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Unpaired image translation is a challenging problem in computer vision, while existing generative adversarial networks (GANs)
models mainly use the adversarial loss and other constraints to model. But the degree of constraint imposed on the generator and
the discriminator is not enough, which results in bad image quality. In addition, we find that the current GANs-based models have
not yet been implemented by adding an auxiliary domain, which is used to constrain the generator. To solve the problemmentioned
above, we propose a multiscale and multilevel GANs (MMGANs) model for image translation. In this model, we add an auxiliary
domain to constrain generator, which combines this auxiliary domain with the original domains for modelling and helps generator
learn the detailed content of the image.Then we use multiscale and multilevel feature matching to constrain the discriminator.The
purpose is to make the training process as stable as possible. Finally, we conduct experiments on six image translation tasks. The
results verify the validity of the proposed model.

1. Introduction

Image translation [1] is similar to language translation, which
converts the input image of source domain to a correspond-
ing image of target domain. For example, inputting an image
of the pear and turning it into an image of the apple.
There are many methods [1–6] to solve image translation
problem, but GANs based methods [1, 7–11] have gained
increasing attention in the image translation. In the methods
of GANs, they view the input image of source domain as the
input of generator, which generates fake samples to deceive
discriminator. And then the discriminator is responsible for
judgment whether they are real samples of target domain
or generated fake samples, in which, the deep convolution
or deconvolution neural networks [12–17] are often used to
construct the generator or discriminator.

According to whether the datasets are paired or unpaired,
the image translation of GANs based methods can be roughly
classified into two categories: paired and unpaired image
translation. For paired methods [1, 18], they require paired
datasets. It is very difficult to prepare paired training datasets
in practical applications, whose cost is expensive [19]. To

reduce the cost of obtaining paired training datasets, [20–
22] propose the unpaired methods, which are unsupervised
domain translation methods [23].

However, these paired or unpaired models are inadequate
in generating the detailed information of images. To bring
the better result of image translation, it is still a challenge
task because of the following problems: (1) how to constrain
the generator to generate the detailed content in the image
and (2) how to stabilize the training process to obtain
better performance of model, such as generated images and
generalization performance.

On the one hand, there is the constraint generator. These
GANs basedmethods gradually close to real data distribution
by adjustment the generator parameters. In other words,
this type of GANs based methods does not need to be
pre-modelled, so they are too free for modelling. For the
situation that there are many pixels in the image, this type
of methods has an uncontrollable problem. To address this
problem, [24] proposes constraining generator and discrim-
inator by adding condition variable 𝑦. Inspired by adding
constraint, many researchers have come upwith models from
different perspectives. The first is to add text or semantic
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information to model. Reference [25] adds text information
into the cascaded GANs, which generates high definition of
image from text. Reference [26] proposes structural GANs,
which incorporates semantic information into a conditional
generative model. The second is to add regularization term.
Reference [27] combines mutual information to conduct
adversarial modelling, which actually adds a regulariza-
tion term of mutual information. Reference [7] brings in
cyclic consistency constraint to achieve cross domain image
translation. Reference [28] takes advantage of Wasserstein
distance and the gradient penalty to conduct adversarial
modelling.Then, due to the fact that Nash equilibrium points
of original GANs are not asymptotically stable, in order to
overcome this difficulty, [29] adds a regularization term in
gradient update and proves that the equilibrium points of the
original GANs are locally asymptotically stable after adding
it.

By looking at the similar objects in real life, we find that
they have a certain similarity in appearance or structure. In
addition, there are few methods to constrain generator by
adding an auxiliary domain [30]. Inspired by this, we add
the auxiliary domain, which is used to help the generator
learn the detailed information in the image during image
translation.

On the other hand, there is the stabilization training
process. To obtain better generated images, many researchers
have put forward their ideas on stabilize training process.
Firstly, there is the missing model perspective. Reference [31]
analyses the problem of original GANs objective function,
which leads to easily the gradient vanishing and missing
model when training GANs.Then [28] achieves the improve-
ment of training process. Since the convergence of original
GANs training is not proved, [32] proposes a two time scale
update rule to train GANs, which can make the training
process converge to a local Nash equilibrium. Secondly, there
is the probabilistic perspective. Reference [33] studies the
distribution of the squared singular values of the input-output
Jacobian of the generator. Thirdly, there is the multiscale
discriminator. Reference [34] proposes a multiscale discrim-
inator to stabilize training process and generates the high
resolution image. Inspired by these discussions, in order to
stabilize the training process and improve the discriminating
ability of the discriminator. We make use of ideas of the
multiscale and multilevel to constrain the discriminator,
which is implemented by deep convolutional neural networks
[15, 35–37].

In this paper, we focus on the unpaired image translation
task based on the method of GANs. To try to solve two
problems: (1) In GANs based methods [7–9, 20, 21], the
generator lacks control over the detailed information in the
process of image generation. We try to constrain generator
to generate more detailed content during image translation.
(2) To obtain better generated images or generalization
performance of model, we stabilize the process of GANs
training as much as possible.

