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We investigate the effect of a memory parameter on the performance of adaptive decision making using a tug-of-war method
with the chaotic oscillatory dynamics of a semiconductor laser. We experimentally generate chaotic temporal waveforms of the
semiconductor laser with optical feedback and apply them for adaptive decision making in solving a multiarmed bandit problem
that aims at maximizing the total reward from slot machines whose hit probabilities are dynamically switched. We examine the
dependence of making correct decisions on different values of the memory parameter. The degree of adaptivity is found to be
enhanced with a smaller memory parameter, whereas the degree of convergence to the correct decision is higher for a larger
memory parameter.The relations among the adaptivity, environmental changes, and the difficulties of the problemare also discussed
considering the requirement of past decisions. This examination of ultrafast adaptive decision making highlights the importance
of memorizing past events and paves the way for future photonic intelligence.

1. Introduction

Artificial intelligence based on deep learning, as a type of
supervised learning, has been rapidly deployed in society.
Reinforcement learning is another branch of machine learn-
ing that involves trial-and-error processes to accommodate
unknown agents in environments [1, 2]. Its areas of applica-
tion include, but are not limited to, robotics [3] and computer
gaming [4]. The multiarmed bandit (MAB) problem is a
fundamental problem in reinforcement learning wherein
the total reward (e.g., the number of coins) from multiple
slot machines with unknown hit probabilities needs to be
maximized [1, 2, 5]. In order to solve the MAB problem, it
is important to estimate the slot machine that may exhibit
the highest hit probability by playing a series of slot machines
(called exploration) and to use the estimation to gain more
rewards (called exploitation). A certain amount of exploration
action is necessary to estimate the best slot machine, because

insufficient exploration results in the failure of the estimation
of the best slot machine. Further, overexploration reduces
the extent of exploitation and results in the loss of the
total reward. Therefore, the trade-off of the exploration-
exploitation dilemma [1, 2] has been known in the MAB
problem.

A variety of techniques have been proposed to solve the
MAB problem, such as 𝜀-greedy [2], soft-max [2, 6], and
upper confidence bound algorithms [7].One of the promising
approaches adopted to solve the MAB problem, the tug-
of-war (TOW) method, was proposed by Kim et al. [8, 9].
The idea of the TOW method has been inspired by the
behavior of the unicellular amoeba of the true slime mold
[10].The volume of the amoeba’s body remains constant when
the amoeba oscillates its branches to collect environmental
information, and it realizes nonlocal correlation under fluc-
tuation [9]. These characteristics can be used for exploration
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and exploitation purposes to solve the MAB problem. It has
been shown that the TOW method is superior to the soft-
max algorithm for adaptive decision making when the hit
probabilities of multiple slot machines are changed [8].

Physical implementation of the TOW method has been
demonstrated in photonic systems with quantum dots at the
nanoscale [11, 12] and single photons [13].Thenonlocality and
fluctuation required for the TOW result from the physical
attributes of the wave nature of an exciton-polariton and
a single photon. However, the speed of the fluctuations is
limited by the experimental measurement systems in the
order of Hertz. Recently, ultrafast adaptive decision making
based on the TOW method has been proposed using fast
chaotic laser outputs over the gigahertz range [14, 15]. Deci-
sion making with zero-prior knowledge has been achieved at
1-GHz rate, and the sampling of temporal waveforms with
negative correlation improves the performance of adaptive
decision making [14].

For adaptive decision making where the hit probabilities
of multiple slot machines are changed over time, it is impor-
tant to determine how much of the knowledge accumulated
via past exploration needs to be incorporated to make the
present decision. For this purpose, the memory parameter
(also known as the forgetting parameter [8]) has been
introduced in the TOW method to include past exploration
results. The tuning of the memory parameter is crucial
for adaptive decision making because, for example, past
exploration results may be useless after the hit probabilities
are changed. However, no systematic investigation has been
provided regarding the effect of the memory parameter for
adaptive decision making using the TOWmethod.

In this study, we investigate the effect of the memory
parameter on the performance of adaptive decision making
using the TOWmethodwith the chaotic output of a semicon-
ductor laser. We experimentally generate chaotic temporal
waveforms of the semiconductor laser with optical feedback,
andwe apply them for theTOWmethod for adaptive decision
making.We investigate the performances of decision making
for different values of the memory parameter.

