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1 Node overlapping correlation change as the nhumber of selected spreaders increases

Given the four synthetic networks (10,000 nodes), we alternatively measure the amount of node overlapping for 10 selected
influence ranking methods. These methods are: node degree centrality (Deg), closeness (Cls)', node betweenness (Btw)?,
HITS?, PageRank (PR)*, Hirsch index (HI)’, LeaderRank (LR)®, K-shell decomposition (KS)’, Local centrality with a
coefficient (CLC)3, and Eigenvector centrality (EC)°.

The 10 mentioned centralities are applied in order to select the top p% spreaders in each network, for values of p €
{0.01,0.05,0.1}. Figure 1 shows the change in correlation (node overlapping) by increasing p = 0.01 to p = 0.1. The
correlation between most centralities will drop as p increases. The average changes in correlations from p = 0.01 up to p =0.1
are: 5Rand = —0289, 5Mesh = —0.193, 55W = —0.189, and 5517 = —0.088.

The upper panel of Figure 1 shows the correlation drop grouped by centrality measures, and the lower panel of Figure 1
groups the results by topology. We notice that the scale-free network has the lowest drop in correlation. This can be explained
by the existence of hubs in the network, and the fact that most centralities will select those few nodes within the top p% spreader
set. This is why, even if the spreader pool increases to 10% of the network, the same spreaders are selected, so the correlation
remains high and mostly unaltered.
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Figure 1. Changes in correlation (node overlapping) between ranking methods by increasing the spreader size from 1% to
10% of the total network size. Each synthetic network has N = 10,000 nodes.

On the other hand, the random network produces a significant drop in correlation. This is due to the fact that, as more nodes
are introduced in the spreader pool, more randomness is introduced, so the overlapping drops naturally. In an analogous manner,
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the mesh network also has a high correlation drop, and this is due to the fact that influential nodes tend to have a uniform spatial
distribution. Selecting a larger spreader size, incurs higher overall diversity, as in a Gaussian distributed population. Finally,
the small-world network is similar to a mesh network with an additional set of long range links (< 15%), so it performs very
similar to the mesh topology.

We can conclude that only the scale-free property has a more characteristic response, due to its small subset of hub nodes,
which naturally represents around 1 — 10% of the network size.

2 Node overlapping in terms of selected spreaders

Figure 2 exemplifies the spatial distribution of four selected centralities (degree, closeness, betweenness and PageRank) on
the mesh topology, as they are used to select the top 1% nodes as spreaders. With this example we highlight the change in
diversity of spreader positioning between the various ranking methods. In the selected example, degree and PageRank have
similar spatial distributions, while Closeness is consistently different.

Degree Closeness centrality
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Figure 2. Spatial distribution of selected spreader nodes on the mesh network with N = 10,000 nodes. The top 1% nodes are
highlighted as spreaders, as determined by the degree, closeness, betweenness and PageRank centralities.

3 Competition-based benchmarking results

Tables 1 and 2 contain the main detailed benchmarking simulation results of the paper. Each of the 8 datasets has one
independent sub-table containing 10 x 10 averaged simulation sets between the following centrality measures: : node degree
centrality (Deg), closeness (Cls), node betweenness (Btw), HITS, PageRank (PR), Hirsch index (HI), LeaderRank (LR), K-shell
decomposition (KS), Local centrality with a coefficient (CLC), and Eigenvector centrality (EC).
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Table 1. Synthetic dataset (random, mesh, small-world, scale-free) benchmark results for pair-wise competition between
centrality measures. Each cell (x,y) contains the final opinion coverage (0 — 100%) for centrality x; the symmetric cell (y,x)
represents the same number on a colour gradient blue (0%)—white (50%)—orange (100%).

