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The problems of mode mixing, mode splitting, and pseudocomponents caused by intermittence or white noise signals during
empirical mode decomposition (EMD) are difficult to resolve. The partly ensemble EMD (PEEMD) method is introduced first.
The PEEMD method can eliminate mode mixing via the permutation entropy (PE) of the intrinsic mode functions (IMFs).
Then, bilateral permutation entropy (BPE) of the IMFs is proposed as a means to detect and eliminate mode splitting by means
of the reconstructed signals in the PEEMD. Moreover, known ingredient component signals are comparatively designed to
verify that the PEEMD method can effectively detect and progressively address the problem of mode splitting to some degree
and generate IMFs with better performance. The microseismic signal is applied to prove, by means of spectral analysis, that this
method is effective.

1. Introduction

The Hilbert–Huang transform (HHT) method, which is
composed of the empirical mode decomposition (EMD)
and the Hilbert transform (HT) [1, 2], has been proved
to be an innovative and a valid approach to dealing with
nonlinear and nonstationary data [3]. As an adaptive
time-frequency data analysis method, the EMD has been
widely applied to numerous fields [4–6]. Multiple improved
theories based on the EMD have been proposed as solu-
tions to the problems in EMD algorithms, including mode
mixing and pseudo-IMFs. For example, the ensemble EMD
(EEMD) has been proposed as a means to essentially
resolve the mode-mixing problem associated with EMD
and added noises [7]. Additionally, the complementary
EEMD (CEEMD) [8] has been proposed as a means to
improve the efficiency of the original noise-assisted method
by adding noises in pairs with plus and minus signs, which
aims to reduce the reconstruction errors caused by the
added white noises. The improved theories mentioned

above seek to eliminate mode mixing and pseudo-IMFs
by changing the initial condition in the EMD algorithm
before the partly ensemble EMD (PEEMD) method is
applied. By introducing the permutation entropy (PE) of
the IMFs, the researchers may judge, via the PEEMD
method, whether there are noise signals in the IMFs [9]
and then exclude the noise signals from the targeted signals
with the expectation that no mode mixing exists in the con-
struction of the targeted signals.

The permutation entropy (PE) [10] is proposed as a
means to measure the complexity of the time series. The
complexity of the time series can be examined via several
other approaches, such as the approximate entropy [11],
sample entropy [12], Shannon entropy [13], or cross-
sample entropy [14]. Unlike the approximate entropy, sam-
ple entropy, and Shannon entropy, the PE estimates the
complexity of the time series by comparing the neighboring
values. The PE has been widely used in many areas, such as
electroencephalography (EEG) signal analysis [15], predict-
ing behavioral actions [16], stock market analysis and
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financial dynamics [17, 18], and breakage detection in
mechanical systems [19]. Later, the multiscale permutation
entropy was introduced into price models [20] and to the
medical field [21].

After being used as a robust tool to measure the com-
plexity of the arbitrary time series, the PE was also utilized
to estimate the randomness or stationarity of the single
IMF in the process of PEEMD. The method of eliminating
mode mixing has been transformed into a quantitative
assessment approach based on the result of decomposition.
To conduct a quantitative research, this paper utilizes the
PE to estimate the first and second levels of the IMFs to
calculate the bilateral permutation entropy (BPE), thereby
progressively eliminating mode splitting. The rest of this
paper is organized as follows. Section 2 provides a brief over-
view of the PEEMD algorithm and the PE algorithm to ana-
lyze the mechanisms of mode splitting in IMFs. In Section 3,
the proposed method is compared with PEEMD by analyzing
synthetic and microseismic signals. Finally, the discussion
and conclusion are presented in Section 4.

2. Overviews of the PEEMD and PE

In the PEEMD’s improvement of the EMD algorithm, PE is
utilized to estimate the randomicity and dynamic changes
of the single IMF in the PEEMD algorithm. The PEEMD
algorithm and the PE algorithm are presented as follows to
introduce the proposed method for accessing mode splitting
by the PE value of two or more IMFs.

2.1. PEEMD and Mode Splitting. The PEEMD has greatly
solved the problem of mode mixing and overcome the dis-
advantages of the EEMD and CEEMD. The PEEMD is
described as follows [9].