To solve the aforementioned concerns, we propose a novel
unpaired image translation framework from the perspective
of simultaneous constraint generator and discriminator. On
the one hand, in order to constrain generator, we add the

auxiliary domain to model, which can help generator learn
the detailed information in the image. Then we combine the
additional auxiliary domain with the domains to be learned
to model and design multiple generators and discriminators
for image translation. On the other hand, to improve the
ability of discriminator or stabilization training process, we
use multiscale and multilevel feature matching to constrain
discriminator. Finally, we use multiple generative losses,
multiscale discriminator losses, multilevel feature matching
losses, and full cycle consistency losses to constrain the
proposed model.

Our main contributions are
(1) We propose an unpaired, multiscale and mul-

tilevel feature matching generative adversarial networks
(MMGANs) by adding auxiliary domain to achieve cross
domain image translation.

(2) We modify the original GANs model from the per-
spective of simultaneous constraint generator and discrimi-
nator. In our model, we add an additional auxiliary domain
as auxiliary information to help generator learn the details
information during generative images. And we constrain the
discriminator by multiscale and multilevel feature matching
losses.

(3) Finally, we conduct experiments on the six tasks
of image translation. According to the proposed evaluation
method and the generated images, the experimental results
show that our model has better performance.

The rest of this paper is organized as follows. Section 2
describes the proposed method and the detailed model.
Section 3 provides the results and discussion. Section 4
concludes this paper.

2. Materials and Methods

In this paper, inspired by the constraint generator, cycle
consistency of CycleGAN, multiscale discriminator andmul-
tilevel feature matching, we design the MMGANs model.
On the one hand, we constrain generator by adding an
additional domain [30] as ancillary information. On the
other hand, we make use of multiscale and multilevel feature
matching to constrain discriminator. To achieve this model,
we specifically design multiple generator losses and multi-
scale discriminator losses, full cycle constraint losses, and
multilevel feature matching losses.

2.1. Formulation Description. We focus on unpaired image
translation problem. For the convenience of the following
description, we suppose that image translation is imple-
mented in the domains 𝑋 and𝑌.The added auxiliary domain
is 𝑍. We have 𝑛𝑥, 𝑛𝑦, and 𝑛𝑧 samples from the 𝑋, 𝑌, and
𝑍 domains. In order to implement the proposed model, we
design six generators (namely, G1: 𝑋 󳨀→ 𝑌, G2: 𝑌 󳨀→ 𝑍,
G3: 𝑍 󳨀→ 𝑋, F1: 𝑌 󳨀→ 𝑋, F2: 𝑍 󳨀→ 𝑌, and F3: 𝑋 󳨀→
𝑍) and three discriminators (namely, 𝐷𝑋𝑖, 𝐷𝑌𝑖, and 𝐷𝑍𝑖). In
particular, to stabilize the training process, our discriminator
𝐷𝑋𝑖 has multiscale (𝑖 ∈ [1,𝑚𝑠]). Moreover, to improve the
quality of generated images, we add the multilevel feature
matching in the discriminator.
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Figure 1: The framework of MMGANs model. In this model, there
are six generators (G1, F1, G2, F2, G3, and F3) and the letters ‘X’, ‘Y’,
and ‘Z’ represent different domains.

For example, the generator G3 generates samples of the
target domain 𝑋. Its input is 𝑍 domain. The generator F1
generates samples of the target domain 𝑋, whose input is
𝑌 domain. Then the discriminator 𝐷𝑋𝑖 determines whether
the generated samples 𝑥 ∈ 𝐹1(𝑌), 𝑥 ∈ 𝐺3(𝑍), and the real
samples 𝑥 ∈ 𝑋 are real or fake. The discriminators 𝐷𝑌𝑖 and
𝐷𝑍𝑖 are similar to 𝐷𝑋𝑖. The framework of MMGANs model
and its discriminator model are shown in Figures 1 and 2.

2.2. Adversarial Loss with Multiscale and Multilevel. The
proposedMMGANsmodel is inspired by [30], which consists
of multiple generators and discriminators. In the proposed
model, we use multiscale and multilevel to constrain the dis-
criminator. In this way, the training process can be stabilized
and the discriminator pays attention to the identification of
the detailed content of the image.

Concretely, there are three inputs 𝑥, 𝐹1(𝑦), and 𝐺3(𝑧). It
needs to distinguish real or fake sample in the three inputs for
the discriminator. To stabilize the training process, we design
multiscale discriminator losses. The adversarial losses with
multiscale discriminator are as follows:

𝐿1𝐷𝑖𝑠 (𝐺3, 𝐹1, 𝐷𝑋𝑖, 𝑍, 𝑌, 𝑋)

=
𝑚𝑠

∑
𝑖=1

(𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) [log𝐷𝑋𝑖 (𝑥)]

+ 𝐸𝑧∼𝑝𝑑𝑎𝑡𝑎(𝑧) [log (1 − 𝐷𝑋𝑖 (𝐺3 (𝑧)))]

+ 𝐸𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦) [log (1 − 𝐷𝑋𝑖 (𝐹1 (𝑦)))])

(1)

𝐿2𝐷𝑖𝑠 (𝐺1, 𝐹2, 𝐷𝑌𝑖, 𝑋,𝑍, 𝑌)