Random  Deg  Cls  Btw  HITS PR H LR KS CLC  EC| 4y
Deg - 9850 182 098 100 9890 9810 99.02 9878  98.56] 66.18
Cls - 130 148 150 9812 174 9876 130  136| 23.02
Btw - 130 160 9880 97.84 9882 9852 98.60| 66.15
HITS - 138 9884 124 9910 9878 98.62| 6628
PR - 9850 210 99.14 9874 98.46| 77.16
HI - 178 9836 118  1.00[ 12.13
LR e ] - 9890 9824 9868 7695
KS - 098 082 099
CLC - 9886 3393
EC 4 2312
Mesh Deg  Cls  Btw HITS PR H LR KS CLC  EC| 4y
Deg - 9536 7874 5700 5622 78.04 5672 7266 6246 84.18] 71.26
Cls - 304 466 554 520 494 546 536 10.64| 547
Btw - 1974 2214 3360 2392 7956 4430 4436 4293
HITS - 5280 70.60 4588 79.92 6370  88.00[ 69.32
PR - 6552 4456 7100 67.66 73.60| 6535
HI - 3310 5112 4114 8238 52.82
LR - 7754 6246  79.60| 67.57
KS - 4174 4746 39.65
CLC - 7890 5236
EC || 3296
SW Deg  Cls  Btw _HITS PR HI LR KS CLC  EC| 4vg
Deg - 8942 6694 60.16 3458 7856 6660 7036 7936 74.44] 68.94
Cls - 910 58 128 1158 1626 23.06 802 824 11.39
Btw - 2124 4748 4340 4488  79.66 59.80 84.14| 56.96
HITS - 5406 9058 71.60 86.02 5220 93.02| 76.92
PR - 7438 4836 7424 8724 61.00| 71.93
HI - 5138 8324 3954 31.06| 3325
LR e - 8660 5428  82.06| 66.72
KS - 4710 2532 37.87
CLC - 4196 6024
EC | 3943
SF Deg  Cls  Btw _HITS PR H LR KS CLC  EC| dvg
Deg - 9822 4616 4212 5930 47.64 5250 6142 7970 68.30] 61.71
Cls - 182 172 180 18 180 188 190  186| 1.83
Btw - 4308 4048 6396 3860 8792 80.80 71.34| 62.78
HITS - 5454 4884 5024 6192 7980 7242 61.63
PR - 5296 3120 5244 80.84 67.76| 55.74
HI - 3518 7044 87.66 66.64| 54.72
LR - 6288  79.66 72.84| 61.53
KS - 6406 4178 4589
CLC - 1408 2699
EC | 43.09
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Table 2. Real-world dataset benchmark results for pair-wise competition between centrality measures. Each cell (x,y)

contains the final opinion coverage (0 — 100%) for centrality x; the symmetric cell (y,x) represents the same number on a

colour gradient blue (0%)—white (50%)—orange (100%).

OSN Deg  Cls  Btw__HITS PR HI LR KS CLC  EC| dvg
Deg - 9752 7835 816 81.99 9220  7.68 8831 1179 884 5276
Cls - 179 131 221 394 142 273 442 252|255
Btw 13.05 1242 9036 1358 9052 1579 15.90| 4037
HITS - 8267 89.46 1026 91.67 89.67 17.58| 64.42
PR - 1879 1379 9025 1601 1622 41.08
HI - 753 716 431 563 2423
LR 1721 64.39
KS 12.11| 2877
CLC 1248  44.74
EC | 6283
FB Deg  Cls  Btw__HITS PR HI LR KS CLC  EC| dvg
Deg - 9659  66.86 3697 3549 6954 30.17 6945 3058 69.95| 56.18
Cls - 349 356 526 353 498 7023 523 353 1149
Btw - 3445 4268 7459 5652  73.67 57.09 4823 57.51
HITS - 5718 7021 3158 7033 37.04  69.92| 62.10
PR - 7021 3953 7020 4385 69.89| 5599
HI - 2976 7001 2979  30.55| 4136
LR - 7023 6450 6889 68.06
KS - 2966 3048 2887
CLC - 6929 5591
EC | 4454
Emails Deg  Cls  Btw _ HITS PR HI LR KS CLC  EC| dvg
Deg - 9866 56.89 4970 4779 6991 50.17 6805 6476 6575 63.52
Cls 106 108 106 597 107 208 617  2.03| 240
Btw - 4081 4087 68.12 4079 6722 63.61 6359 5833
HITS - 4801 7000 5001 6731 6464 6571 63.56
PR - 6907 5114 6766 6375 6400 63.55
HI - 2991 4816 30.17 3352 39.60
LR - 7141 6518 6504 63.97
KS - 3600 3826 42.07
CLC - 4446 4843
EC | 5149
POK Deg  Cls  Btw _ HITS PR HI LR KS CLC  EC| dvg
Deg - 7100 50.12 5534 4123 8042 3559 8936 7323 7321 63.28
Cls - 3860 29.16 31.01 5354 2827 8458 5374 6213 4578
Btw - 4722 3932 59.18 5048 9235 6810 58.49| 5827
HITS - 4548 7045 3791 9326 71.85 80.42| 63.09
PR - 7001 5225 9052  69.56 7522| 63.94
HI - 2117 8566 30.62 4573 3630
LR - 89.89 7235 7746 66.87
KS - 1411 1911 1333
CLC e - 79.53|  48.01
EC | 3227
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Each numerical cell (x,y) in the tables represents the opinion coverage (0 — 100%) for centrality x (versus y) at the end of
each simulation, after balancing is attained' in our tolerance diffusion model'!. The table cells are symmetrical, meaning that
each colour cell (y,x) represents the same percentage on a colour gradient blue (0%)—white (50%)-orange (100%) For example,
the values and colours are interpreted as follows: in the Emails dataset in Table 2, we obtain the result HI-LR=29.91, meaning
that HI obtains 29.91% coverage in the network, while LR obtains the rest of 100 —29.91 = 70.09% coverage. Accordingly,
cell LR-HI is coloured in a light blue, meaning that the first centrality wins (i.e., by 70.09%). Also, the numerical values in
each cell take into consideration AOA, meaning that simulations were automatically run in both scenarios where HI had priority
in assigning spreaders, then LR had priority over HI.