2. Tug-of-War Method Using a Chaotic
Semiconductor Laser

We consider an MAB problem under the following condi-
tions as a simple case. We assume two slot machines 𝐴 and
𝐵 (referred to as 𝑆

𝐴
and 𝑆

𝐵
) with unknown hit probabilities

(referred to as 𝑃
𝐴
and 𝑃

𝐵
). We consider that a player selects

one of the slot machines each time, and the player either
earns or loses the reward (e.g., coins) if the result of the
selected slot machine is “hit” (or WIN) or “miss” (or LOSE),
respectively. The player intends to maximize the reward by
a good strategy of selecting one of the two slot machines.
We assume that the total number of trials to play the slot
machines is fixed. Besides, the sum of the hit probabilities of
the two slot machines are supposed to be fixed at 1 (𝑃

𝐴
+𝑃
𝐵
=

1) as prior knowledge [14].
We use chaotic temporal waveforms generated experi-

mentally from a semiconductor laser with optical feedback
for decision making. Fast chaotic laser outputs have been
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Figure 1: Decision-making system architecture based on the tug-of-
war method using chaotic temporal waveforms of the semiconduc-
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used for applications in fast physical random number gener-
ation [16–18], secure key distribution [19, 20], and reservoir
computing [21, 22]. Figure 1 shows the decision-making
scheme based on the TOW method using chaotic temporal
waveforms of the semiconductor laser. First, we use a semi-
conductor laser with an external mirror to generate chaotic
laser outputs. Chaotic temporal waveforms of the laser output
are measured with a digital oscilloscope. We sample the
chaotic temporal waveform by an analog-to-digital converter
(ADC) with 8-bit vertical resolution. Meanwhile, we prepare
a “threshold” value to be compared with the sampled data.

We introduce the following rule for selecting one of the
two slot machines based on the sampled data of the chaotic
temporal waveform. We decide to select the slot machine 𝐴
(𝑆
𝐴
) if the sampled data is larger than the threshold, and we

decide to select the slot machine 𝐵 (𝑆
𝐵
) if the sampled data is

smaller than the threshold.
We update the threshold value based on the betting

results. For example, if we select 𝑆
𝐴
and the result is “hit,”

the threshold value decreases so that the probability of
selecting 𝑆

𝐴
(i.e., the range above the threshold on the chaotic

waveform) may increase in the next step. On the contrary,
the threshold value increases if we select 𝑆

𝐴
and the result is

“miss” so that the probability of selecting 𝑆
𝐴
may decrease.

The threshold needs to be shifted to the opposite direction
if we select 𝑆

𝐵
; that is, the threshold increases or decreases

if the result is “hit” or “miss,” respectively. After repeating
this procedure by selecting one of the slot machines and
changing the threshold value, the threshold value saturates
to the bottom or top of the amplitude of the chaotic temporal
waveform, which corresponds to an equilibrium of selecting
𝑆
𝐴
or 𝑆
𝐵
, respectively.

The threshold value, denoted by 𝑇(𝑡), is changed with
respect to the chaotic temporal waveform as follows:

𝑇 (𝑡) =
{{{{
{{{{
{

𝑘𝑁 ((int)TA (𝑡 − 1) > 𝑁)
𝑘 (int)TA (𝑡 − 1) (|(int)TA (𝑡 − 1)| ≤ 𝑁)
−𝑘𝑁 ((int)TA (𝑡 − 1) < −𝑁) ,

(1)
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Table 1: Value of𝑋(𝑡).
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Figure 2: Experimental setup for the acquisition of chaotic temporal
waveforms in the semiconductor laser with optical feedback. ATT,
variable attenuator; FC, fiber coupler; ISO, optical isolator; PD,
photodetector.

where 𝑘 is thewidth of the threshold step and𝑁 is the number
of threshold levels. The threshold step ranges from −𝑁 to
𝑁 (i.e., the total number of the threshold levels of 2𝑁 + 1).
These two parameters 𝑘 and𝑁 limit the range of the threshold
adjustment. In this study, we set 𝑘 = 64 and 𝑁 = 2 for 8-bit
chaotic data (28 = 256 levels), and the total number of the
threshold levels is 2𝑁 + 1 = 5. TA(𝑡) is the threshold adjuster
variable that is determined by the result of the past decisions.
The threshold adjuster variable TA(𝑡) is defined as