=
𝑚𝑠

∑
𝑖=1

(𝐸𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦) [log𝐷𝑌𝑖 (𝑦)]

+ 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) [log (1 − 𝐷𝑌𝑖 (𝐺1 (𝑥)))]

+ 𝐸𝑧∼𝑝𝑑𝑎𝑡𝑎(𝑧) [log (1 − 𝐷𝑌𝑖 (𝐹2 (𝑧)))])

(2)

𝐿3𝐷𝑖𝑠 (𝐺2, 𝐹3, 𝐷𝑍𝑖, 𝑌, 𝑋,𝑍)

=
𝑚𝑠

∑
𝑖=1

(𝐸𝑧∼𝑝𝑑𝑎𝑡𝑎(𝑧) [𝑙𝑜𝑔𝐷𝑍𝑖 (𝑧)]

+ 𝐸𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦) [log (1 − 𝐷𝑍𝑖 (𝐺2 (𝑦)))]

+ 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) [log (1 − 𝐷𝑍𝑖 (𝐹3 (𝑥)))])

(3)

Real X Generated from Y Generated from Z

DX1
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DXms

Figure 2: The example of multiscale and multilevel discriminator.
There are three columns, which, respectively, represent the real
samples 𝑋 domain, generated samples from 𝑌 domain by F1, and
generated samples from 𝑍 domain by G3. 𝐷𝑋𝑖 represents multiscale
and multilevel discriminator, 𝑖 ∈ [1,𝑚𝑠].

where the subscript Dis means the cases of multiscale dis-
criminator.

To improve further the quality of generated images, we
add the constraint on the discriminators, which focus on
the detailed content judgment of the generated image. So,
we specifically add the multilevel feature matching losses of
discriminator. They are as follows:

𝐿1𝑓𝑒𝑎𝑡𝑢𝑟𝑒 (𝐺3, 𝐹1, 𝐷𝑋𝑖, 𝑍, 𝑌, 𝑋)

=
𝑚𝑠

∑
𝑖=1

𝑚𝑙

∑
𝑗=1

(󵄩󵄩󵄩󵄩󵄩𝐷
𝑗
𝑋𝑖 (𝑥) − 𝐷𝑗

𝑋𝑖 (𝐺3 (𝑧))󵄩󵄩󵄩󵄩󵄩𝐹

+ 󵄩󵄩󵄩󵄩󵄩𝐷
𝑗
𝑋𝑖 (𝑥) − 𝐷𝑗

𝑋𝑖 (𝐹1 (𝑦))󵄩󵄩󵄩󵄩󵄩𝐹)

(4)

𝐿2𝑓𝑒𝑎𝑡𝑢𝑟𝑒 (𝐺1, 𝐹2, 𝐷𝑌𝑖, 𝑋,𝑍, 𝑌)

=
𝑚𝑠

∑
𝑖=1

𝑚𝑙

∑
𝑗=1

(󵄩󵄩󵄩󵄩󵄩𝐷
𝑗
𝑌𝑖 (𝑦) − 𝐷𝑗

𝑌𝑖 (𝐺1 (𝑥))󵄩󵄩󵄩󵄩󵄩𝐹

+ 󵄩󵄩󵄩󵄩󵄩𝐷
𝑗
𝑌𝑖 (𝑦) − 𝐷𝑗

𝑌𝑖 (𝐹2 (𝑧))󵄩󵄩󵄩󵄩󵄩𝐹)

(5)

𝐿3𝑓𝑒𝑎𝑡𝑢𝑟𝑒 (𝐺2, 𝐹3, 𝐷𝑍𝑖, 𝑌,𝑋,𝑍)

=
𝑚𝑠

∑
𝑖=1

𝑚𝑙

∑
𝑗=1

(󵄩󵄩󵄩󵄩󵄩𝐷
𝑗

𝑍𝑖 (𝑧) − 𝐷𝑗

𝑍𝑖 (𝐺2 (𝑦))󵄩󵄩󵄩󵄩󵄩𝐹

+ 󵄩󵄩󵄩󵄩󵄩𝐷
𝑗
𝑍𝑖 (𝑧) − 𝐷𝑗

𝑍𝑖 (𝐹3 (𝑥))󵄩󵄩󵄩󵄩󵄩𝐹)

(6)

where the subscript F means the norm in the multilevel
feature matching losses.

2.3. Objective Function of MMGANs. Our entire objective
function 𝐿 includes multiple losses of the generators and
multiscale discriminators, cycle losses, full cycle losses and
multilevel feature losses. The MMGANs model optimal aim
is

𝐺∗, 𝐹∗ = arg min
𝐺1,𝐹1,𝐺2,𝐹2,𝐺3,𝐹3

max
𝐷𝑋,𝐷𝑌,𝐷𝑍

𝐿 (7)
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(1) Initialization 𝑠𝑒𝑡𝑝 = 1, 𝑚𝑎𝑥𝑠𝑡𝑒𝑝 = 200000, generator parameters 𝜃𝐺1, 𝜃𝐹1, 𝜃𝐺2, 𝜃𝐹2, 𝜃𝐺3, 𝜃𝐹3,
discriminator parameters 𝜃𝐷𝑋, 𝜃𝐷𝑌, 𝜃𝐷𝑍. Suppose 𝑇𝑒𝑚𝑝 = (𝜃𝐺1, 𝜃𝐹1, 𝜃𝐺2, 𝜃𝐹2, 𝜃𝐺3, 𝜃𝐹3, 𝜃𝐷𝑋, 𝜃𝐷𝑌, 𝜃𝐷𝑍).