(i) Let j = 1, and add the white noise series ni t and
−ni t to the targeted signal S t ; S t is a given

time series signal, then

r+ij t = S t − ani t ,
r−ij t = S t − ani t ,

1

where a is the amplitude of added white noise,
i = 1, 2,… , Ne and Ne indicates the pair number
of added white noise. j is the number of itera-
tions for decomposing to the IMFs that meet the
requirements

(ii) Decompose the two signal series r+ij t and
r−ij t using EMD in the jth IMF mode, and

two IMF sets I+ij and I−ij as well as two resi-
due sets r+ij+1 t and r−ij+1 t can be obtained,
respectively:

r+ij+1 t = r+ij t − I+ij t ,
r−ij+1 t = r−ij t − I−ij t

2

(iii) By assembling the final IMF in the jth rank, (3) can
be obtained:

I j t = 1
2Ne〠

Ne

i=1
I+ij t + I−ij t 3

(iv) Calculate the PE of I j t . If the Pj is larger than θ0,
then j = j + 1 and repeat steps (iii)–(v) until Pj is
smaller than θ0. θ0 is the threshold, which denotes
a regular IMF or intermittency or noise signal

(v) Separate the first j − 1 IMFs from the original signal,
and the residue r t is expressed as

r t = S t − 〠
j−1

k=1
Ik t 4

(vi) Decompose r t completely by using the EMD

r t = 〠
n

k=1
ck t + rn t 5

(vii) ck t are seen as the IMFs following the first j − 1
IMFs. The initial signal is described as

s t = 〠
j−1

i=1
Ii t + 〠

n

k=1
ck t + rn t 6

A given signal may be decomposed in a way similar to
CEEMD in the first j − 1 th IMFs via the PEEMD method;
then, instead of assembling and averaging all IMFs, the
EMD is used in the remaining ranks. Hence, the PEEMD
can reduce the amount of calculation of CEEMD and greatly
improve the accuracy of the obtained IMFs. In addition, since
one pair of white noises with positive and negative signs is
added to the targeted signal, the reconstruction error (RE)
may be limited to a negligible level via the PEEMD. That is,
the progress of the PEEMD is complete, and the PE is utilized
to indicate the chaos degree so that the roots of mode mixing,
including intermittency or noise signal, should be eliminated
regardless of mode splitting.

2.2. Permutation Entropy. In this PEEMD algorithm, PE is
employed to detect the randomicity and dynamic changes
of the time series. Reference [10] denotes that it has the
advantages of simple definition, fast speed of calculation,
and well robustness. According to the permutation entropy
(PE) proposed by Bandt and Pompe, the algorithm is illus-
trated as follows:

(i) Given a time series xk , k = 1, 2,… ,N , the m-
dimensional delay embedding vector at time i is
defined as
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xmi = xi, xi+τ,… , xi+ m−1 τ 7

(ii) In (7),m indicates the embedded dimension and τ is
the time delay, Then, xmi has a permutation πr0r1r m−1

if it satisfies

xt+r0τ ≤ xt+r1τ ≤⋯≤ xt+rm−1τ
, 8

where 0 ≤ ri ≤m − 1 and ri ≠ r j

(iii) There are m possible permutations of an m-tuple
vector. For each permutation π, the relative fre-
quency is determined by

p π =
number t t≤T− m−1 τ, xmt has typeπ

N − m − 1 τ
9

(iv) The PE of m dimension is then defined as

HPE m = −〠p π 1n p π 10

(v) The maximum value of HPE m is log m when
all possible permutations appear with the same
probability. Therefore, the normalized permutation
entropy (NPE) can be expressed as

HNPE m =HPE
m
1 n m 11

For any time series, 0 ≤HNPE m ≤ 1 is satisfied. It can
represent randomicity and dynamic changes of the time
series effectively: the smaller the value of HNPE m is, the
more regular the time series is, and the larger the value of
HNPE m is, the more random the time series is. According
to [9], a random white noise will have a PE close to 1, while
a sinusoidal signal and an AM-FM signal will have a PE close
to 0.

3. Method and Application

3.1. Introducing the Bilateral Permutation Entropy (BPE) for
Measurement. The PE is introduced into the PEEMDmethod
to measure the chaos degree in a single IMF to eliminate
mode mixing. However, another problem is that a real signal
may be segmented into multiple IMF components that must
be measured and eliminated [22]; there is a given assumption
for illuminating the principle of mode splitting. Suppose a
simulation signal (a white nose signal or some other signal)
is decomposed into two or more IMF components under
the condition that the PE value of every IMF should be lower
than the given threshold. Two conclusions would be drawn.
First, the PE value of the IMF that includes mode splitting
would be larger than the IMF that includes just the single real

signal because the chaos of IMF is increased by mixing the
real signal with the segmentation of other signals. Second, if
the PE value of the synthetic signal that has been decomposed
into two or more IMFs is lower than some ingredient IMF,
then some real signal would be split into multiple IMFs.
The two conclusions would be effective on the condition that
the multiple IMFs into which the real ingredient signal
decomposed are weakly correlated with each other. The
paper proposes the bilateral permutation entropy (BPE)
index for estimating the degree of mode splitting in the IMFs
of the targeted signal based on this condition.

