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Water hyacinth and its ecological invasion have negative impacts on diversity of indigenous species and ecosystems, which becomes
one of the hotspots in current ecological research. In this paper, a water hyacinth ecological system with two state-dependent
impulse controls is studied. Firstly, we define the successor functions of semicontinuous dynamic system and give existence
theorems of order-1 periodic solution and order-2 periodic solution of such system. Secondly, we analyze singular points of the
system without impulsive state feedback control qualitatively and get the condition for focus point. Thirdly, we obtain the
sufficient condition under which the system has an order-1 or order-2 periodic solution through the method of successor
function and prove the stability of the order-1 or order-2 periodic solution by the analogue of Poincaré’s criterion. Furthermore,
some examples and numerical simulations are given to illustrate our results.

1. Introduction

The water hyacinth, a water plant with a showy purple
flower, is a native of the Amazon Basin and is now treated
as the most important nuisance aquatic plant worldwide.
Rapid spread of water hyacinth causes serious environmental
problems, which is recognized throughout the world. Water
hyacinth, known as one of the top ten creatures into the en-
roach on grass, has spread by waters in the south of China
in recent years, becoming a great ecological and social harm.
The expansive water hyacinth sheets have blocked shipping
lanes, prevented commercial ships from entering ports and
local fishing vessels from leaving the shore, and interfered
with the intake of water by industries. Meanwhile, the inva-
sive weed has created anoxic conditions in the lake, thus rais-
ing toxicity and disease levels. The resulting stagnant water is
an ideal breeding ground for malarial mosquitoes and schis-
tosomiasis and a detriment for the functioning of fishing
industries. As for the ecological harm, biological control,
development, and utilization of water hyacinth, see [1–5]
and the reference cited therein.

Nowadays, biological control measures are widely used to
control water hyacinth. Biological control is to introduce
natural enemies from the origin, establish populations, and
control water hyacinth in the long term. The biological
control of water hyacinth has the advantages of long-lasting
prevention, low cost, and safe environment.

Recently, impulsive state feedback control differential
equations have aroused scholars’ enormous interest (see
[6–20]). Chen et al. [6] and Chen [7] starting from a practical
problem of the pest control established a class of pest preven-
tion model with impulsive feedback control. The geometric
theory of semicontinuous dynamical systems is presented,
and by applying this theory, it is proved for this model
to have at least one order-one periodic solution. Nie et al.
[16–18] and Tian et al. [19] put forward a class of predator-
prey models with state-dependent impulsive effects. By using
Poincaré map and Lambert W function, the criteria for the
existence and stability of a semitrivial solution and positive
periodic solution of system are obtained. Zhao et al. [20]
using successor functions and Poincaré-Bendixson theorem
of impulsive differential equations studied the existence of
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periodical solutions to a predator-prey model with two state
impulses. By stability theorem of periodic solution to impul-
sive differential equations, the stability conditions of periodic
solutions to the system are obtained. As a continuation, a
water hyacinth ecological system with Kuznets curve effect
and two state-dependent impulse controls is put forward
and numerical simulations are carried out based on the qual-
itative analysis on the proposed model.

This paper is organized as follows. In Section 2, a water
hyacinth ecological system with Kuznets curve effect and
two state-dependent impulses control is put forward, and
some basic definitions are given. In Section 3, we first discuss
the qualitative analysis of system (3) and then discuss the
existence and stability of periodic solutions. In Section 4,
we analyze our theoretical results by numerical simulations
and give a brief discussion. Finally, conclusions are presented
in Section 5.

2. Model Formulation and Preliminaries

2.1. Model Formulation. In ecosystems, water hyacinth can
be farmed with fish. Water hyacinth can not only serve as
the diet of fish but can also purify the water quality, which
controls the pond water quality well. But there are also
disadvantages. Too much water hyacinth, covering the water
surface, will reduce the activity space of the fish. Most impor-
tantly, it consumes the oxygen in the water and prevents the
entry of oxygen in the air; the fish are suffocated, causing the
extinction of fish populations in water ecological system.
Considering the water hyacinth as feed in fish farms and its
characteristic of the ecological damage caused by its rapid
spread, inspired by [21–24], we establish the water hyacinth
ecological system with Kuznets curve effect.

dx
dt

= rx 1 −
x
K

− βxy,

dy
dt

= −dy + δ m − x xy,
1

where r, K , β, d, δ, and m are all constants; x t and y t
denote the water hyacinth (prey) and fish (predator) popula-
tion, respectively, at any time t; r is the intrinsic growth rate
of water hyacinth; K is the carrying capacity of water hya-
cinth; β is the coefficient of interspecific competition; d
denotes the death rate of fish; and δx m − x is the Kuznets
curve effect function (see Figures 1–3). When the population
of water hyacinth is less thanm, it is conducive to the growth
of fish; when the population of water hyacinth is greater than
m, it will hinder the growth of fish.

The rapidly propagating water hyacinth will cover the
water surface, causing intense intraspecific competition, lead-
ing to death of rot, pollution of water body, and aggravate
eutrophication of water body, thus hindering the growth of
other aquatic creatures and causing the imbalance of the eco-
logical chain, irreversible damage to the ecosystem, loss of
biodiversity, and frequent ecological disasters. The key to
solving water hyacinth problem is to develop and make
proper use of water hyacinth to avoid harm. At present,

many places are trying to develop and utilize water hyacinth,
using it as feed for livestock, poultry, grass carp, and so on, so
as to turn harm into profit.

According to the characteristics of water hyacinth ecosys-
tem, the population size of water hyacinth is set at a control-
lable economic threshold (ET). When the population size of
water hyacinth is less than ET1, it will be detrimental to the
growth of fish population. We consider using the methods
of manually releasing water hyacinth and fishing fish popula-
tion to control the ecological balance. When the population
size of water hyacinth is greater than ET2, it will lead to the
extinction of fish population. We consider using the methods
of manually fishing water hyacinth and releasing fish popula-
tion to control the ecological balance.
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Figure 1: The vector diagram of system (8) where r = 4, a = 0 4,
b = 0 5, m1 = 3, and m2 = 8.
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Figure 2: The vector diagram of system (8) where r = 4, a = 0 4,
b = 0 5, m1 = 8, and m2 = 12.
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Now, we take the integrated control tactics into account
for water hyacinth ecological system. Once the density of
the water hyacinth population reaches the economic thresh-
old (ET), we introduce impulsive state feedback control.
Thus, we obtain the following system:

dx
dt

= rx 1 −
x
K

− βxy,

dy
dt

= −dy + δ m − x xy,

 h1 < x < h2,

△x = 1 − q1 h2 − x,

△y = −p1y,

 x = h1, y >
r
β

1 −
h1
K

,

△x = −q1x,

△y = τ,

 x = h2, y <
r
β

1 −
h2
K

,

Δx t = x t+ − x t ,

Δy t = y t+ − y t ,

h1 < x 0 = x0 < h2,

y 0 = y0 > 0

2

This model describes that in productive practice for con-
trolling water hyacinth, people always take such a strategy

that when the water hyacinth arrives at a given ET h1 or h2,
they began to use pulses to control the population of water
hyacinths. ET h1 denotes the economic value ET1 with a
small population of water hyacinth, and h2 denotes the
economic value ET2 with a large population of water hya-
cinth h1 < h2 . When the population of water hyacinth is
equal to h1 and the population of fish is greater than r/β
1 − h1/K , the method of impulse control is adopted to
obtain economic benefits by harvesting fish, and meanwhile
to increase the prey of fish, promoting the population of fish
by releasing water hyacinth. 0 < p1 < 1 represents the harvest
coefficient of fish, and 1 − q1 h2 − x represents the quantity
of water hyacinth. When the population of water hyacinth is
equal to h2 and the population of fish is less than r/β
1 − h2/K , the mass reproduction of water hyacinth is
likely to lead to the extinction of fish. At this time, the
method of impulse control is adopted to reduce the popula-
tion of water hyacinth by fishing it and at the same time to
increase the population of fish by releasing fish. 0 < q1 < 1
represents the harvest coefficient of water hyacinth, and τ >
0 is the release amount of fish.

Considering the biology background of system (2), we
all assume that x 0 , y 0 ∈ h1 < x 0 < h2, y 0 > 0 and
we only discuss system (2) in the region R2

+ = x, y ∣ x ≥ 0,
y ≥ 0 .

For system (2), if H1 m2 > 4d/δ , we change it to x = x,
y = δy, a = r/K , b = β/δ , m1 = m − m2 − 4d/δ /2 ,
and m2 = m + m2 − 4d/δ /2 . So we can derive equiv-
alent system (3) from system (2) (let new variables be x, y,
and t).

dx
dt

= x r − ax − by ,

dy
dt

= y x −m1 m2 − x ,

 h1 < x < h2,

△x = 1 − q1 h2 − x,

△y = −p1δy,

 x = h1, y >
1
b

r − ah1 ,

△x = −q1x,

△y = τ,

 x = h2, y <
1
b

r − ah2 ,

h1 < x 0 = x0 < h2,

y 0 = y0 > 0

3

On the basis of the ecological significance, system (3)
should meet r > am2, m1 < h1 <m2 < h2, and 1 − q1 h2 >
h1. We can get the relationship between the phase set and
isocline as shown in the following figures (see Figures 4–6).

18

16

14

12

10

y

8

6

4

2

0
2 4 6

x
8 10 12

Figure 3: The vector diagram of system (8) where r = 4, a = 0 4,
b = 0 5, m1 = 12, and m2 = 14.
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We first discuss the same position, i.e., 1 − q1 h2 =m2
(see Figure 5); we change p = p1δ and q1 = 1 − m2/h2 . So
we can derive equivalent system (4) from system (3).

dx
dt

= x r − ax − by ,

dy
dt

= y x −m1 m2 − x ,

 h1 < x < h2,

△x =m2 − h1,

△y = −py,

 x = h1, y >
1
b

r − ah1 ,

△x =m2 − h2,

△y = τ,

 x = h2, y <
1
b

r − ah2 ,

h1 < x 0 = x0 < h2,

y 0 = y0 > 0

4

2.2. Preliminaries. In this section, we first introduce some
definitions and lemmas of the geometric theory of the

semicontinuous dynamic system, which will be useful
for the latter discussion. And for more details, we can see
[6–15] and the references cited therein.

Definition 1. A triple X,Π, R+ is said to be a semidynamical
system if X is a metric space, R+ is the set of all nonnegative
real, and Π P, t : X × R+ → X is a continuous map such that
(1) Π P, 0 = P for all P ∈ X; (2) Π P, t is continuous for
t and s; and (3) Π Π P, s , t =Π P, s + t for all P ∈ X and s,
t ∈ R+. Sometimes, a semidynamical system X,Π, R+ is
denoted by X,Π .

Definition 2. Define the impulsive set M1 = x, y ∈ R2
+ ∣

x = h1, y > r − ah1 /b and M2 = x, y ∈ R2
+ ∣ x = h2, 0 <

y < r − ah2 /b ; let M =M1 ∪M2; M is a closed subset.
Define the continuous functions I1 h1, y ∈M1 → x+,
y+ = 1 − q1 h2, 1 − p y ∈ R2

+ and I2 h2, y ∈M1 → x+,
y+ = 1 − q1 h2, y + τ ∈ R2

+; thus, the phase set N can be
defined N = I1 M1 ∪ I2 M2 = x+, y+ ∈ R2

+ ∣ x
+ = 1 − q1

h2, y+ > 0 . Then, Ω,Π,M, I is called an impulsive semidy-
namic system.

Definition 3. Define the periodic solution of the system (3)
(see Figure 7):

Y M1 M2N

E2

h2m2h1
O X

Figure 5: The case of h1 < 1 − q1 h2 =m2 < h2 of system (3).

Y M1 M2N

E2

h2m2h1 (1 − q1)h2
O X

Figure 6: The case of h1 <m2 < 1 − q1 h2 < h2 of system (3).

Y M1 M2

Q1

Q4
P1 = Q1+

P4 = Q 3+

P3 = Q 4+

P2 = Q 2+
Q3

Q2

N

O
h1 h2(1 − q1)h2

X

Figure 7: Define the periodic solution of system (3).

Y M1 M2N

E2

h2m2h1 (1 − q1)h2
O X

Figure 4: The case of h1 < 1 − q1 h2 <m2 < h2 of system (3).
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(1) When there is a point P1 at phase set N and a T1 such
that Π P1, T1 =Q1 ∈M1 and Q+

1 = I1 Q1 = P1 ∈N ,
then Π P1, T1 is called order-1 periodic solution

(2) When there is a point P2 at phase set N and a T2 such
that Π P2, T2 =Q2 ∈M2 and Q+

2 = I2 Q2 = P2 ∈N ,
then Π P2, T2 is called order-1 periodic solution

(3) When there is a point P3 at phase set N and a T3 such
that Π P3, T3 =Q3 ∈M2 and Q+

3 = I2 Q3 = P4 ∈N ,
there exists a T4 such that Π P4, T4 =Q4 ∈M1 and
Q+

4 = I1 Q4 = P3 ∈N , then Π P3, T3 +Π P4, T4 is
called order-2 periodic solution

Next, we will give the definition of the successor func-
tion of system (3). Let L be a coordinate axis defined at N ;
the origin point is the intersection point of line L x =
1 − q1 h2 with axis X y = 0; the positive direction is consis-
tent with the positive direction of axis Y x = 0, then we
obtain a number axis d. For any x ∈ d, let d x ∈ C0 be the
coordinate of point x.