(2) while 𝑠𝑡𝑒𝑝 ≤ 𝑚𝑎𝑥𝑠𝑡𝑒𝑝 do
(3) Sample one sample at a time 𝑥 ∼ 𝑃𝑋, 𝑦 ∼ 𝑃𝑌, 𝑧 ∼ 𝑃𝑍.
(4) The losses G1 loss, F1 loss, G2 loss, F2 loss, G3 loss and F3 loss of generators

are calculated according to formula (8).
(5) for i =1 to 𝑚𝑠 do
(6) for j =1 to 𝑚𝑙 do
(7) The losses DX loss, DY loss and DZ loss of discriminators are respectively

calculated according to formula (1), (2), (3), (4), (5), (6).
(8) end for
(9) end for
(10) 𝑇𝑒𝑚𝑝 ←󳨀 Adam( ∇𝑇𝑒𝑚𝑝 (G1 loss, F1 loss, G2 loss, F2 loss, G3 loss, F3 loss, DX loss,

DY loss, DZ loss), 𝑇𝑒𝑚𝑝, 𝛼, 𝛽)
(11) 𝑠𝑡𝑒𝑝 ++
(12) end while

Algorithm 1: MMGANs. We use default values of 𝜆11 = 𝜆12 = 𝜆13 = 10, 𝜆21 = 5, 𝜆22 = 𝜆23 = 0, 𝜆31 = 𝜆32 = 𝜆33 = 1, initial learning rate
𝛼 = 0.0002, and 𝛽 = 0.5. Requirement is as follows: There are 𝑛𝑥, 𝑛𝑦, and 𝑛𝑧 samples in the𝑋, 𝑌, and𝑍 domains, the batch size is 1, and Adam
optimizer hyperparameters are 𝛼 and 𝛽. The multiscale parameter 𝑚𝑠 = 1 and the multilevel parameter 𝑚𝑙 = 1.

And L is

𝐿 = 𝐿𝐷𝑖𝑠 + 𝜆1 ∗ 𝐿𝑐𝑦𝑐𝑙𝑒 + 𝜆2 ∗ 𝐿𝑓𝑢𝑙𝑙𝑐𝑦𝑐𝑙𝑒 + 𝜆3 ∗ 𝐿𝑓𝑒𝑎𝑡𝑢𝑟𝑒 (8)

where𝜆1, 𝜆2, and 𝜆3 are parameters of vectors which are rows
(dimension 1∗3). 𝐿𝑐𝑦𝑐𝑙𝑒 and 𝐿𝑓𝑢𝑙𝑙𝑐𝑦𝑐𝑙𝑒, respectively, mean cycle
loss and full cycle loss [30].

𝐿𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = 𝜆31 ∗ 𝐿1𝑓𝑒𝑎𝑡𝑢𝑟𝑒 + 𝜆32 ∗ 𝐿2𝑓𝑒𝑎𝑡𝑢𝑟𝑒 + 𝜆33

∗ 𝐿3𝑓𝑒𝑎𝑡𝑢𝑟𝑒
(9)

We use the Adam optimizer to solve this model and we
give a description of the algorithm. See Algorithm 1.

In addition, this article is a further version of our previous
work [30], which has been greatly improved in the following
places.

Firstly, we modify the discriminator by multiscale and
multilevel constraint. In this way, the training process is
more stable and the discriminator pays more attention to
the matching of features in the generated image. The goal
is to make the details of the generated image more realistic.
Secondly, we also add the UNIT method [9] as baseline in
the experiment. Furthermore, in the performance evaluation
part, the AMT evaluation index is further modified to make
the evaluation methods more objective and comprehensive.

3. Results and Discussion

Our experimental environment is ubuntu16.04, tensorflow,
python3, GPU: GeForce GTX 1080 Ti, and memory: 64GB,
CPU: Intel XeonR@2.30GHz ∗ 36.

3.1. Training and Testing Datasets. We use fruits and seasons
datasets for experiment in this paper. In which, the fruits
dataset includes images of apple, orange, and pear and the
seasons dataset covers the images of summer, autumn, and

Table 1: Training and testing sets. We list the number of image in
different data sets.

Name Training set Testing set
Apple 995 100
Orange 1019 100
Pear 1036 100
Summer 1048 100
Autumn 1001 100
Winter 1145 100

winter. Finally, we adopt the datasets of [30] and resize all
images as 128 ∗ 128. The training and testing sets are shown
in the Table 1.

3.2. Baseline. To evaluate the performance of the MMGANs,
we compare our method with CycleGAN [7], DualGAN [8],
and UNIT [9].

CycleGAN: It makes use of the adversarial loss and cycle
constraint to achieve the unpaired and unsupervised image
translation from 𝑋 domain to 𝑌 domain or 𝑌 domain to 𝑋
domain.