As a hypothesis, the targeted time series signal is com-
posed of low correlative signals. The BPE index is defined
as follows:

BPEij
PEij

PEi
, 12

where PEi denotes the PE value of the ith IMF component
after decomposition via the PEEMD and PEij indicates the
PE value of the synthetic signal comprising the ith and jth
IMF components. There are two domains of BPEij values.

In essence, the synthetic signal is reconstructed by the ith
and jth IMF components. BPEij ≥ 1 represents that the chaos
degree of the synthetic signal is higher than that of the signal
IMF; that is, there is no signal compatibility between the ith
and jth IMF components. In terms of the decomposition of
the targeted signal, the mode of a target signal is not split into
the IMF components. By contrast, BPEij < 1 signifies that the
chaos degree of the synthetic signal is lower than that of the
signal IMF component. This can be largely attributed to the
fact that the chaos signal has been offset against the compat-
ibility between the IMFs; hence, there is mode splitting in the
decomposition.

3.2. The Reconstruction and Elimination. First, the paper ana-
lyzes the mechanism of mode splitting and selects the mea-
surement index for eliminating it. Then, it reconstructs the
IMFs, the BPE values of which are less than 1. Nevertheless,
the IMFs with a BPE value that is larger than 1 remain or
the IMFs with the maximum BPE values are retained. Next,
the reconstruction signal is decomposed via the PEEMD
method, and the BPE values of the second-level IMFs are
calculated until all of them exceed 1 within the number of
the original ingredient components. The remaining IMFs
are the decomposition results restraining mode splitting by
the PEEMD. The process of eliminating mode splitting is
as follows (Figure 1).

3.3. Simulation Signal Analysis

3.3.1. Simulation Signal Set. To describe the process of the
measurement and elimination of mode splitting, typical
synthetic signals are utilized in the comparative analysis.
The signal S1 consists of a Gaussian white noise signal, a
high-frequency sinusoidal signal, a low-frequency sinusoidal
signal, and an amplitude modulation signal (Figure 2). This
paper assumes that the number of the sampling data is
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PEEMD

IMF1' IMF2' …… R

BPE12 BPE23 BPEn(n + 1)

Within the number of original components:
If BPEi(i + 1) > 1, retain IMFi;

If Max ( BPEi(i + 1) ) is less than 1, retain the IMFx,
which BPEx is maximum 

Reconstruct
remaining IMFs 

IMF1 IMF2 …… R

Figure 1: The scheme for eliminating mode splitting based on the PEEMD and BPE.
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Figure 2: A synthetic signal S1.
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2048. The ingredient signals have a low correlation with
each other.

GW=wgn 1,N , 0 2 ,
LF = 3∗ sin 2∗π∗80∗t ,
HF = 2∗ sin 2∗π∗80∗t ,
AM = 1 + 1 + 0 5∗ sin 2∗π∗5∗t

∗ sin 2∗π∗30∗t^2 + 2∗π∗10∗t ,
S1 = 0 3∗GW+HF +HF + AM,

13

where N = 2048 and t = 1/N 1/N 1. Moreover, t = 1/N
1/N 1 denotes that the t value ranges between 1/N and
1, with an increase of 1/N in each step.

3.3.2. PEEMD and BPE Application. The IMFs of the S1 based
on the PEEMD are illustrated in Figure 3; the relevant
parameters are shown in Table 1. Figure 3 shows that the
IMF1, IMF2, and IMF3 of the signal S1 are partly similar to
the original signals composing the synthetic signal S1. More-
over, it is clear that the parts of the three IMFs are

intertwined. Hence, the problem of mode splitting arises,
and the paper quantitatively calculates the BPE value to
tackle this issue.

To estimate the effectiveness of the BPE method under
the same condition, the paper uses the same parameters in
the BPE process. The results are shown in Figure 4. The min-
imum value among IMF1, IMF2, and IMF3 is 0.93 or 0.8828,
while the τ value is 1 or 4; this shows that there is some mode
splitting under the current state of decomposition.