TA (𝑡) = 𝑋 (𝑡) + 𝛼TA (𝑡 − 1) , (2)

where 𝑋(𝑡) is the variable determined by the result of “hit”
or “miss” from the selected slot machine, defined in Table 1.
Here,𝛼 is thememory (or forgetting) parameter forweighting
past threshold adjuster variables and ranges from 0 to 1. TA(𝑡)
is determined only by the present value of 𝑋(𝑡) for 𝛼 = 0,
whereas TA(𝑡) depends on the results of all of the past values
of 𝑋(𝑡) if 𝛼 = 1. We investigate the influence of 𝛼 on the
performance of decision making in this study.

3. Experimental Setup for the Measurement of
Chaotic Temporal Waveforms

We conducted a laser experiment to acquire chaotic temporal
waveforms of the semiconductor laser output for decision
making, as shown in Figure 2. We used a commercial semi-
conductor laser (NTT Electronics, KELD1C5GAAA, optical
wavelength of ∼1548 nm) for optical communication. The
injection current of the semiconductor laser was set to
58.5mA (5.0 𝐼th, where 𝐼th = 11.7mA is the lasing threshold).
Thewavelength of the laser was set to 1547.782 nm.Theoutput
light of the semiconductor laser was reflected by an external
mirror (Reflector) and fed back to the laser to generate
the chaotic fluctuation of the laser output. The feedback
light power was set to 210𝜇W. The chaotic laser output was
injected into a photodetector (PD, New Focus 1474A, 35GHz
bandwidth) and converted into an electric signal.The chaotic
temporal waveforms were acquired by a high-speed digital
oscilloscope (Tektronix, DPO73304D, 33GHz bandwidth,
100 GigaSamples/s, 8-bit vertical resolution). The temporal

Table 2: Parameter values used for numerical simulation of decision
making.

Parameters Symbols Values
Memory parameter 𝛼 0.990 or 0.999
Width of threshold step 𝑘 64
Number of threshold levels 𝑁 2
Total number of threshold levels 2𝑁 + 1 5
Hit probability of 𝑆

𝐴
𝑃
𝐴

0.4 or 0.6
Hit probability of 𝑆

𝐵
𝑃
𝐵

0.6 or 0.4
Flip interval FI 1000
Number of trials 𝑚 5000
Number of cycles 𝑛 1000

waveforms are stored in the memory of the oscilloscope and
used for decision making.

Figure 3 shows a temporal waveform of the laser out-
put and the histogram of the amplitude of the temporal
waveform. From Figure 3(a), we observe that a fast chaotic
irregular oscillation is obtainedwith the dominant oscillation
period of 0.15 ns. The corresponding dominant frequency of
chaotic oscillation is 6.6GHz. In Figure 3(b), the histogram
shows an asymmetric distribution with a long tail for the
negative value of the amplitude with 8-bit resolution (from
−128 to 128). The data of chaotic temporal waveforms are
taken for 5M points and used for decision making.

We set a sampling time of 10 ps for each decision, to
demonstrate the adaptive decision making at the fastest rate.
In our previous work [14], we found that the sampling time
of 50 ps shows the best performance; however, this is only
in the case of zero-prior knowledge (i.e., the sum of the two
hit probabilities is unknown). Under the assumption of the
presence of prior knowledge in this work (i.e., 𝑃

𝐴
+ 𝑃
𝐵
= 1),

the effect of sampling rate is not significant, at least within the
problem investigated in this study.