DualGAN: It takes advantage of dual learning to con-
strain generator and discriminator. There are two generators
and two discriminators to achieve the unpaired and unsuper-
vised image translation in the DualGAN. This way expands
the basic GANs into two coupled GANs.

UNIT: It encodes the images of two domains into a
shared latent space through the shared weighted encoder and
then realizes unsupervised cross-domain image translation
by GANs.

3.3. Performance Evaluation. Amazon Mechanical Turk
(AMT) [8] is one of the methods for evaluating generated
images by GANs. It requires that the observers only pick out
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Original ms=1, ml=0

Apple2orange
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Figure 3: The results of values of different multiscale and multilevel from apple to orange. We show the original image, generated images
with different multiscale and multilevel.

Table 2: Experiment settings. Image translation between apple and
orange, we add images of the pear domain, namely, apple2orange or
orange2apple. Others are similar.

Task Augmented domain
Apple ←→ orange Pear
Apple ←→ pear Orange
Orange ←→ pear Apple
Summer ←→ autumn Winter
Summer ←→ winter Autumn
Autumn ←→ winter Summer

the real or fake image among the testing images. For selecting
only real or fake samples, the performance of the model is
not well characterized.The generated images can be classified
into four categories by the observers: better, worse, both of are
bad or good.

Based on the above discussion, we propose a comprehen-
sive way to describe the model. Firstly, let several observers
distinguish worse, better, and both of good or bad images and
count the numbers of four types of picked images. Then we
obtain the mean number of them and respectively calculate
their proportions.

Supposing that 𝑛𝑡𝑜𝑡𝑎𝑙 is the sum of the testing images.
Compared with CycleGAN, DualGAN, and UNIT models,
we, respectively, calculate the values of 𝑛𝑤𝑜𝑟𝑠𝑒, 𝑛𝑏𝑒𝑡𝑡𝑒𝑟, 𝑛𝑏𝑜𝑡ℎ𝑔𝑜𝑜𝑑,
and 𝑛𝑏𝑜𝑡ℎ𝑏𝑎𝑑, which represent the mean number of worse,
better, and both of good or bad generated images using
MMGANs model. Next, the percentages can be calculated,
respectively:

𝑛1 = 𝑛𝑤𝑜𝑟𝑠𝑒
𝑛𝑡𝑜𝑡𝑎𝑙

× 100%,

𝑛2 = 𝑛𝑏𝑒𝑡𝑡𝑒𝑟
𝑛𝑡𝑜𝑡𝑎𝑙

× 100%

𝑛3 =
𝑛𝑏𝑜𝑡ℎ𝑔𝑜𝑜𝑑
𝑛𝑡𝑜𝑡𝑎𝑙

× 100%,

𝑛4 = 𝑛𝑏𝑜𝑡ℎ𝑏𝑎𝑑
𝑛𝑡𝑜𝑡𝑎𝑙

× 100%

(10)

Finally, we analyze the model by quantifying indicators
𝑛1, 𝑛2, 𝑛3, and 𝑛4.

Table 3: Multiscale and multilevel parameters in the different
datasets.

Task Multi-scale Multi-level
Apple ←→ orange 1 1
Orange ←→ pear 1 0
Pear ←→ apple 1 0
Summer ←→ autumn 2 0
Autumn ←→ winter 2 0
Winter←→ summer 2 0

3.4. Results of Testing. To be fair, all experiments are trained
200,000 times and testing by the data sets mentioned in this
paper. The experiment focuses on two points: (1) compared
with CycleGAN, DualGAN, UNIT, and MMGANs, we show
generated images in different datasets and (2) we use our
comprehensive performance evaluation method to calculate
a quantitative ratio and analyze it.

For the convenience of narration, we set, respectively, six
experimental cases on image translation. As shown in the
Table 2.

3.4.1. Setting Training Parameters. In this section, we discuss
parameter settings about the experiment, which includes 𝜆11,
𝜆12, 𝜆13, 𝜆21, 𝜆22, 𝜆23, 𝜆31, 𝜆32, and 𝜆33, and select the
multiscale of discriminator. In addition, we set the norm 𝐹 =
1when training. In the specific implementation, we adopt the
network structure of the CycleGAN model.

We choose the parameters by considering the training
time and the quality of the generated images. Parameter
𝜆: set 𝜆11 = 𝜆12 = 𝜆13 = 10, 𝜆21 = 5, 𝜆22 = 𝜆23 = 0,
and 𝜆31 = 𝜆32 = 𝜆33 = 1 for all cases. The multiscale and
multilevel parameters are shown in the Table 3. For example,
we show that the results of values of different multiscale and
multilevel from apple to orange in Figure 3. It explains that
the different values of multiscale and multilevel affect the
generated images. Therefore, we use different multiscale and
multilevel parameters for different image translation tasks.

3.4.2. Generated Images. To fairly compare the models, we
present generated images by CycleGAN, DualGAN, UNIT,
and MMGANs. And the auxiliary domains are, respectively,
pear, orange, apple, winter, autumn, and summer.The testing
results are shown as in the Figures 4, 5, and 6.
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apple2orange

orange2apple

apple2pear

pear2apple

Input image CycleGAN DualGAN UNIT MMGANs

Figure 4: Generated images from test datasets. The left column is input image, then generated images with CycleGAN, DualGAN, UNIT,
and MMGANs, respectively.