3.3.3. Results. According to the results (Figures 5 and 6),
when the τ value is 4, the PE value of the reconstructed S1 sig-
nal is slightly lower than the PE value of the original IMFs;
this means that the randomicity and dynamic changes of
the initial IMFs are treated to a certain degree of inhibition
after reconstruction, and all the BPE values are obviously
larger than 1; this denotes that the mode splitting problem
is retained with the state of decomposition via PEEMD.
The IMFs after reconstruction are not completely the same
as the ingredient components, with the conditions that the
BPE value is improved significantly and the PE value is
retained partly. The reasons for this is that the IMF1 that
remained is not the same as the high-frequency sinusoidal
signal; some residue signals, because of the mode splitting
problem via PEEMD, are retained in the last part, and the
IMF1 will certainly lead to the next IMFs.

When the τ value is 1, the accumulation of mutual
interference is obvious according to the results (Figures 5
and 6). The BPE12 and BPE34 values are near to the original
BPE value, but the BPE23 value is just 0.477, which is sharply
lower than the original BPE value (0.93). In addition, the PE
value of the reconstructed IMF2 (0.3791) is larger than the
initial PE value of IMF2. The PE value of the reconstructed
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Figure 3: The decomposition of signal S1 via the PEEMD method with τ = 4, 1.

Table 1: Parameters in the PEEMD.

Cont. NStd MaxIter Ne τ Mode Thr

Value 0.2 6 50 4, 1 6 0.6

Footnotes: the symbols “NStd,” “MaxIter,” “Ne,” “τ,” “Mode,” and “Thr”
denote the noise standard deviation, maximum number of sifting iterations
allowed, pair number of added white noise, delay time of permutation
entropy, order of permutation entropy, and threshold of PEj, respectively.
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IMF2 denotes that IMF2 after reconstruction also has a
serious mode-splitting problem with IMF3 and that the
randomicity and dynamic changes of IMF2 are more serious.
The same results are obtained intuitively from comparing
Figure 3 with Figure 4.

The decomposition and reconstruction of the synthetic
signals via PEEMD show that BPE can effectively reveal the
degree of mode splitting in IMFs in a numerical, quantitative
way. The elimination of mode splitting can be gradually
improved and relies on the decomposition method and the
choice of initial IMF.

3.4. Real Microseismic Data Processing. To test the BPE index
effectiveness and feasibility in measured data, the microseis-
mic signals are decomposed and reconstructed by PEEMD
with BPE index. Figure 7 shows the decomposition of the
microseismic signals from the shale gas project in Yibin City,
Sichuan Province, China. The sampling step of this micro-
seismic event is 0.004 s, and there are 8000 sampling points.

According to Figure 7, the microseismic signals con-
tain mainly the first five IMFs, which are relative high-
frequency IMFs. Therefore, the next decomposition of the
reconstructed microseismic signals based on BPE value will
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Figure 4: BPE and PE value of the IMFs in decomposition of S1 signal τ = 4, 1.
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Figure 5: The decomposition of reconstructed signal S1 via the PEEMD method τ = 4, 1.
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analyze the first five IMFs comparatively. The results of
decomposition of the reconstructed microseismic signals
based on the BPE value are shown in Figure 8.

According to the perspective of the time-domain dia-
gram of the reconstructed microseismic signals (Figure 8)
compared with the initial decomposition (Figure 7), the
time is closed to each IMF when the amplitude is highest; this
finding indicates that some incident occurred at that time.
To briefly display the effect of gradually eliminating the influ-
ence of the mode-splitting phenomenon in the real mea-
sured data, the Fourier transform is required to address
the time-domain diagram (Figure 9) when the delay time
of permutation entropy is 4. The frequency distribution of

amplitude peak in frequency-domain diagrams is extracted
in Table 2. The frequency value of IMF2 and IMF3 in recon-
structed signals is 3.5706 and 3.8452, respectively, which is
from reconstructed components discarding IMF3 and IMF4.
From the perspective of the frequency distribution charac-
teristics, the frequency of reconstructed components dis-
persed more intensely to the center frequency. This finding
suggests that the incident frequency is carried out in a more
detailed decomposition in the frequency domain after the
signal is reconstructed. That is, under the premise of the
same decomposition methods (PEEMD), signal interference
of the frequency domain is smaller in IMFs. The mode-
splitting phenomenon is restrained to some extent.
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4. Conclusion