Definition 4 (see Figure 8).

(1) When there is a point P1 at phase set N and a T1 such
that Π P1, T1 =Q1 ∈M1 and Q+

1 = I1 Q1 ∈N , then
f P1 = d Q+

1 − d P1 is called the successor func-
tion of the point P1

(2) When there is a point P2 at phase set N and a T2 such
that Π P2, T2 =Q2 ∈M2 and Q+

2 = I2 Q2 ∈N , then
f P2 = d Q+

2 − d P2 is called the successor func-
tion of the point P2

(3) When there is a point P3 at phase set N and a T3 such
that Π P3, T3 =Q3 ∈M2 and Q+

3 = I2 Q3 = P4 ∈N ,
there exists a T4 such that Π P4, T4 =Q4 ∈M1
and Q+

4 = I1 Q4 ∈N , then g P3 = d Q+
4 − d P3 is

called the successor function of the point P3

Remark 1 (see Figure 7).

(1) If the successor function f P = 0, the trajectory
Π P, T with initial point P is an order-1 periodic
solution of system (3)

(2) If the successor function g P = 0, the trajectory
Π P, T with initial point P is an order-2 periodic
solution of system (3)

Lemma 1. The successor function f P and g P is
continuous.

Lemma 2.

(1) Let the continuous dynamical system be Π, X ; if there
are two points P1 ∈N and P2 ∈N at the phase set, they
make f P1 f P2 < 0, then there must exist a point P
between P1 and P2 so that f P = 0; thus, there must
exist an order-1 periodic solution by point P

(2) Let the continuous dynamical system be Π, X ; if there
are two points P1 ∈N and P2 ∈N at the phase set, they
make g P1 g P2 < 0, then there must exist a point P
between P1 and P2 so that g P = 0; thus, there must
exist an order-2 periodic solution by point P

Lemma 3 (analogue of Poincaré’s criterion) [25]. The
T-periodic solutions x = ξ t and y = η t of the system

dx t
dt

= P x, y ,

dy t
dt

=Q x, y ,

 if φ x, y ∉M,

Δx = α x, y ,

Δy = β x, y ,

 if φ x, y ∈M

5

are orbitally asymptotically stable if the Floquet multiplier μ2
satisfies the condition μ2 < 1, where

μ2 =
q

k=1
Δk exp

T

0

∂P
∂x

ξ t , η t +
∂Q
∂x

ξ t , η t dt ,

6

with

Y

O X

NM1

Q1

Q4 P1

P4 = Q3

P3

h1

Q3

Q2
h2

Q1

M2

+

+

Q4
+

Q2
+

P2

(1 − q 1)h2 

Figure 8: Successor function of system (3).

Δk =
P+ ∂β/∂y ∂φ/∂x − ∂β/∂x ∂φ/∂y + ∂φ/∂x +Q+ ∂α/∂x ∂φ/∂y − ∂α/∂y ∂φ/∂x + ∂φ/∂y

P ∂φ/∂x +Q ∂φ/∂y
, 7
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and P, Q, ∂α / ∂x , ∂α / ∂y , ∂β / ∂x , ∂β / ∂y , ∂φ /
∂x , and ∂ϕ / ∂y are calculated at the point ξ τk , η
τk , and P+ = P ξ τ+k , η τ+k , Q+ =Q ξ τ+k , η τ+k , and
φ x, y are a sufficiently smooth function with grad φ x, y
≠ 0, and τk k ∈N are the moments for the jumps.

For the convenience of discussion, we need to define the
following (see Figure 9).

L0 r − ax − by = 0 dx/dt = 0 , L3 x −m1 = 0 dy/dt
= 0 , L5 x −m2 = 0 dy/dt = 0 , L x − 1 − q1 h2 = 0, L4
x − h1 = 0, and L6 x − h2 = 0.

The intersection point of L0 and L4 is denoted by F1
xF1

, yF1
= F1 h1, r − ah1 /b .

The intersection point of L0 and L6 is denoted by F6
xF6

, yF6
= F6 h2, r − ah2 /b . The phase point of F6 xF6 ,

yF6 at the phase set L5 is denoted by F4 xF4
, yF4

= F4 m2,
r − ah2 /b + τ . If τ > r − am2 /b of system (4), we

define a function W x, y = y + Kx − Km2 + r − ah2 /b +
τ , where m1 ≤ x ≤m2. We have dW/dt ∣W=0 = −K2x m2 −
x + K x −m1 m2 − x 2 + x a h2 − x − bτ + r − ah2
/b + τ x −m1 m2 − x . We can choose K enough large,
such that dW/dt ∣W=0 < 0, so the straight line L7 W = 0
is nontangent. The intersection point of L4 and L7 is denoted
by F3 xF3 , yF3 = F3 h1, K m2 − h1 + r − ah2 /b + τ .

Assume that L1, L2, L8, and L9 are dividing lines of the
saddle point E2, where L8 and L9 are the stable flows of E2
and L1 and L2 are the unstable flows of E2. The intersection
point of L1 and L4 is denoted by F2 xF2 , yF2 . The intersec-
tion point of L2 and L6 is denoted by F5 xF5

, yF5 .

3. Model Analysis

On the basis of the ecological significance, system (3) should
meet r > am2, m1 < h1 <m2 < h2, and 1 − q1 h2 > h1. In this
section, we will first study the qualitative characteristic of sys-
tem (3) without the impulsive effect. Secondly, if 1 − q1
h2 =m2, the sufficient conditions for the existence and stabil-
ity of order-1 positive periodic solutions are analyzed.
Thirdly, if 1 − q1 h2 =m2, the sufficient conditions for the
existence and stability of order-2 positive periodic solution
are analyzed. Finally, if 1 − q1 h2 ≠m2, the sufficient

conditions for the existence of order-k (k = 1, 2) positive peri-
odic solution are analyzed.