In Figures 4, 5, and 6, the results show that the generated
images by MMGANs are more realistic. The outline, color,
background, and foreground are better than the generated
images by CycleGAN, DualGAN, and UNIT. What is more,
for generated images with multiple target entities, our model
works also better. In contrast, the fidelity of generated images

by CycleGAN, DualGAN and UNIT is even worse. These
results tell that the augmented auxiliary domain information
helps MMGANs model focus on the generation of image
details. The generator is constrained by the augmented
auxiliary domain, which makes generated images more
realistic.
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winter2summer

summer2winter

pear2orange

orange2pear

Input image CycleGAN DualGAN UNIT MMGANs

Figure 5: Generated images from test datasets (continuous). The left column is input image, then generated images with CycleGAN,
DualGAN, UNIT, and MMGANs, respectively.

3.4.3. Performance Results. According to our proposed eval-
uation method, we only tell a few observers to sort the
images from the testing results. For example, when testing
apple2orange, based on the observers first impression, let
observers judge which image in the testing results is worse,
better, both of are good or bad.

Compared with CycleGAN, DualGAN, and UNIT, the
testing results show that our model can obtain better per-
formance by comparing the values of 𝑛1, 𝑛2, 𝑛3, and 𝑛4.
In addition, they also show that the probability of better
quality of generated images is higher than the CycleGAN,
DualGAN, and UNIT. Concretely, the value of 𝑛2 is higher
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autumn2winter

winter2autumn

autumn2summer

summer2autumn

Input image CycleGAN DualGAN UNIT MMGANs

Figure 6: Generated images from test datasets (continuous). The left column is input image, then generated images with CycleGAN,
DualGAN, UNIT, and MMGANs, respectively.

than 𝑛1 from Tables 4, 5, and 6, except for summer2autumn
of DualGAN. However, in terms of the average ratio of
all image translation tasks, our MMGANs are better than
CycleGAN, DualGAN, and UNIT. And the value of 𝑛3means
that the compared models have a higher probability of better
generated images. On the contrary, the value of 𝑛4 represents

the compared models being the probability of failure during
image translation.

At last, through experiments on the six tasks of image
translation, the results prove that the constraint generator and
the losses of multiscale and multilevel discriminator make
ourmodel better generalization performance. In comparison,
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Table 4: This table shows that the results of CycleGAN VS MMGANs, in which the third and the fourth column, respectively, represent a
percentage of better quality of generated images by CycleGAN and MMGANs. The last two columns mean the generated images by the two
models generated good images and bad images in the testing sets.

Augmented domain Task 𝑛1 𝑛2 𝑛3 𝑛4
Pear Apple2orange 2.2 61.4 8.6 27.8
Pear Orange2apple 2.4 39.6 4 54
Orange Apple2pear 0.6 31.6 0.2 67.6
Orange Pear2apple 2.4 43.2 0 54.4
Apple Orange2pear 2.4 17.4 4.6 75.6
Apple Pear2orange 3 36.4 11.8 48.8
Winter Summer2autumn 6.4 11.4 32.8 49.4
Winter Autumn2summer 0.4 54.2 2.6 42.8
Autumn Summer2winter 14 14.6 27.4 44
Autumn Winter2summer 7.2 11.6 34.8 46.4
Summer Autumn2winter 4 28.2 31.2 36.6
Summer Winter2autumn 4.4 16.4 37.4 41.8

Average 4.12 30.5 16.28 49.1

Table 5: This table shows that the results of DualGAN VS MMGANs, in which the third and the fourth column, respectively, represent a
percentage of better quality of generated images by DualGAN and MMGANs. The last two columns mean the generated images by the two
models generated good images and bad images in the testing sets.

Augmented domain Task 𝑛1 𝑛2 𝑛3 𝑛4
Pear Apple2orange 1.8 61.6 2.8 33.8
Pear Orange2apple 1.6 44.4 1.4 52.6
Orange Apple2pear 1 39.2 0.4 59.4
Orange Pear2apple 2.4 49 1.4 47.2
Apple Orange2pear 0.4 22.8 0.4 76.4
Apple Pear2orange 2.6 51.8 3.6 42
Winter Summer2autumn 21.6 13.6 32 32.8
Winter Autumn2summer 8.4 21 36.2 34.4
Autumn Summer2winter 17.6 42.6 1.4 38.4
Autumn Winter2summer 10.8 35.2 2.8 51.2
Summer Autumn2winter 8.2 26 33 32.8
Summer Winter2autumn 10.8 33.2 13 43

Average 7.27 36.7 10.7 45.33

Table6:This table shows that the results ofUNITVSMMGANs, inwhich the third and the fourth column, respectively, represent a percentage
of better quality of generated images by UNIT andMMGANs.The last two columns mean the generated images by the two models generated
good images and bad images in the testing sets.