4. Decision Making

4.1. Evaluation of Correct Decision Rate. We emulate the
TOWmethod in numerical calculations with experimentally
obtained chaotic temporal waveforms of the laser output
(Figure 3). The parameter values used for the computation
are summarized in Table 2. The number of trials for selecting
machines 𝑆

𝐴
and 𝑆

𝐵
are set to 𝑃

𝐴
= 0.4 and 𝑃

𝐵
= 0.6,

respectively. These two probabilities are switched every 1000
times to examine the adaptive characteristics of decision
making (flip interval, FI = 1000). For example, 𝑃

𝐴
= 0.4 and

𝑃
𝐵
= 0.6 are used for the first 1000 trials, and 𝑃

𝐴
= 0.6 and 𝑃

𝐵

= 0.4 are used for the second 1000 trials, then 𝑃
𝐴
= 0.4 and 𝑃

𝐵

= 0.6 are used again for the third 1000 trials. We define 5000
trials of selecting the slot machines as one cycle, and we test
1000 cycles (𝑛 = 1000) to evaluate the average performance
of decision making.

We evaluate the correct decision rate (CDR) defined as the
ratio of the number of times of selecting the slotmachinewith
the highest hit probability (best slot machine selection) to the
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Figure 3: (a) Temporal waveform of the laser output and (b) the corresponding histogram of the amplitude of the temporal waveform.
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Figure 4: (a) Temporal evolutions of the correct decision rate (CDR) for different values of the memory parameter [𝛼 = 0.990 (red line) and
0.999 (blue line)] and (b) enlarged view of (a).

total number of times of selecting a slot machine and is given
by

CDR (𝑡) = 1𝑛
𝑛

∑
𝑖=1

𝐶
𝑖 (𝑡) , (3)

where 𝐶
𝑖
(𝑡) = 1 if the slot machine with the highest hit

probability is selected; otherwise, 𝐶
𝑖
(𝑡) = 0 at the 𝑡th trial

and the 𝑖th cycle. 𝑛 is the number of cycles (𝑛 = 1000).

Figure 4(a) shows the temporal evolutions of CDR with
respect to two different memory parameters (𝛼 = 0.990 and
0.999). With a smaller memory parameter 𝛼 = 0.990, the
value of CDR quickly approaches 1.0 after the hit probabilities
are switched (around 𝑡 = 1000 and 2000); decisions are made
adaptively to the swapping of the hit probabilities 𝑃

𝐴
and

𝑃
𝐵
(adaptation to environmental change). In contrast, with a

larger memory parameter 𝛼 = 0.999, the recovery of the CDR
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Figure 5: Time evolution of the threshold adjuster (TA) variable for (a) 𝛼 = 0.990 and (b) 𝛼 = 0.999.The red line indicates TA for 1000 cycles
at the 𝑡th trial, and the black line indicates the average TA over 1000 cycles.

value is slow after the switching of the hit probabilities; that
is, the adaptivity of decision making is inferior to the former
case.

Figure 4(b) shows an enlarged view of Figure 4(a) to
investigate the convergence of correct decision making. We
found that the value of the CDR fluctuates around 1 in case
of a small memory parameter (𝛼 = 0.990) whereas the CDR
converges to the value of 1 without fluctuations for a large
memory parameter (𝛼 = 0.999). This result indicates that
correct decisions are made in a stable manner for a larger
memory parameter after the transient of the change of the hit
probabilities.

From Figures 4(a) and 4(b), we observe the trade-off
between the adaptivity and the convergence regarding the
CDR values. For a smaller𝛼, a decision can be promptlymade
after environmental changes, but it suffers from a certain
degree of instability. On the contrary, for a larger 𝛼, the
adaptation to environmental changes is slowwhile the correct
decision exhibits stable performances once the adaptation is
made. Therefore, an adequate tuning of 𝛼 is important to
accomplish the demanded performances of decision making.

Figure 5 shows the time evolutions of the threshold
adjuster (TA) variable (defined by (2)) for 𝛼 = 0.990 and 𝛼
= 0.999. The red line indicates TA for 1000 cycles at the 𝑡th
trial, and the black line indicates the average TA over 1000
cycles. As can be seen in Figure 5(a) regarding the small 𝛼,
the average TA (black line) saturates after the switching of
hit probabilities where the TA value quickly reacted after
the switching, leading to fast adaptation. However, the TA
values for the 1000 cycles (red lines) show large deviations
where some TA values exhibit the opposite sign (+ or −)
below or above 0, corresponding to wrong selections of the
slot machine. Such a deviation of TA values results in the

fluctuation of the CDR value after the change of the hit
probabilities (Figure 4(b)). In contrast, for the large 𝛼 in
Figure 5(b), the average TA (black line) increases rapidly
and monotonically before the occurrence of swapping of
hit probabilities. As a result, it takes a certain duration to
accomplish the change the sign of the TA value, leading
to slow adaptation of decision making. At the same time,
it is noteworthy that all the TA values (red lines) for 1000
cycles remain in either positive or negative, leading to the
stable decision making observed in Figure 4(b). Therefore,
we understand that the adaptivity and the convergence of
decision making is determined by the evolution of TA values
for different 𝛼.