3.1. Simple Qualitative Analysis of System (3) without
Impulsive Effect. From system (3) without the impulsive
effect, we obtain the following system:

dx
dt

= x r − ax − by = P x, y ,

dy
dt

= y x −m1 m2 − x =Q x, y
8

By x r − ax − by = 0 and y x −m1 m2 − x = 0, we can
obtain two boundary equilibriums E0 0, 0 and E3 r/a , 0
in system (8).

We can see that (i) there is no positive equilibrium if r
< am1; (ii) there is one positive equilibrium E1 m1, r −
am1 /b if am1 < r < am2; and (iii) there are two positive
equilibriums E1 m1, r − am1 /b and E2 m2, r − am2 /b if
r > am2.

The Jacobian matrix at equilibrium E x, y is given by

J E =
r − 2ax − by −bx

y m1 +m2 − 2x x −m1 m2 − x
9

Theorem 1. E0 0, 0 is the saddle point; if am1 < r < am2
holds, then E3 r/a, 0 is the saddle point; if r < am1 or r >
am2 holds, then E3 r/a , 0 is the stable node point.

Theorem 2. E1 m1, r − am1 /b is the stable node point, if
r > am1; E2 m2, r − am2 /b is the saddle point, if r > am2.

Theorem 3. There exists no limit cycle in system (8) in Ω.

Proof 1. Let the straight line l1 x − r/a − ε = 0 ε > 0 ; we
have dl1/dt = dx/dt ∣x= r/a +ε = − r/a − ε aε − by < 0,
then the straight line segment is nontangent, and the path
line of system (8) thereon is always to the left direction.
Define a function F x, y = m1 +m2 x + by −M, where 0 ≤
x ≤ r/a + ε. We have dF/dt ∣F=0 = m1 +m2 dx/dt + b
dy/dt ≤ −a m1 +m2 x − r +m1m2 /2a 2 + m1 +m2
r +m1m2

2 /4a −m1m2M. We can chooseM enough large,
that is M >max m1 +m2 r +m1m2

2 /4am1m2, m1 +
m2 r/a + ε such that dF/dt < 0, so the straight line
l2 F = 0 is nontangent, the trajectory of system (8) from
the upper right of l2 through l2 into the lower left. The
straight line l2 intersects axis y and l1 at points A and
B, respectively.

For system (8), we construct a Bendixson ring OABCO
including Ei i = 1,2,3,4 . Define OA, AB, BC, and CO as
the length of line l3 x = 0, l2, l1, and l4 y = 0, respectively.
Since OA and CO are the length of orbit of system (8),
the orbits of system (8) go through into the interior of
the Bendixson ring from the outer of AB and BC. Hence,
we know that system (8) is uniformly bounded.

Let the Dulac function D x, y = x−1y−1; we have ∂
PD /∂x + ∂ QD /∂x = −ay−1 < 0; by the Bendixson-

Y

O
m1 h1 m2 h2 E3 X

L3

L1

F3
L4

L7

L5 L6

L9

F4
F2

L0
E1

F5

F6

L2
L8

F1

E2

Figure 9: Structure diagram in R+
2 of system (4).
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Dulac theory, system (8) does not exist a limit cycle in
Ω = x, y ∣ 0 ≤ x ≤ r/a + ε, 0 < m1 +m2 x + by <M . The
proof iscompleted.

The illustration of vector fields of system (8) can be seen
in Figures 1–3.

3.2. Existence and Stability of Order-1 Periodic Solution of
System (4)

Theorem 4. If 0 < p < 1 − r − am2 /byF2 and τ > r −
am2 /b , there exists an order-1 periodic solution in system
(4).

Proof 2. If 1 − p yF2
> yE2

(see Figure 10), there exists a point
B1 m2, yB1

∈N , satisfying 0 < yB1 − yE2
< 1 − p yF2

− yE2 .
The trajectory of system (4) Γ1 over B1 with x = h1 at point
C1, which is pulsed to x =m2 and the phase point, is B2 m2
, yB2 , so f B1 = yB2

− yB1
> 0.

There exists another point B3 m2, yB3
∈N , satisfying

yB3 ≫ 0. The trajectory of system (4) Γ2 over B3 with x = h1
at point C2, which is pulsed to x =m2 and the phase point,
is B4 m2, yB4

, so f B3 = yB4
− yB3

< 0.

Therefore, there must exist a point B m2, yB ∈N , which
satisfies yB1

< yB < yB3
, so that f B = 0. By Lemma 2, we

know that system (4) has an order-1 periodic solution. Thus,
the proof is completed.

Theorem 5. For system (4), if a m2 − h1 /byF2
< p < 1 −

r − am2 /byF2
, the order-1 periodic solution to it is stable.

Proof 3. According to Lemma 3 (see Figure 10), let x = ξ1
t and y = η1 t be a periodic solution to system (4) and
ξ1 0 =m2 and η1 0 = yB; ξ1 T = xC = h1 and η1 T = yC ;
we have ξ+1 = ξ1 T + 0 =m2 and η+1 = η1 T + 0 = 1 − p
η1 T = 1 − p yC = η1 0 = yB

P x, y = x r − ax − by ,

Q x, y = y x −m1 m2 − x ,

α1 x, y =m2 − h1,

β1 x, y = −py,

φ1 x, y = x − h1

10

Then

∂P
∂x

= r − 2ax − by,

∂Q
∂x

= x −m1 m2 − x ,

∂α1
∂x

=
∂α1
∂y

= 0,

∂β1
∂x

= 0,

∂β1
∂y

= −p,

∂φ1
∂x

= 1,

∂φ1
∂y

= 0,

Δ1 =
P+ ∂β1/∂y ∂φ1/∂x − ∂β1/∂x ∂φ1/∂y + ∂φ1/∂x +Q+ ∂α1/∂x ∂φ1/∂y − ∂α1/∂y ∂φ1/∂x + ∂φ1/∂y

P ∂φ1/∂x +Q ∂φ1/∂y

=
P+ ξ1 T + 0 , η1 T + 0 1 − p

P ξ1 T , η1 T
=
P B 1 − p

P C
=
m2 r − am2 − b 1 − p yC 1 − p

h1 r − ah1 − byC
,

T

0

∂P
∂x

+
∂Q
∂x

dt =
T

0
r − 2ax − by + x −m1 m2 − x dt =

h1

m2

1
x
dx +

yC

1−p yC

1
y
dy −

T

0
axdx

= ln
h1
m2

+ ln
1

1 − p
−

T

0
axdx,

μ2 = Δ1 exp
T

0

∂P
∂x

+
∂Q
∂x

dt =
m2 r − am2 − b 1 − p yC 1 − p

h1 r − ah1 − byC
exp ln

h1
m2

+ ln
1

1 − p
−

T

0
axdx

=
m2 r − am2 − b 1 − p yC 1 − p

h1 r − ah1 − byC

h1
m2

1
1 − p

exp −
T

0
axdx ≤

r − am2 − b 1 − p yC
r − ah1 − byC

11
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Since x t , y t is the periodic solution of system (4), if
p > a m2 − h1 /byF2 > a m2 − h1 /byC and conditions
of Theorem 4 hold, then ∣μ2∣ < 1. Therefore, the order-1 peri-
odic solution of system (4) is stable, if a m2 − h1 /byF2

< p < 1 − r − am2 /byF2 . Thus, the proof is completed.