Augmented domain Task 𝑛1 𝑛2 𝑛3 𝑛4
Pear Apple2orange 8.8 47 17.6 26.6
Pear Orange2apple 8.2 28.8 13.8 49.2
Orange Apple2pear 0 37.2 0 62.8
Orange Pear2apple 0 48 0 52
Apple Orange2pear 2.2 20 0 77.8
Apple Pear2orange 0 47.2 0.2 52.6
Winter Summer2autumn 2.4 51.8 0.8 45
Winter Autumn2summer 0 59 0 41
Autumn Summer2winter 3.2 49.2 6.6 41
Autumn Winter2summer 0.4 38 3.8 57.8
Summer Autumn2winter 0 53.4 0 46.6
Summer Winter2autumn 0.4 45.2 3.8 50.6

Average 2.133333 43.73333 3.883333 50.25
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Figure 7: Training samples. These bad training samples may cause the failure of image translation.

pear2orangeapple2orange

Figure 8: The failure of image translation in the testing sets.

our MMGANs has a higher probability of generated better
images.

3.5. Discussion. In this paper, we propose an approach to
enhance the ability of GANs on image translation using aug-
mented auxiliary domain to constrain generator and using
multiscale and multilevel losses to constrain discriminator.
In this regard, we have studied the controllability of GANs.
Through the study of controllability of GANs, our MMGANs
can make the generated images more realistic in image
translation.

However, our model also failed in the image translation
task. Possible reasons include the following. (1)There are bad
samples in our training and testing sets, which may generate
bad samples in testing sets. It is shown as in Figures 7 and 8.
(2) The performance of model needs further improvement.
For example, introducing attention mechanism [38–41]. In
addition, to make the generated image diversified, and to
make the generated process interactive, we will consider
using semantic to control image generation in future work.

4. Conclusion

We presented a MMGANs model for image translation,
which constrains the generator and discriminator by adding
the auxiliary domain, full cycle consistency loss, multiscale,
and multilevel loss. In particular, the constraint on the
generator allows the generator to learn the detailed content
in the image. The constraint of discriminator makes the
whole training process more stable and the produced image
more lifelike. Through experiments on the six tasks of image
translation, our model achieves better performance than
CycleGAN, DualGAN, and UNIT.

Data Availability

Theapple, orange, pear, summer, autumn, andwinter datasets
used to support the findings of this study are downloaded

from ImageNet and Flickr. This paper has cited [7] and the
researchers can access the data easily from ImageNet and
Flickr.

Conflicts of Interest

There are no conflicts of interest regarding the publication of
this article.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China (61773093), Key R&D Program
(Intelligent Processing Technology ofMulti-source Litigation
Letters and Visits National 2018YFC0831800), Important Sci-
ence and Technology Innovation Projects in Chengdu (2018-
YF08-00039-GX), andResearchPrograms of Sichuan Science
and Technology Department (2016JY0088, 17ZDYF3184).

References

[1] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-
image translation with conditional adversarial networks,” in
Proceedings of the 30th IEEEConference onComputerVision and
Pattern Recognition, CVPR 2017, pp. 5967–5976, USA, July 2017.

[2] R. Rosales, K. Achan, and B. Frey, “Unsupervised image trans-
lation,” in Proceedings of the 9th IEEE International Conference
on Computer Vision, pp. 472–478, France, October 2003.

[3] Q. Luan, F. Wen, D. Cohen-Or, L. Liang, Y.-Q. Xu, and H.-Y.
Shum, “Natural image colorization in,” in Proceedings of the 18th
Eurographics conference on Rendering Techniques, pp. 309–320,
2007.

[4] R. Zhang, P. Isola, and A. A. Efros, “Colorful Image Coloriza-
tion,” in Computer Vision – ECCV 2016, vol. 9907 of Lecture
Notes in Computer Science, pp. 649–666, Springer International
Publishing, Cham, 2016.

[5] A. Van Den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt,
A. Graves, and K. Kavukcuoglu, “Conditional image generation



Complexity 11

with PixelCNN decoders,” in Proceedings of the 30th Annual
Conference on Neural Information Processing Systems, NIPS
2016, pp. 4797–4805, Spain, December 2016.

[6] S. Xie and Z. Tu, “Holistically-nested edge detection,” in
Proceedings of the IEEE international conference on computer
vision, pp. 1395–1403, 2015.

[7] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-
to-Image Translation Using Cycle-Consistent Adversarial Net-
works,” in Proceedings of the 16th IEEE International Conference
on Computer Vision, ICCV 2017, pp. 2242–2251, Italy, October
2017.

[8] Z. Yi, H. Zhang, P. Tan, and M. Gong, “DualGAN: Unsuper-
vised Dual Learning for Image-to-Image Translation,” in Pro-
ceedings of the 16th IEEE International Conference on Computer
Vision, ICCV 2017, pp. 2868–2876, Italy, October 2017.

[9] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-
image translation networks,” in Advances in Neural Information
Processing Systems, pp. 700–708, 2017.

[10] H. Dong, P. Neekhara, C. Wu, and Y. Guo, “Unsupervised
image-to-image translation with generative adversarial net-
works,” https://arxiv.org/abs/1701.02676.

[11] S. Ma, J. Fu, C. W. Chen, and T. Mei, “Da-gan: Instance-
level image translation by deep attention generative adversarial
networks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5657–5666, 2018.