Each cell in Tables 1-2 corresponds to a total of 10 repeated simulation batches (i.e., translating into 20 because of AOA),
thus a sub-table comprises a total of 45 x 20 = 900 simulations, amassing to an overall 8 x 900 = 7,200 unique simulations.

4 Ranking method performances on each dataset for individual SIR benchmarking

In Figure 3 we highlight the low numerical differentiation provided by testing influence ranking methods in an individual
context with SIR epidemic diffusion'? '3, The performance is expressed as percentage of final coverage at the end of a SIR
epidemic diffusion. Overall, there is no visual cue suggesting that ranking methods perform any different on, e.g., the SW
topology (grey bars in Figure 3). In other words, we cannot reliably rank node centralities on a given topology. We can only
rank the spreading ability when comparing different topologies, like for example, the Facebook dataset is covered to a larger
extent than POK.
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Figure 3. Performance (coverage 0-100%) of each ranking method on the 8 datasets using individual SIR benchmarking.

5 Ranking method performances on each dataset for competition-based benchmarking

In Figure 4 we display the averaged benchmark performances of each ranking method, for the 8 individual datasets. On the
synthetic datasets, we notice that Deg, HITS, PR and LR have overall both stable and good results (> 60%). On the other
hand, Cls and KS have the weakest overall results (< 30%). Additionally, some measures present significant change based
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on topology — EC increases in performance on scale-free networks; CLC is efficient only on mesh-like topologies; HI is
promising on meshes, weak on random networks, and moderately performant on small-worlds. On the real-world datasets, we
find high coverage stability for HITS and LR (63 — 67%), which also come out as the best ranking methods overall. Cls is
highly inefficient (< 10%), except on the POK dataset (47%), while EC is generally efficient (> 52%), except on the POK
dataset (34%). These results represent complex emergent opinion coverages that take into consideration the composition of
fundamental topologies found the real-world datasets, and their interpretation is beyond the scope of this paper.
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Figure 4. Performance (coverage 0-100%) of each ranking method on the 8 datasets using simultaneous competition-based
benchmarking.

6 Alternative selection strategy for multiple spreaders

In order to present and validate our novel benchmarking methodology we have made use of existing state of the art ranking
methods, as well as a selection strategy for multiple spreaders. After a review of the most recent advances in complex network
analysis, we find that the method of simply selecting the top spreaders from the entire network is the most popular found
throughout literature, in the case of multiple spreader selection® 419, As such, in terms of validating our benchmarking
framework, we did not consider going into further details that were not the main goal of the paper.

Nevertheless, we find several alternatives for selecting multiple spreaders. Zhao et al. propose an innovative selection
method using the Welsh-Powell graph colouring algorithm?®. It is shown that their method can improve the performances of
some well-known centralities, including degree, betweenness, closeness, and eigenvector centrality?!. Nevertheless, there are
other alternatives for multiple spreader selection as well, like recalculating the centralities of nodes after every step of node
removal??, the degree discount algorithm?3, the equal graph partitioning strategy>*.

We have implemented the graph colouring method of Zhao et al.?” to present a brief comparative analysis of the impact it
has in the overall benchmarking methodology and its results. Using the same three competitive simulation examples (Deg-LR,
LR-Btw, Cls-HI) as in the Results section, Figure 4, from our manuscript, we highlight here in Figure 5 the differences between
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s the two selection methods using visual examples. We refer to the simple method of selecting the top seeds from the entire

& network as the naive method, and to the method of Zhao ef al.’® as the graph colouring method.
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Figure 5. Comparison between the naive (a-c) and graph colouring (d-f) methods using three competitive diffusion examples
on the Mesh network (N=10,000 nodes). Larger nodes represent spreader nodes. The first centrality in the figure captions
corresponds to orange opinion, and the second centrality to blue opinion.
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Figure 6. Difference in spreader spacing for closeness (orange) when switching from the naive method (a) to the graph
colouring method (b).
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Analysing Figure 5 we notice a slightly different positioning of the spreader nodes (larger nodes) achieved with the graph
colouring method. This is especially visible in Figures 5 ¢ and f, where the spreaders selected by closeness are more spaced
apart, yet the final distributions of the opinion (i.e., centrality performances) are very similar when using either of the two
selection methods. Additionally, in Figure 6 we provide a close-up of the spreader selection for Closeness (corresponding to
Figures 5 ¢ and f).

To sum up the results obtained for the two selection methods, in Table 3 we provide the numerical results for the three
simulation scenarios. Overall, we measure variations in final performance (%) of roughly 1-3%.

Table 3. Comparison between the naive and graph colouring methods in terms of selecting spreader nodes. Performance is
expressed as percentage (%) for each node centrality in three competitive simulation scenarios.

Ranking method Naive method Graph colouring

1 Deg versus 56.70 53.66
LR 43.30 46.34
2 LR versus 74.26 73.30
Btw 25.74 26.70
3 Cls versus 5.24 6.82
HI 94.76 93.18
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