Theorem 6. If 0 < τ < r − am2 /b − yF5
and p > 1 − r −

am2 /byF3 , there exists an order-1 periodic solution in system
(4).

Proof 4. If 0 < τ < r − am2 /b − yF5 (see Figure 11), there
exists a point A1 m2, yA1

∈N , satisfying 0 < yA1
< τ. The tra-

jectory of system (4) Γ3 overA1 with x = h2 at pointD1, which
is pulsed to x =m2 and the phase point, is A2 m2, yA2

, so
f A1 = yA2

− yA1
> 0.

There exists another point A3 m2, yA3
∈N , satisfying

0 < yE2 − yA3
≪ 1. The trajectory of system (4) Γ4 over A3

with x = h2 at point D2, which is pulsed to x =m2 and the
phase point, is A4 m2, yA4

, so f A3 = yA4
− yA3

< 0.
Therefore, there must exist a point A m2, yA ∈N and it

satisfies yA1
< yA < yA3

, so that f A = 0. By Lemma 2, we

know that system (4) has an order-1 periodic solution. Thus,
the proof is completed.

Theorem 7. For system (4), if a h2 −m2 /b < τ < r −
am2 /b − yF5 , the order-1 periodic solution to it is stable.

Proof 5. According to Lemma 3 (see Figure 11), let x = ξ2 t
and y = η2 t be a periodic solution to system (4) and ξ2
0 = xA =m2 and η2 0 = yA; ξ2 T = xD = h2 and η2 T =
yD; we have ξ+2 = ξ2 T + 0 =m2 and η+2 = η2 T + 0 = η2
T + τ = yD + τ = η2 0 = yA

P x, y = x r − ax − by ,

Q x, y = y x −m1 m2 − x ,

α2 x, y =m2 − h2,

β2 x, y = τ,

φ2 x, y = x − h2

12

Then

∂P
∂x

= r − 2ax − by,

∂Q
∂x

= x −m1 m2 − x ,

∂α2
∂x

= 0,

∂α2
∂y

= 0,

∂β2
∂x

= 0,

∂β2
∂y

= 0,

∂ϕ2
∂x

= 1,

∂ϕ2
∂y

= 0,

Δ1 =
P+ ∂β2/∂y ∂φ2/∂x − ∂β2/∂x ∂φ2/∂y + ∂φ2/∂x +Q+ ∂α2/∂x ∂φ2/∂y − ∂α2/∂y ∂φ2/∂x + ∂φ2/∂y

P ∂φ2/∂x +Q ∂φ2/∂y

=
P+ ξ2 T + 0 , η2 T + 0

P ξ2 T , η2 T
=
P A
P D

=
m2 r − am2 − b yD + τ

h2 r − ah2 − byD
,

T

0

∂P
∂x

+
∂Q
∂x

dt =
T

0
r − 2ax − by + x −m1 m2 − x dt =

h2

m2

1
x
dx +

yD

yD+τ

1
y
dy −

T

0
axdx

= ln
h2
m2

+ ln
yD

yD + τ
−

T

0
axdx,

μ2 = Δ1 exp
T

0

∂P
∂x

+
∂Q
∂x

dt =
m2 r − am2 − b yD + τ

h2 r − ah2 − byD
exp ln

h2
m2

+ ln
yD

yD + τ
−

T

0
axdx

=
m2 r − am2 − b yD + τ

h2 r − ah2 − byD

h2
m2

yD
yD + τ

exp −
T

0
axdx ≤

r − am2 − b yD + τ

r − ah2 − bη2

yD
yD + τ

<
r − am2 − b yD + τ

r − ah2 − byD

13
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Since x t , y t is the periodic solution of system (4),
if τ > a h2 −m2 /b and conditions of Theorem 6 hold,
then ∣μ2∣ < 1. Therefore, the order-1 periodic solution of sys-
tem (4) is stable, if a h2 −m2 /b < τ < r − am2/b − yF5 .
Thus, the proof is completed.

3.3. Existence and Stability of Order-2 Periodic Solution of
System (4)

Theorem 8. If τ > r − am2/b and p > 1 − r − am2 /byF3 ,
there exists an order-2 periodic solution in system (4).

Proof 6. If τ > r − am2 /b and p > 1 − r − am2 /byF3

(see Figure 12), there exists a point A3 m2, yA3
∈N , satis-

fying yA3
= 1 − p yF3

< yE2
. The trajectory of system (4) Γ2

over A3 with x = h2 at point D2, which is pulsed to x =m2
and the phase point, is B2 m2, yB2

∈N . We know that

yE2 < yB2
= yD2

+ τ < yF4 ; the trajectory of system (4) Γ4
over B2 with x = h1 at point C2, which is pulsed to x =
m2 and the phase point, is A4 m2, yA4

∈N , so g A3 =
yA4

− yA3
< 0.

There exists another point A1 m2, yA1
∈N , satisfying

0 < yA1
≪ 1. The trajectory of system (4) Γ1 over A1 with

x = h2 at point D1, which is pulsed to x =m2 and the
phase point, is B1 m2, yB1

∈N . We know that yB1
= yD1

+
τ > yE2 ; the trajectory of system (4) Γ3 over B1 with x =
h1 at point C1, which is pulsed to x =m2 and the phase
point, is A2 m2, yA2

∈N , so g A1 = yA2
− yA1

> 0.
So there must exist a point A m2, yA ∈N , satisfying

yA1
< yA < yA3

, so that g A = 0. By Lemma 2, we know

that system (4) has an order-2 periodic solution. The
proof is completed.

Theorem 9. For system (4), if p > 1 − r − am2 /byF3
and

τ > r − am2 /b + r − ah2 /b , the order-2 periodic solu-
tion to it is stable.

