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1 Node overlapping correlation change as the number of selected spreaders increases13

Given the four synthetic networks (10,000 nodes), we alternatively measure the amount of node overlapping for 10 selected14

influence ranking methods. These methods are: node degree centrality (Deg), closeness (Cls)1, node betweenness (Btw)2,15

HITS3, PageRank (PR)4, Hirsch index (HI)5, LeaderRank (LR)6, K-shell decomposition (KS)7, Local centrality with a16

coefficient (CLC)8, and Eigenvector centrality (EC)9.17

The 10 mentioned centralities are applied in order to select the top p% spreaders in each network, for values of p ∈18

{0.01,0.05,0.1}. Figure 1 shows the change in correlation (node overlapping) by increasing p = 0.01 to p = 0.1. The19

correlation between most centralities will drop as p increases. The average changes in correlations from p = 0.01 up to p = 0.120

are: δRand =−0.289, δMesh =−0.193, δSW =−0.189, and δSF =−0.088.21

The upper panel of Figure 1 shows the correlation drop grouped by centrality measures, and the lower panel of Figure 122

groups the results by topology. We notice that the scale-free network has the lowest drop in correlation. This can be explained23

by the existence of hubs in the network, and the fact that most centralities will select those few nodes within the top p% spreader24

set. This is why, even if the spreader pool increases to 10% of the network, the same spreaders are selected, so the correlation25

remains high and mostly unaltered.26
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Figure 1. Changes in correlation (node overlapping) between ranking methods by increasing the spreader size from 1% to
10% of the total network size. Each synthetic network has N = 10,000 nodes.

On the other hand, the random network produces a significant drop in correlation. This is due to the fact that, as more nodes27

are introduced in the spreader pool, more randomness is introduced, so the overlapping drops naturally. In an analogous manner,28
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the mesh network also has a high correlation drop, and this is due to the fact that influential nodes tend to have a uniform spatial29

distribution. Selecting a larger spreader size, incurs higher overall diversity, as in a Gaussian distributed population. Finally,30

the small-world network is similar to a mesh network with an additional set of long range links (< 15%), so it performs very31

similar to the mesh topology.32

We can conclude that only the scale-free property has a more characteristic response, due to its small subset of hub nodes,33

which naturally represents around 1−10% of the network size.34

2 Node overlapping in terms of selected spreaders35

Figure 2 exemplifies the spatial distribution of four selected centralities (degree, closeness, betweenness and PageRank) on36

the mesh topology, as they are used to select the top 1% nodes as spreaders. With this example we highlight the change in37

diversity of spreader positioning between the various ranking methods. In the selected example, degree and PageRank have38

similar spatial distributions, while Closeness is consistently different.39

Figure 2. Spatial distribution of selected spreader nodes on the mesh network with N = 10,000 nodes. The top 1% nodes are
highlighted as spreaders, as determined by the degree, closeness, betweenness and PageRank centralities.

3 Competition-based benchmarking results40

Tables 1 and 2 contain the main detailed benchmarking simulation results of the paper. Each of the 8 datasets has one41

independent sub-table containing 10×10 averaged simulation sets between the following centrality measures: : node degree42

centrality (Deg), closeness (Cls), node betweenness (Btw), HITS, PageRank (PR), Hirsch index (HI), LeaderRank (LR), K-shell43

decomposition (KS), Local centrality with a coefficient (CLC), and Eigenvector centrality (EC).44
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Table 1. Synthetic dataset (random, mesh, small-world, scale-free) benchmark results for pair-wise competition between
centrality measures. Each cell (x,y) contains the final opinion coverage (0−100%) for centrality x; the symmetric cell (y,x)
represents the same number on a colour gradient blue (0%)–white (50%)–orange (100%).

