uncertainty item 𝑓1 and
the dynamic pressure cylinder output pressure subsystem
uncertainty item 𝑓2, the approximation curves are stable
and bounded, and the output of the controller u1 can be
adjusted in real time to reduce the influence of parameter

uncertainty on the tracking performance of the dynamic
pressure cylinder output pressure.

Further, at 1.5s, a sinusoidal interference signal (0.2 sin
(20 pi∗t), lasting 1 s) is applied to the RBF neural network
backstepping sliding mode adaptive controller output u1, and
the interference response curve is as shown in Figure 6.

Figure 6(a) shows the good anti-jamming performance
of the RBFNNBSAC control system. Figures 6(b) and 6(c)
show more directly the changes in output pressure tracking
deviation during the whole process of interference generation
and disappearance: although the interference makes the
amplitude of the output pressure deviation larger, its max
amplitude is only 7.9e-3 (about 1.3e5Pa) of the set pressure
amplitude, still having high tracking accuracy, and the output
pressure deviation can be rapid return to the pre-interference
level after the interference disappears.

The output of the RBFNNBSAC controller in Figure 6(d)
can be adjusted according to the interference signal, and after
the interference disappears, the output size of controller can
be restored. Uncertainty terms f 1 and f 2 RBFNN approx-
imation of the interference response curves are shown in
Figures 6(e) and 6(f); the interference still has no effect on
the uncertainty f 1 RBFNN approximation curve, but the
uncertain term f 2 RBFNN approximation curve can quickly
and sensitively respond to the interference signal, adjusting
the compensation of the RBFNN approximation network to
the interference signal in real time.

The target variable Pr is set to triangle wave and square
wave signal with amplitude 1.7e7Pa and frequency 10Hz,
respectively, and modifies some parameters of RBF neural
network backstepping sliding mode adaptive controller; the
simulation curves of the RBF neural network backstepping
sliding mode adaptive control based on dynamic pressure
cylinder AMESim model are, respectively, shown in Figures
7 and 8.

From Figures 7(a)–7(c) and Figures 8(a)–8(c), it can be
seen that the RBF neural network backstepping sliding mode
adaptive control (RBFNNBSAC) can also effectively track
triangular and square wave signals. There are some certain
tracking errors; however, compared with the backstepping
sliding mode adaptive control (BSAC), the algorithm has
good dynamic and static control performances (fast response,
small overshoot, small steady-state error, etc.), and the
demand of control performance of dynamic pressure cylinder
electrohydraulic servo pressure system can be satisfied.
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Figure 5: Performance curve of dynamic pressure cylinder AMESimmodel RBF neural network backstepping sliding mode adaptive control
(10Hz sine).
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Figure 6: Dynamic pressure cylinderAMESimmodel RBF neural network backstepping sliding mode adaptive control interference response
curve (10Hz sine).
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Figure 7: Performance curve of dynamic pressure cylinder AMESimmodel RBF neural network backstepping sliding mode adaptive control
(10Hz triangle wave).

6. Conclusion

Based on the backstepping sliding mode adaptive control
of the dynamic pressure cylinder, the RBF neural networks
are introduced to approximate the uncertain terms f 1 and
f 2. According to the double sliding surface, the RBF neural
network weight vector adaptive laws of the displacement
subsystem and the output pressure subsystem are, respec-
tively, constructed, thus realizing the automatic updates of the
displacement subsystem virtual controller e31 and the output
pressure subsystem backstepping sliding mode controller u,
reducing the difficulty of controller design.

Target variable 𝑃𝑟 = 1.7𝑒7 sin(20𝜋𝑡)Pa is set, the RBF
neural network backstepping sliding mode adaptive algo-
rithm is applied to the dynamic pressure cylinder AMESim
model, and the control performances of the algorithm are
simulated and analyzed.The results show that, comparedwith
the backstepping sliding mode adaptive control (BSAC), the
RBFNNBSAC algorithm has better dynamic and static per-
formances and tracking performances, and it can effectively

track the target expected variable Pr. Further, an interference
signal is applied to the dynamic pressure cylinder, and the
uncertainty term f 2 RBFNN can quickly respond to the
change of the interference signal, continuously adjusting the
compensation amount of the RBFNN to the interference
signal, so that the controller output u adaptive responded
to the change of the interference signal, greatly reducing the
influence of the interference signal on the tracking error, and
had better anti-interference ability.

Finally, the triangular and square wave signals with
amplitude 1.7e7Pa and frequency 10Hz are applied to the
dynamic pressure cylinder AMESim model; the algorithm
(RBFNNBSAC) and the backstepping sliding mode adaptive
(BSAC) are simulated by contrast curves. It is found that
RBFNNBSAC has better dynamic and static performances,
and the control output is unsaturated and smoother, which
can better track the desired pressure signal.

In future, we plan to apply the RBFNN backstepping
sliding mode adaptive control algorithm to experimental
platform of the track subgrade test device, and further
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Figure 8: Performance curve of dynamic pressure cylinder AMESimmodel RBF neural network backstepping sliding mode adaptive control
(10Hz square wave).

optimize the control algorithm to improve the control per-
formance of the device.
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