Proof 7. According to Lemma 3 (see Figure 12), let
x = ξ t and y = η t be a periodic solution to system
(4) and ξ 0 = xA =m2 and η 0 = yA; ξ T1 = xD = h2
and η T1 = yD; we have ξ T1 + 0 =m2 = xB, η T1 + 0 =
yD + τ = yB, ξ T1 + T2 = h1 = xC , and η T1 + T2 = yC . We
also have ξ T1 + T2 + 0 =m2 = xA and η T1 + T2 + 0 =
1 − p yC = yA

P x, y = x r − ax − by ,

Q x, y = y x −m1 m2 − x ,

α1 x, y =m2 − h1,

β1 x, y = −py,

φ1 x, y = x − h1,

α2 x, y =m2 − h2,

β2 x, y = τ,

φ2 x, y = x − h2

14

Then

∂P
∂x

= r − 2ax − by,

∂Q
∂x

= x −m1 m2 − x ,

∂α1
∂x

=
∂α1
∂y

= 0,

∂β1
∂x

= 0,

∂β1
∂y

= −p,

∂φ1
∂x

= 1,

∂φ1
∂y

= 0,

∂α2
∂x

= 0,

∂α2
∂y

= 0,

∂β2
∂x

= 0,
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Obviously, μ2 < 1, if p > 1 − r − am2 /byFC and τ >
r − am2 /b + r − ah2/b and conditions of Theorem 8

hold. Therefore, the order-2 periodic solution of system (4)
is stable, if p > 1 − r − am2 /byF3 and τ > r − am2 /b +
r − ah2 /b . Thus, the proof is completed.

3.4. Existence of Order-k (k = 1, 2) Periodic Solution
of System (3)

Case I. 1 − q1 h2 <m2 (see Figure 13).
For notation simplicity, let the intersection of the phase

set N and L1 be F8 xF8 , yF8 = F8 1 − q1 h2, yF8
. The inter-

section point of L8 and L is denoted by F7 xF7
, yF7

= F7
1 − q1 h2, yF7

.

Theorem 10. If 0 < p < 1 − byF7
/ r − ah1 and τ > yF7 , there

exists an order-1 periodic solution in system (3).

Proof 8. The proof is similar to that of Theorem 4 and omit-
ted thereby.

Theorem 11. If p > 1 − yF7
/yF3

and τ < yF7
− yF5

, there
exists an order-1 periodic solution in system (3).

Proof 9. The proof is similar to that of Theorem 6 and omit-
ted thereby.

Theorem 12. If p > 1 − yF7 /yF3 and τ > yF7 , there exists an
order-2 periodic solution in system (3).

Proof 10. The proof is similar to that of Theorem 8 and omit-
ted thereby.

Case II. 1 − q1 h2 >m2 (see Figure 14).
For notation simplicity, let the intersection of the phase

set N and L9 be F9 xF9
, yF9

= F9 1 − q1 h2, yF9 . The inter-
section point of L2 and L is denoted by F10 xF10 , yF10 = F10
1 − q1 h2, yF10

.

Theorem 13. If 0 < p < 1 − yF9
/yF2

and τ > yF9 , there exists
an order-1 periodic solution in system (3).

∂β2
∂y

= 0,

∂φ2
∂x

= 1,

∂φ2
∂y

= 0,

Δ1 =
P+ ∂β1/∂y ∂φ1/∂x − ∂β1/∂x ∂φ1/∂y + ∂φ1/∂x +Q+ ∂α1/∂x ∂φ/∂y − ∂α1/∂y ∂φ1/∂x + ∂φ1/∂y

P ∂φ1/∂x +Q ∂φ1/∂y

=
P+ ξ T1 + T2 + 0 , η T1 + T2 + 0 1 − p

P ξ T1 + T2 , η T1 + T2
=

1 − p P A
P C

=
m2 r − am2 − b 1 − p yC 1 − p

h1 r − ah1 − byC
,

Δ2 =
P+ ∂β2/∂y ∂φ2/∂x − ∂β2/∂x ∂φ2/∂y + ∂φ2/∂x +Q+ ∂α2/∂x ∂φ2/∂y − ∂α2/∂y ∂φ2/∂x + ∂φ2/∂y

P ∂φ2/∂x +Q ∂φ2/∂y

=
P+ ξ T1 + 0 , η T1 + 0

P ξ T1 , η T1
=

P B
P D

=
m2 r − am2 − b yD + τ

h2 r − ah2 − byD
,

T1+T2

0

∂P
∂x

+
∂Q
∂x

dt =
T1+T2

0
r − 2ax − by + x −m1 m2 − x dt

=
T1

0
r − 2ax − by + x −m1 m2 − x dt +

T1+T2

T1

r − 2ax − by + x −m1 m2 − x dt

=
h2

m2

1
x
dx +

yD

1−p yC

1
y
dy +

h1

m2

1
x
dx +

yC

yD+τ

1
y
dy −

T1+T2

0
axdx,

μ2 = Δ1Δ2 exp
T1+T2

0

∂P
∂x

+
∂Q
∂x

dt

=
m2 r − am2 − b 1 − p yC 1 − p

h1 r − ah1 − byC

m2 r − am2 − b yD + τ

h2 r − ah2 − byD

h2
m2

yD
1 − p yC

h1
m2

yC
yD + τ

=
r − am2 − b 1 − p yC

r − ah1 − byC

r − am2 − b yD + τ

r − ah2 − byD

yD
yD + τ

<
r − am2 − b 1 − p yC

r − ah1 − byC

r − am2 − b yD + τ

r − ah2 − byD
15
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Proof 11. The proof is similar to that of Theorem 4 and omit-
ted thereby.

Theorem 14. If p > 1 − yF9 /yF3
and τ < yF9

− yF6
, there

exists an order-1 periodic solution in system (3).

Proof 12. The proof is similar to that of Theorem 6 and omit-
ted thereby.

Theorem 15. If p > 1 − yF9 /yF3 and τ > yF9 , there exists an
order-2 periodic solution in system (3).

Proof 13. The proof is similar to that of Theorem 8 and omit-
ted thereby.

4. Numerical Simulations and Discussion

In this section, a specific example is presented to verify the
theoretical results obtained in the previous section by consid-
ering the change of the control parameters p, τ, and q1. From
Figures 15–25, we know that the numerical simulation results
are consistent with the theoretical results.

In system (3), let r = 4, a = 0 4, b = 0 5, m1 = 3, m2 = 8,
h1 = 6, h2 = 9, 0 < p = p1δ < 1, τ > 0, and 0 < q1 < 1 − h1/h2 ;
we get the following system:

dx
dt

= x 4 − 0 4x − 0 5y ,

dy
dt

= y x − 3 8 − x ,

 6 < x < 9,

△x = 3 − 9q1,

△y = −py,

 x = 6, y > 3 2,

△x = −9q1,

△y = τ,

 x = 9, y < 0 8,
6 < x0 < 9,

y0 > 0

16

Y L3 L1

C2

C1

B3

B4

B2
B1
E2

F6
L0

B
F2

E1

O

F1

m1 h1 m2 h2 X

C

N N2

Figure 10: There exists an order-1 periodic solution of system (4)
with 1 − p yF2

> yE2
.