Random Deg Cls Btw HITS PR HI LR KS CLC EC Avg
Deg - 98.50 1.82 0.98 1.00 98.90 98.10 99.02 98.78 98.56 66.18
Cls - 1.30 1.48 1.50 98.12 1.74 98.76 1.30 1.36 23.02
Btw - 1.30 1.60 98.80 97.84 98.82 98.52 98.60 66.15
HITS - 1.38 98.84 1.24 99.10 98.78 98.62 66.28
PR - 98.50 2.10 99.14 98.74 98.46 77.16
HI - 1.78 98.36 1.18 1.00 12.13
LR - 98.90 98.24 98.68 76.95
KS - 0.98 0.82 0.99
CLC - 98.86 33.93
EC - 23.12

Mesh Deg Cls Btw HITS PR HI LR KS CLC EC Avg
Deg - 95.36 78.74 57.00 56.22 78.04 56.72 72.66 62.46 84.18 71.26
Cls - 3.04 4.66 5.54 5.20 4.94 5.46 5.36 10.64 5.47
Btw - 19.74 22.14 33.60 23.92 79.56 44.30 44.36 42.93
HITS - 52.80 70.60 45.88 79.92 63.70 88.00 69.32
PR - 65.52 44.56 71.00 67.66 73.60 65.35
HI - 33.10 51.12 41.14 82.38 52.82
LR - 77.54 62.46 79.60 67.57
KS - 41.74 47.46 39.65
CLC - 78.90 52.36
EC - 32.96

SW Deg Cls Btw HITS PR HI LR KS CLC EC Avg
Deg - 89.42 66.94 60.16 34.58 78.56 66.60 70.36 79.36 74.44 68.94
Cls - 9.10 5.82 12.82 11.58 16.26 23.06 8.02 8.24 11.39
Btw - 21.24 47.48 43.40 44.88 79.66 59.80 84.14 56.96
HITS - 54.06 90.58 71.60 86.02 52.20 93.02 76.92
PR - 74.38 48.36 74.24 87.24 61.00 71.93
HI - 51.38 83.24 39.54 31.06 33.25
LR - 86.60 54.28 82.06 66.72
KS - 47.10 25.32 37.87
CLC - 41.96 60.24
EC - 39.43

SF Deg Cls Btw HITS PR HI LR KS CLC EC Avg
Deg - 98.22 46.16 42.12 59.30 47.64 52.50 61.42 79.70 68.30 61.71
Cls - 1.82 1.72 1.80 1.82 1.80 1.88 1.90 1.86 1.83
Btw - 43.08 40.48 63.96 38.60 87.92 80.80 71.34 62.78
HITS - 54.54 48.84 50.24 61.92 79.80 72.42 61.63
PR - 52.96 31.20 52.44 80.84 67.76 55.74
HI - 35.18 70.44 87.66 66.64 54.72
LR - 62.88 79.66 72.84 61.53
KS - 64.06 41.78 45.89
CLC - 14.08 26.99
EC - 43.09
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Table 2. Real-world dataset benchmark results for pair-wise competition between centrality measures. Each cell (x,y)
contains the final opinion coverage (0−100%) for centrality x; the symmetric cell (y,x) represents the same number on a
colour gradient blue (0%)–white (50%)–orange (100%).

OSN Deg Cls Btw HITS PR HI LR KS CLC EC Avg
Deg - 97.52 78.35 8.16 81.99 92.20 7.68 88.31 11.79 8.84 52.76
Cls - 1.79 1.31 2.21 3.94 1.42 2.73 4.42 2.52 2.55
Btw - 13.05 12.42 90.36 13.58 90.52 15.79 15.90 40.37
HITS - 82.67 89.46 10.26 91.67 89.67 17.58 64.42
PR - 18.79 13.79 90.25 16.01 16.22 41.08
HI - 7.53 7.16 4.31 5.63 24.23
LR - 92.15 91.15 17.21 64.39
KS - 11.37 12.11 28.77
CLC - 12.48 44.74
EC - 62.83