[12] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi,
“A survey of deep neural network architectures and their
applications,” Neurocomputing, vol. 234, pp. 11–26, 2017.

[13] C. Xu, Q. Liu, and M. Ye, “Age invariant face recognition and
retrieval by coupled auto-encoder networks,” Neurocomputing,
vol. 222, pp. 62–71, 2017.

[14] X. Li, M. Ye, Y. Liu, F. Zhang, D. Liu, and S. Tang, “Accurate
object detection using memory-based models in surveillance
scenes,” Pattern Recognition, vol. 67, pp. 73–84, 2017.

[15] X. Li, M. Ye, Y. Liu, and C. Zhu, “Adaptive Deep Convolutional
Neural Networks for Scene-Specific Object Detection,” IEEE
Transactions on Circuits and Systems for Video Technology, 2018.

[16] Y. Zhang, H. Chen, Y. He, M. Ye, X. Cai, and D. Zhang,
“Road segmentation for all-day outdoor robot navigation,”
Neurocomputing, vol. 314, pp. 316–325, 2018.

[17] S.Xie, R.Girshick, P.Dollár, Z. Tu, andK.He, “Aggregated resid-
ual transformations for deep neural networks,” in Proceedings
of the 30th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, pp. 5987–5995, USA, July 2017.

[18] C. Ledig, L. Theis, F. Huszár et al., “Photo-realistic single image
super-resolution using a generative adversarial network,” in
Proceedings of the 30th IEEEConference onComputerVision and
Pattern Recognition, CVPR 2017, pp. 105–114, USA, July 2017.

[19] J. Li, Y. Wu, and K. Lu, “Structured domain adaptation,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
27, no. 8, pp. 1700–1713, 2017.

[20] Y. Taigman, A. Polyak, and L. Wolf, “Unsupervised cross-
domain image generation,” https://arxiv.org/abs/1611.02200.

[21] M.-Y. Liu and O. Tuzel, “Coupled generative adversarial net-
works,” in Proceedings of the 30th Annual Conference on Neural
Information Processing Systems, NIPS 2016, pp. 469–477, Spain,
December 2016.

[22] M. Li, H. Huang, L. Ma, W. Liu, T. Zhang, and Y. Jiang, “Unsu-
pervised Image-to-Image Translation with Stacked Cycle-
Consistent Adversarial Networks,” in Computer Vision – ECCV
2018, vol. 11213 of Lecture Notes in Computer Science, pp. 186–
201, Springer International Publishing, Cham, 2018.

[23] J. Li, K. Lu, Z. Huang, L. Zhu, and H. T. Shen, “Transfer Inde-
pendently Together: A Generalized Framework for Domain
Adaptation,” IEEE Transactions on Cybernetics, pp. 1–12, 2018.

[24] M. Mirza and S. Osindero, “Conditional generative adversarial
nets,” https://arxiv.org/abs/1411.1784.

[25] H. Zhang, T. Xu, and H. Li, “StackGAN: Text to Photo-Realistic
Image Synthesis with Stacked Generative Adversarial Net-
works,” in Proceedings of the 2017 IEEE International Conference
on Computer Vision (ICCV), pp. 5908–5916, Venice, October
2017.

[26] Z.Deng,H. Zhang, X. Liang et al., “Structured generative adver-
sarial networks,” in Advances in Neural Information Processing
Systems, pp. 3902–3912, 2017.

[27] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “InfoGAN: Interpretable representation learning by
information maximizing generative adversarial nets,” in Pro-
ceedings of the 30th Annual Conference on Neural Information
Processing Systems, NIPS 2016, pp. 2180–2188, Spain, December
2016.

[28] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville, “Improved training of wasserstein gans,” inAdvances
in Neural Information Processing Systems, pp. 5769–5779, 2017.

[29] V. Nagarajan and J. Z. Kolter, “Gradient descent gan opti-
mization is locally stable,” in Advances in Neural Information
Processing Systems, pp. 5591–5600, 2017.

[30] Y. Gan, J. Gong, M. Ye, Y. Qian, and K. Liu, “Unpaired cross
domain image translation with augmented auxiliary domain
information,” Neurocomputing, vol. 316, pp. 112–123, 2018.

[31] M. Arjovsky and L. Bottou, “Towards principled methods for
training generative adversarial networks,” https://arxiv.org/abs/
1701.04862.

[32] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klam-
bauer, and S. Hochreiter, “Gans trained by a two time-scale
update rule converge to a nash equilibrium,”Advances in Neural
Information Processing Systems, vol. 1, no. 2, article 4, 2017.

[33] A. Odena, J. Buckman, C. Olsson et al., “Is generator condition-
ing causally related to gan performance?” https://arxiv.org/abs/
1802.08768.

[34] T.-C.Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catan-
zaro, “High-resolution image synthesis and semantic manipu-
lation with conditional gans,” https://arxiv.org/abs/1711.11585.

[35] C. S. Chin, J. Si, A. S. Clare, and Maode Ma, “Intelligent
Image Recognition System for Marine Fouling Using Softmax
Transfer Learning and Deep Convolutional Neural Networks,”
Complexity, vol. 2017, Article ID 5730419, 9 pages, 2017.
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