Y L3

E1

m1 m2 h2h1

E2

F5

D
D1

D2

F6
L0

A3
A4

A2
A1

A

M1 M2N

O X

Figure 11: There exists an order-1 periodic solution of system (4)
with yF5

+ τ < yE2 .

Y L3
F3

C3

C1

F2

E1
F1

C

M1 M2

F4

B2

E2

F6

L0

F5

D2

D1
D

A3

A4

A2

A1

A

B

N

O m1 m2 h2 Xh1

Figure 12: There exists an order-2 periodic solution of system (4)
with 1 − p yF3

< yE2
and τ > yE2 .

Y L3

L1

M1
F3

F2 F4 L9

F6
L0

X

F5
L2

F8

F0

F7

E2

E1

L8

m1 h1 m2 h2 (1 − q1)h2

F1

L7

M2L5N
L

O

Figure 13: Structure diagram in R+
2 of system (3) with 1 − q1

h2 <m2.
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Obviously (see Figure 9), we know that E0 0, 0 and
E2 8,1 6 are saddle points and E1 3,5 6 and E3 10, 0
are stable node points. Let L7 W x, y = y + Kx − 8K +
0 8 + τ = 0; we have F1 6,3 2 , F3 6, 2K + τ + 0 8 , F4 8,0 8
+ τ , F6 9,0 8 , and x0, y0 = 7 21,0 9 .

4.1. Verification for the Case 1 − q1 h2 =m2

Case I. Let q1 = 1/9 , p = 0 4, and τ = 2 7, then h1 < 1 − q1
h2 =m2 < h2, and the impulsive set and the phase set are
M =M1 ∪M2 = x, y ∈ R2

+ ∣ x = 6, y > 3 2 ∪ x, y ∈ R2
+ ∣ x

= 9, y < 0 8 and N = x, y ∈ R2
+ ∣ x = 8, y ≥ 0 . According

to Theorem 4, there exists an order-1 periodic solution in
system (16), which can be seen in Figure 15. We can observe
that there exists an order-1 periodic solution of system (16)
which lies between the phase set and the impulse set (i.e.,
between 6 and 8).

Case II. Let q1 = 1/9 , p = 0 8, and τ = 0 6, then h1 < 1 −
q1 h2 =m2 < h2, and the impulsive set and the phase set are
M =M1 ∪M2 = x, y ∈ R2

+ ∣ x = 6, y > 3 2 ∪ x, y ∈ R2
+ ∣ x

= 9, y < 0 8 and N = x, y ∈ R2
+ ∣ x = 8, y ≥ 0 . According

to Theorem 6, there exists an order-1 periodic solution in
system (16), which can be seen in Figure 16. We can observe
that there exists an order-1 periodic solution of system (16)
which lies between the phase set and the impulse set (i.e.,
between 8 and 9).

Case III. Let q1 = 1/9 , p = 0 8, and τ = 2 7, then h1 < 1 −
q1 h2 =m2 < h2, and the impulsive set and the phase set are

8

7

6

5

4

3

2

1

6 7 8
x (t)

y
 (t

)

9

Figure 15: There exists an order-1 periodic solution in system (16)
with q1 = 1/9 , p = 0 4, and τ = 2 7.

1.4

1.2

1.0

0.8

0.6

0.4

7.4 7.6 7.8 8.0 8.2
x (t)

y
 (t

)

8.4 8.6 8.8 9.0

Figure 16: There exists an order-1 periodic solution in system (16)
with q1 = 1/9 , p = 0 8, and τ = 0 6.

Y L3

L1

M1 M2
F3

F2

E1

L8

F1
F9

F4

L9

E2

F10

F0
F6

L0
F5

L2

L5 N
L

Xm1 h1 m2 h2 (1 − q1)h2
O

Figure 14: Structure diagram in R+
2 of system (3) with 1 − q1

h2 >m2.

7

6

5

4

3

2

1

6 7 8
x (t)

y
 (t

)

9

Figure 17: There exists an order-2 periodic solution in system (16)
with q1 = 1/9 , p = 0 8, and τ = 2 7.
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M =M1 ∪M2 = x, y ∈ R2
+ ∣ x = 6, y > 3 2 ∪ x, y ∈ R2

+ ∣ x
= 9, y < 0 8 and N = x, y ∈ R2

+ ∣ x = 8, y ≥ 0 . According
to Theorem 8, there exists an order-2 periodic solution in
system (16), which can be seen in Figure 17. We can observe
that there exists an order-2 periodic solution of system (16)
which lies between the phase set and the impulse set (i.e.,
between 6 and 9).

4.2. Verification for the Case 1 − q1 h2 <m2

Case I. Let q1 = 1/6 , p = 0 8, and τ = 4 7, then h1 < 1 − q1
h2 <m2 < h2, and the impulsive set and the phase set are

M =M1 ∪M2 = x, y ∈ R2
+ ∣ x = 6, y > 3 2 ∪ x, y ∈ R2

+ ∣ x
= 9, y < 0 8 and N = x, y ∈ R2

+ ∣ x = 7 5, y ≥ 0 . Accord-
ing to Theorem 10, there exists an order-1 periodic solution
in system (16), which can be seen in Figure 18. We can
observe that there exists an order-1 periodic solution of sys-
tem (16) which lies between the phase set and the impulse
set (i.e., between 6 and 7.5).

Case II. Let q1 = 1/6 , p = 0 9, and τ = 0 7, then h1 < 1 −
q1 h2 <m2 < h2, and the impulsive set and the phase set are
M =M1 ∪M2 = x, y ∈ R2

+ ∣ x = 6, y > 3 2 ∪ x, y ∈ R2
+ ∣ x

= 9, y < 0 8 andN = x, y ∈ R2
+ ∣ x = 7 5, y ≥ 0 . According

7

8

6

5

4

3

2

1

6 7 8
x (t)

y
 (t

)

9

Figure 18: There exists an order-1 periodic solution in system (16)
with q1 = 1/6 , p = 0 8, and τ = 4 7.

1.4

1.2

1.0

0.8

0.6

0.4

7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0
x (t)

y
 (t

)

Figure 19: There exists an order-1 periodic solution in system (16)
with q1 = 1/6 , p = 0 9, and τ = 0 7.