To obtain further insights into the effect of 𝛼, we derive
the following equation from (2):

TA (𝑡) =
𝑡

∑
𝑖=1

𝛼𝑡−𝑖𝑋 (𝑖) , (4)

which indicates that the TA value results from the past
decision making with the exponential weight of the memory
parameter 𝛼. Figure 6 shows the time evolution of the TA
value described in (4) assuming 𝑋(𝑖) = 1 for all 𝑖. For 𝛼 =
0.990, the TA value saturates before the 1000 trials, and the
effect of the past results of the decision making decreases
rapidly in the present TA value during 1000 trials. On the
contrary, for 𝛼 = 0.999, the TA value increasesmonotonically
over the 1000 trials, and most past results of the decisions
are included in the present TA value.Thememory parameter
indicates how many of the past results are taken into account
in updating the TA value; (4) (also Figure 6) provides a
measure of how to determine an appropriate value of the
memory parameter.
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Figure 6: Time evolution of the threshold adjuster (TA) value
described in (4) for 𝛼 = 0.990 (red line) and 0.999 (blue line) when
𝑋(𝑖) = 1 is assumed for all 𝑖.

4.2. Evaluation of Average Hit Rate. Next, we investigate the
memory parameter to maximize the total reward of decision
making. We introduce the average hit rate (AHR), defined as
follows:

AHR = 1𝑚𝑛
𝑛

∑
𝑖=1

𝑚

∑
𝑡=1

𝐻
𝑖 (𝑡) , (5)

where𝐻
𝑖
(𝑡) = 1 if the selected slot machine is “hit” whereas

𝐻
𝑖
(𝑡) = 0 if the selected slot machine is “miss” at the 𝑡th

trial and the 𝑖th cycle. The AHR represents the total reward
acquisition rate that is defined as the ratio of the number of
“hits” (e.g., the number of acquired coins) to the total number
of trials and cycles.

Figure 7 shows the AHR as the memory parameter 𝛼
is continuously changed when 𝑃

𝐴
= 0.4 and 𝑃

𝐵
= 0.6 are

switched every 1000 trials. The upper limit of the AHR is
0.6 because it is the maximum value of the hit probabilities.
From Figure 7, we found that an optimal value of thememory
parameter exists that maximizes the AHR. The maximum
AHR is 0.589 when the memory parameter is set to 𝛼opt =
0.984. For larger 𝛼 than 𝛼opt, a longer transient time after
the switching of 𝑃

𝐴
and 𝑃

𝐵
appears; hence AHR is reduced.

For smaller 𝛼 than 𝛼opt, the transient time is shortened but
incorrect decisions appear after the transient time due to
the insufficient inclusion of past decision results, thereby
reducing the AHR.

We investigate 𝛼opt to maximize the AHR for different
conditions of decision making. We first change the flip inter-
val (FI) and investigate its impact to the maximum AHR and
the corresponding optimal memory parameter 𝛼opt. Figure 8
shows themaximumAHR and 𝛼opt for different flip intervals.
From Figure 8(a), the maximum AHR increases monotoni-
cally as the flip interval increases since the number of “hits”
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Figure 7: Average hit rate (AHR) as the memory parameter 𝛼 is
continuously changed when 𝑃

𝐴
= 0.4 and 𝑃

𝐵
= 0.6 are switched at

every 1000 trials. The upper limit of AHR is 0.6 (dashed lines).

increases during a larger flip interval. From Figure 8(b), the
optimal memory parameter 𝛼opt for maximizing the AHR
also increases as the flip interval increases. For a larger
flip interval, a longer memory is useful to determine the
correct decision; the transient time after switching of the hit
probabilities needs to be sufficient. Therefore, a larger 𝛼opt is
obtained when the flip interval increases.