After reviewing the principle of the PEEMD algorithm and
the PE algorithm in this paper, a new method for measuring
mode splitting and a new process of eliminating mode split-
ting are proposed, first based on the decomposition results
obtained via the PEEMD method. Despite utilizing the syn-
thetic signals, the minimum BPE23 value is 0.4774, which is

not close to the standard value; the minimum BPE23 value
is even is lower than the initial IMFs decomposed by the
PEEMD when the delay time of permutation entropy is 1.
Based on the intuitive comparative of the minimum BPE23
value with the IMFs, the PEEMDmethod (via the BPE index)
shows that the degree of the mode-splitting problem is
consistent with the IMFs, regardless of the degree of mode
splitting that the PEEMD (after reconstructing signals based
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on the BPE index) can alleviate or aggravate. This method
shows that the BPE index is an effective measurement tool
to detect mode splitting.

The microseismic signal is applied in this method to mea-
sure and eliminate the mode-splitting problem. The results
are more specially analyzed by the Fourier-transform. When
the delay time of the permutation entropy is 4, the statis-
tical characteristics of the frequency value on the maxi-
mum amplitude denote the discrete degree of the incident
frequency after reconstruction is lower. Thus, the IMFs
of the reconstructed signals are closer to the real incident
frequency value.

The components of the IMFs are not completely the same
as the synthetic components in this paper, because the
gradual elimination of the mode splitting is affected by the
decomposition method parameters and the first IMF treated
as the benchmark. Nonetheless, these components are sig-
nificantly meaningful for the signal quantitative analysis
regarding the elimination of mode splitting.

Appendix

Main code
%% calculate BPE value
imfpeemd=peemd(S,Nstd,Ne,MaxIter,Mode,τ,Thr);
% S:input signals; Nstd: noise standard deviation; Ne:
number of realizations;
% MaxIter: maximum number of sifting iterations
allowed; Mode: order of permutation entropy;
%τ: delay time of permuation entropy; Thr: threshold of
permuation entropy
tempimf=imfpeemd;
[a,b]=size(imfpeemd);
% calculate PE and calculate BPE
for i=1:1:a-1
[c,d]=size(imfpeemd);
tempe=zeros(c-1,3);
for k=1:1:c-1
tempe(k,1)=pec(imfpeemd(k,:),Mode,τ) % function PE
tempe(k,2)=pec(imfpeemd(k,:)+imfpeemd(k+1,:),
Mode,τ);
tempe(k,3)=tempe(k,2)/tempe(k,1);
end
%%function PEEMD
function modes=peemd(S,Nstd,Ne,MaxIter,Mode,τ,Thr)
% standardization
desvio_x=std(x);

x=x/desvio_x;
modes=zeros(size(x));
aux=zeros(MaxIter+1,size(x,2));
acum=zeros(size(x));
% generate the noise signals
for i=1:Ne.

white_noise{i}=randn(size(x));
end;
while nnz(diff(sign(diff(x-acum))))>2
% Generate the IMF and calculate the mean

for i=1:Ne.
[temp1, o1, it1]=emd(x-acum+Nstd∗white_
noise{i},'MAXITER',MaxIter);
[temp2, o2, it2]=emd(x-acum-Nstd∗white_-
noise{i},'MAXITER',MaxIter);
te=min(size(temp1,1),size(temp2,1));
if te==MaxIter+1

aux=aux+(temp1+temp2)./(2∗Ne);
else

temp1(te+1:MaxIter+1,:)=0;
temp2(te+1:MaxIter+1,:)=0;
aux=aux+(temp1+temp2)./(2∗Ne);

end
end
% Calculate the PE of the IMFs

for i = 1:size(temp1,1)
auxPE=pec(aux(i,:),Mode,τ);
if auxPE>=Thr

acum=acum+aux(i,:);
end

end
% decompose the Residual signal by EMD

modes=emd(x-acum); % function emd
break

end;
% restore the original level
modes=modes∗desvio_x;
end

Data Availability

This paper selects the simulation signal for empirical analysis
and does not contain specific data.
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Table 2: The frequency value on the maximum amplitude in each
IMF.

Cont. IMF2 IMF3 IMF4 IMF5 Mean Std.

Value O 3.5706 3.1738 1.6479 0.9766 2.3422 1.0663

Value R 3.5706 3.8452 3.1738 1.6479 2.4475 1.0466

Footnotes: the symbols “Value O,” “Value R,” “Mean,” and “Std.” denote the
frequency value in the initial microseismic signals, the frequency value in the
reconstructed microseismic signals, the mean value of the frequency value,
and the standard deviation, respectively.
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