7

8

6
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3

2

1

6 7 8
x (t)

y
 (t

)
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Figure 20: There exists an order-2 periodic solution in system (16)
with q1 = 1/6 , p = 0 9, and τ = 4 7.
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6

5

4

3

2

1

6 7 8
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y
 (t

)

9

Figure 21: There exists an order-2 periodic solution in system (16)
with q1 = 1/6 , p = 0 9, and τ = 1 1.
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to Theorem 11, there exists an order-1 periodic solution in
system (16), which can be seen in Figure 19. We can observe
that there exists an order-1 periodic solution of system (16)
which lies between the phase set and the impulse set (i.e.,
between 7.5 and 8).

Case III. Let q1 = 1/6 , p = 0 9, and τ = 4 7, then h1 < 1 −
q1 h2 <m2 < h2, and the impulsive set and the phase set are
M =M1 ∪M2 = x, y ∈ R2

+ ∣ x = 6, y > 3 2 ∪ x, y ∈ R2
+ ∣ x

= 9, y < 0 8 andN = x, y ∈ R2
+ ∣ x = 7 5, y ≥ 0 . According

to Theorem 12, there exists an order-2 periodic solution in

system (16), which can be seen in Figure 20. We can observe
that there exists an order-2 periodic solution of system (16)
which lies between the phase set and the impulse set (i.e.,
between 6 and 8).

Case IV. Let q1 = 1/6 , p = 0 9, and τ = 1 1, then h1 < 1
− q1 h2 <m2 < h2, and the impulsive set and the phase
set are M =M1 ∪M2 = x, y ∈ R2

+ ∣ x = 6, y > 3 2 ∪ x, y
∈ R2

+ ∣ x = 9, y < 0 8 and N = x, y ∈ R2
+ ∣ x = 7 5, y ≥ 0 .

According to Theorem 12, there exists an order-2 periodic
solution in system (16), which can be seen in Figure 21. We

8

7

6

5

4

3

2

1

6 7 8 9
x (t)

y
 (t

)

Figure 22: There exists an order-1 periodic solution in system (16)
with q1 = 1/18 , p = 0 6, and τ = 4 7.
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Figure 23: There exists an order-1 periodic solution in system (16)
with q1 = 1/18 , p = 0 8, and τ = 1 7.
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Figure 24: There exists an order-2 periodic solution in system (16)
with q1 = 1/18 , p = 0 8, and τ = 4 7.
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Figure 25: There exists an order-2 periodic solution in system (16)
with q1 = 1/18 , p = 0 95, and τ = 4 7.
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can observe that there exists an order-2 periodic solution of
system (16) which lies between the phase set and the impulse
set (i.e., between 6 and 8).

4.3. Verification for the Case 1 − q1 h2 >m2

Case I. Let q1 = 1/18 , p = 0 6, and τ = 4 7, then h1 <m2 <
1 − q1 h2 < h2, and the impulsive set and the phase set are
M =M1 ∪M2 = x, y ∈ R2

+ ∣ x = 6, y > 3 2 ∪ x, y ∈ R2
+ ∣ x

= 9, y < 0 8 and N = x, y ∈ R2
+ ∣ x = 8 5, y ≥ 0 . Accord-

ing to Theorem 13, there exists an order-1 periodic solution
in system (16), which can be seen in Figure 22. We can
observe that there exists an order-1 periodic solution of sys-
tem (16) which lies between the phase set and the impulse
set (i.e., between 6 and 8.5).

Case II. Let q1 = 1/18 , p = 0 8, and τ = 1 7, then h1 <m2 <
1 − q1 h2 < h2, and the impulsive set and the phase set are
M =M1 ∪M2 = x, y ∈ R2

+ ∣ x = 6, y > 3 2 ∪ x, y ∈ R2
+ ∣ x

= 9, y < 0 8 andN = x, y ∈ R2
+ ∣ x = 8 5, y ≥ 0 . According

to Theorem 14, there exists an order-1 periodic solution in
system (16), which can be seen in Figure 23. We can observe
that there exists an order-1 periodic solution of system (16)
which lies between the phase set and the impulse set (i.e.,
between 8.5 and 9).

Case III. Let q1 = 1/18 , p = 0 8, and τ = 4 7, then h1 <
m2 < 1 − q1 h2 < h2, and the impulsive set and the phase
set are M =M1 ∪M2 = x, y ∈ R2

+ ∣ x = 6, y > 3 2 ∪ x, y
∈ R2

+ ∣ x = 9, y < 0 8 and N = x, y ∈ R2
+ ∣ x = 8 5, y ≥ 0 .

According to Theorem 15, there exists an order-2 periodic
solution in system (16), which can be seen in Figure 24. We
can observe that there exists an order-2 periodic solution of
system (16) which lies between the phase set and the impulse
set (i.e., between 6 and 9).

Case IV. Let q1 = 1/18 , p = 0 95, τ = 4 7, then h1 <m2 < 1
− q1 h2 < h2, and the impulsive set and the phase set are
M =M1 ∪M2 = x, y ∈ R2

+ ∣ x = 6, y > 3 2 ∪ x, y ∈ R2
+ ∣ x

= 9, y < 0 8 and N = x, y ∈ R2
+ ∣ x = 8 5, y ≥ 0 . Accord-

ing to Theorem 15, there exists an order-2 periodic solu-
tion in system (16), which can be seen in Figure 25. We
can observe that there exists an order-2 periodic solution
of system (16) which lies between the phase set and the
impulse set (i.e., between 6 and 9).

From Figures 1, 15–25, we know that at the initial point (7.21,
0.9) in the system without pulse control, fish species will be
extinct, which is harmful to biodiversity. In order to maintain
biodiversity, we introduce the state feedback control and put
forward the economic threshold (ET) of ecological control to
effectively control the amount of water hyacinth population
which can prevent the extinction of fish and can fully employ
water hyacinth as feedstuff for continuous development of
fishery production, changing the harm into benefit.

5. Conclusions

In the system with pulse control, we gain order-1 periodic
solutions and order-2 periodic solution of the system, respec-
tively, verifying the accuracy of Theorems 4, 6, 8, and 10–15.
At the same time, by using the comprehensive control strat-
egies, such as periodically dropping and harvest, we achieve
the diversity of species in water hyacinth ecological system.

In the future, from the viewpoint of optimization, we will
further consider the costs and profits under domination of
the market economy and further improve the model, thus
realizing the effective protection of the diversity of species
in water hyacinth ecology and obtaining the biggest eco-
nomic profits.
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