Next, we change the hit probabilities of the two slot
machines. Figure 9 shows the AHRs for three different
combinations of the hit probabilities of the two slotmachines:
(i) 𝑃
𝐴

= 0.8 and 𝑃
𝐵
= 0.2, (ii) 𝑃

𝐴
= 0.7 and 𝑃

𝐵
= 0.3,

and (iii) 𝑃
𝐴

= 0.6 and 𝑃
𝐵

= 0.4. That is, the difficulty
of the given decision-making problem is configured. The
maximumhit rates are, by definition, given as 0.8, 0.7, and 0.6,
respectively. We found that an optimal memory parameter
𝛼opt exists for all these cases; however, the values of 𝛼opt are
different. A larger 𝛼opt is observed for case (iii) (𝛼opt = 0.988)
where the difference of the hit probabilities is small. This
is a reasonable consequence that the increased difficulties
of the given problem (i.e., smaller differences of the hit
probabilities) require more memory of the past results to
maximize the reward. In contrast, a smaller 𝛼opt is obtained
for case (i) (𝛼opt = 0.910) when the problem is easier (large
difference of the hit probabilities) because a smaller number
of trials yield good decisions. When the hit probability of
the slot machines is switched, it is important to estimate
the correct slot machine quickly and change the decision
rather than sticking to the old decision. In the case when
the difference of the hit probabilities is large, the player often
suffers from “miss” just after the switching; hence, the player
can rather easily recognize the change of the slot machines,
meaning thatmemorizing the past events is less important. In
contrast, when the difference of the hit probabilities is small,
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Figure 8: (a) Maximum average hit rate (AHR) and (b) the corresponding optimal memory parameter 𝛼opt for different flip intervals. The
upper limit of AHR is 0.6 (dashed lines).
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Figure 9: Average hit rates (AHR) for three different combinations
of the hit probabilities of the two slot machines [(i) 𝑃

𝐴
= 0.8 and

𝑃
𝐵
= 0.2, (ii) 𝑃

𝐴
= 0.7 and 𝑃

𝐵
= 0.3, and (iii) 𝑃

𝐴
= 0.6 and 𝑃

𝐵
= 0.4]

and their dependencies on thememory parameter. 𝛼opt indicates the
optimal memory parameter that maximizes AHR.

it is difficult to immediately recognize the change of the slot
machines. A largermemory parameter is needed to figure out
the correct decision.

These results show that using past results for decision
making by using thememory parameter is crucial for improv-
ing the decision-making performance. The past decisions

and their results are necessary for accurate decision making.
However, we should note that they should not be taken into
account too much concerning the environmental changes
(e.g., switching of the hit probabilities). Taking account of the
trade-off between the adaptation speed and the correctness
of decision making, configuring the memory parameter is
important to maximize the reward.

5. Conclusions

We investigated adaptive decisionmaking based on the TOW
method using the temporal waveforms of a chaotic semicon-
ductor laser. We experimentally generated chaotic temporal
waveforms of the semiconductor laser with optical feedback
and applied them for adaptive decision making of the MAB
problem aiming at maximizing the total reward from slot
machines. We highlighted the requirements of memorizing
the past in solving the MAB problem. We examined decision
making in an uncertain environment, namely, the problem of
choosing one of the two slot machines whose hit probabilities
are dynamically switched and evaluated the effect of the
memory parameter on the performance of adaptive decision
making. Fast adaptation to the change in the hit probabilities
can be obtained for a small memory parameter; however,
the correct decision rate does not converge. In contrast, the
correct decision rate converges perfectly for a large memory
parameter, but the adaptation is slow. Thus, a trade-off exists
between the adaptation speed and the convergence of the
correct decision rate. An optimalmemory parameter is found
to maximize the average hit rate. We found that a larger
memory parameter is needed for a larger flip interval (or slow
environmental changes) and a smaller difference between the
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hit probabilities of the slot machines (or difficulties of the
decision-making problem).

Decision making using fast chaotic temporal waveforms
generated froma semiconductor laser can be used for applica-
tions requiring an arbitration of resources at data centers [23]
and resource allocation in wireless communications among
others where decision making at the milliseconds level is
required [24]. The use of chaotic lasers for decision making
leads to a new research field of photonic intelligence.
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