FB Deg Cls Btw HITS PR HI LR KS CLC EC Avg
Deg - 96.59 66.86 36.97 35.49 69.54 30.17 69.45 30.58 69.95 56.18
Cls - 3.49 3.56 5.26 3.53 4.98 70.23 5.23 3.53 11.49
Btw - 34.45 42.68 74.59 56.52 73.67 57.09 48.23 57.51
HITS - 57.18 70.21 31.58 70.33 37.04 69.92 62.10
PR - 70.21 39.53 70.20 43.85 69.89 55.99
HI - 29.76 70.01 29.79 30.55 41.36
LR - 70.23 64.50 68.89 68.06
KS - 29.66 30.48 28.87
CLC - 69.29 55.91
EC - 44.54

Emails Deg Cls Btw HITS PR HI LR KS CLC EC Avg
Deg - 98.66 56.89 49.70 47.79 69.91 50.17 68.05 64.76 65.75 63.52
Cls - 1.06 1.08 1.06 5.97 1.07 2.08 6.17 2.03 2.40
Btw - 40.81 40.87 68.12 40.79 67.22 63.61 63.59 58.33
HITS - 48.01 70.00 50.01 67.31 64.64 65.71 63.56
PR - 69.07 51.14 67.66 63.75 64.00 63.55
HI - 29.91 48.16 30.17 33.52 39.60
LR - 71.41 65.18 65.04 63.97
KS - 36.00 38.26 42.07
CLC - 44.46 48.43
EC - 51.49

POK Deg Cls Btw HITS PR HI LR KS CLC EC Avg
Deg - 71.00 50.12 55.34 41.23 80.42 35.59 89.36 73.23 73.21 63.28
Cls - 38.60 29.16 31.01 53.54 28.27 84.58 53.74 62.13 45.78
Btw - 47.22 39.32 59.18 50.48 92.35 68.10 58.49 58.27
HITS - 45.48 70.45 37.91 93.26 71.85 80.42 63.09
PR - 70.01 52.25 90.52 69.56 75.22 63.94
HI - 21.17 85.66 30.62 45.73 36.30
LR - 89.89 72.35 77.46 66.87
KS - 14.11 19.11 13.33
CLC - 79.53 48.01
EC - 32.27
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Each numerical cell (x,y) in the tables represents the opinion coverage (0−100%) for centrality x (versus y) at the end of45

each simulation, after balancing is attained10 in our tolerance diffusion model11. The table cells are symmetrical, meaning that46

each colour cell (y,x) represents the same percentage on a colour gradient blue (0%)–white (50%)–orange (100%) For example,47

the values and colours are interpreted as follows: in the Emails dataset in Table 2, we obtain the result HI-LR=29.91, meaning48

that HI obtains 29.91% coverage in the network, while LR obtains the rest of 100−29.91 = 70.09% coverage. Accordingly,49

cell LR-HI is coloured in a light blue, meaning that the first centrality wins (i.e., by 70.09%). Also, the numerical values in50

each cell take into consideration AOA, meaning that simulations were automatically run in both scenarios where HI had priority51

in assigning spreaders, then LR had priority over HI.52

Each cell in Tables 1-2 corresponds to a total of 10 repeated simulation batches (i.e., translating into 20 because of AOA),53

thus a sub-table comprises a total of 45×20 = 900 simulations, amassing to an overall 8×900 = 7,200 unique simulations.54

4 Ranking method performances on each dataset for individual SIR benchmarking55

In Figure 3 we highlight the low numerical differentiation provided by testing influence ranking methods in an individual56

context with SIR epidemic diffusion12, 13. The performance is expressed as percentage of final coverage at the end of a SIR57

epidemic diffusion. Overall, there is no visual cue suggesting that ranking methods perform any different on, e.g., the SW58

topology (grey bars in Figure 3). In other words, we cannot reliably rank node centralities on a given topology. We can only59

rank the spreading ability when comparing different topologies, like for example, the Facebook dataset is covered to a larger60

extent than POK.61

 

 Figure 3. Performance (coverage 0-100%) of each ranking method on the 8 datasets using individual SIR benchmarking.

5 Ranking method performances on each dataset for competition-based benchmarking62

In Figure 4 we display the averaged benchmark performances of each ranking method, for the 8 individual datasets. On the63

synthetic datasets, we notice that Deg, HITS, PR and LR have overall both stable and good results (> 60%). On the other64

hand, Cls and KS have the weakest overall results (< 30%). Additionally, some measures present significant change based65
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on topology – EC increases in performance on scale-free networks; CLC is efficient only on mesh-like topologies; HI is66

promising on meshes, weak on random networks, and moderately performant on small-worlds. On the real-world datasets, we67

find high coverage stability for HITS and LR (63−67%), which also come out as the best ranking methods overall. Cls is68

highly inefficient (< 10%), except on the POK dataset (47%), while EC is generally efficient (> 52%), except on the POK69

dataset (34%). These results represent complex emergent opinion coverages that take into consideration the composition of70

fundamental topologies found the real-world datasets, and their interpretation is beyond the scope of this paper.71
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Figure 4. Performance (coverage 0-100%) of each ranking method on the 8 datasets using simultaneous competition-based
benchmarking.

6 Alternative selection strategy for multiple spreaders72

In order to present and validate our novel benchmarking methodology we have made use of existing state of the art ranking73

methods, as well as a selection strategy for multiple spreaders. After a review of the most recent advances in complex network74

analysis, we find that the method of simply selecting the top spreaders from the entire network is the most popular found75

throughout literature, in the case of multiple spreader selection6, 14–19. As such, in terms of validating our benchmarking76

framework, we did not consider going into further details that were not the main goal of the paper.77

Nevertheless, we find several alternatives for selecting multiple spreaders. Zhao et al. propose an innovative selection78

method using the Welsh-Powell graph colouring algorithm20. It is shown that their method can improve the performances of79

some well-known centralities, including degree, betweenness, closeness, and eigenvector centrality21. Nevertheless, there are80

other alternatives for multiple spreader selection as well, like recalculating the centralities of nodes after every step of node81

removal22, the degree discount algorithm23, the equal graph partitioning strategy24.82

We have implemented the graph colouring method of Zhao et al.20 to present a brief comparative analysis of the impact it83

has in the overall benchmarking methodology and its results. Using the same three competitive simulation examples (Deg-LR,84

LR-Btw, Cls-HI) as in the Results section, Figure 4, from our manuscript, we highlight here in Figure 5 the differences between85
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the two selection methods using visual examples. We refer to the simple method of selecting the top seeds from the entire86

network as the naı̈ve method, and to the method of Zhao et al.20 as the graph colouring method.87

Figure 5. Comparison between the naı̈ve (a-c) and graph colouring (d-f) methods using three competitive diffusion examples
on the Mesh network (N=10,000 nodes). Larger nodes represent spreader nodes. The first centrality in the figure captions
corresponds to orange opinion, and the second centrality to blue opinion.

Figure 6. Difference in spreader spacing for closeness (orange) when switching from the naı̈ve method (a) to the graph
colouring method (b).
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Analysing Figure 5 we notice a slightly different positioning of the spreader nodes (larger nodes) achieved with the graph88

colouring method. This is especially visible in Figures 5 c and f, where the spreaders selected by closeness are more spaced89

apart, yet the final distributions of the opinion (i.e., centrality performances) are very similar when using either of the two90

selection methods. Additionally, in Figure 6 we provide a close-up of the spreader selection for Closeness (corresponding to91

Figures 5 c and f).92

To sum up the results obtained for the two selection methods, in Table 3 we provide the numerical results for the three93

simulation scenarios. Overall, we measure variations in final performance (%) of roughly 1-3%.94

Table 3. Comparison between the naı̈ve and graph colouring methods in terms of selecting spreader nodes. Performance is
expressed as percentage (%) for each node centrality in three competitive simulation scenarios.

Ranking method Naı̈ve method Graph colouring
1 Deg versus 56.70 53.66

LR 43.30 46.34
2 LR versus 74.26 73.30

Btw 25.74 26.70
3 Cls versus 5.24 6.82

HI 94.76 93.18
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